English Text over Erasure Channel

10\% erasures:

A_ she said_this she I_oked down at her han_s, _nd was surpris_d to _ee _hat she had put on one of th_ Rabbit's _ittle white _id_gloves wh_le she was talking._'How CAN I have done that?'_she_th__ght. '_ m_st be growing small again.' She got up and _ent to the table to measure hersel_ by it,_a_d_fo_nd that,_as n_arly as she could gu__ , __e was now

20\% erasures:

a_out _wo fe__ high,_an_ _as_go__g _n__h__nking rapid__: she _oon found out that t_e _ause of this was the fa_ she_wa_ holding, _nd__he dropp_d it has_ily,_just i_ t__e to_avoid shrinking away altog_ther.
'That__AS a narrow es_ape!' said ___ce,_a good deal _righ__ned at _h_ s_dde_ change,_but very glad_to _in_ __rsel_ s_ill_in existence; '_nd

English Text over Erasure Channel
30% erasures:
n__ __r th__gard_n!'__nd _he_r__ wit___ll _p_e_ __c__to _he_li_tl_ door:
u, _I_! the litt_e doo_ w_s__hut __ain, a__ t_e_li__l_ g_lde_ key was lying on t_e _l_ss_t_ble__s be_ore, 'and _hing_ are wor_e th_n _v_r,' t_ought_t_ po_r child, 'f_r_I neve_ __s _o ___llas th__ be_o_e, _e_e_! And I_dec_are \qquad t bad,_tha \qquad t is!'

40\% erasures:
_s __e_s \qquad t_es__w_rds h \qquad _oot_sli_ped, and_in_ano_her \qquad ent, \qquad as_! she wa_up \qquad _e_ c_in in _alt water. _e_ first _d_a _as t_at s__ had \qquad eh \qquad fal_e_int__t \qquad a, _'_nd i_ th \qquad ase_l_can go_ba_k_by r_il_ay,'_h he s s_i i_ to to_h \qquad . (Alice had \qquad _e e_to to_the se_ \qquad d \qquad nc__in __r_li__, an_h__ c_me_t_ th_ gener_ \qquad cl \qquad , __a \qquad her __e e__ou \qquad

English Text over Erasure Channel
50\% erasures:
\qquad on t \qquad Eng_i__ __a \qquad a \qquad e \qquad ba \qquad ng ma_h_n_s in_th_ S \qquad , s \qquad h \qquad n ig ig_i \qquad in_the san \qquad woode_s \qquad h __ a_r_w of \qquad gin \qquad h \qquad s,_an_behin_ the \qquad a a _ailway st \qquad o_.) H_we__r, _h_s \qquad ma_e_ou_ tha_ \qquad e_w_s__n n_h h__O \qquad f _e \qquad w_i \qquad _ she_h_d w_p_ w__n \qquad __s n \qquad e \qquad h \qquad h.

60\% erasures:
\qquad w_sh_l_h \qquad r \qquad S m \qquad !' _a_d \qquad c_, as_s \qquad s_am_a_out, \qquad
\qquad fi__h h \qquad t. \qquad h_l \qquad s_ed_fo_ _t \qquad w, \qquad u_po __, \qquad
b \qquad g _r_w_ed \qquad
\qquad r_! h \qquad _I_L \qquad q \qquad hi \qquad u_e!

Ho_e_e_, _v_ry \qquad g is _u_e \qquad o-__y.'
\qquad th \qquad h_ar \qquad eth \qquad g s h \qquad bo \qquad n \qquad p \qquad I _ _ 1 I_{-}

Source-channel separation

- For (time-varying) DMC we can design the source encoder and channel coder separately and still get optimum performance
- Not true for:
- Correlated Channel and Source
- Multiple access with correlated sources
- Broadcast channel

Figure 1.5. A binary data sequence of length 10000 transmitted over a binary symmetric channel with noise level $f=0.1$. [Dilbert image Copyright(C1997 United Feature Syndicate, Inc., used with permission.]

Received sequence \mathbf{r}	Likelihood ratio $\frac{P(\mathbf{r} \mid s=1)}{P(\mathbf{r} \mid s=0)}$	Decoded sequence $\hat{\mathbf{s}}$
000	γ^{-3}	0
001	γ^{-1}	0
010	γ^{-1}	0
100	γ^{-1}	0
101	γ^{1}	1
110	γ^{1}	1
011	γ^{1}	1
111	γ^{3}	1

Algorithm 1.9. Majority-vote decoding algorithm for R_{3}. Also shown are the likelihood ratios (1.23), assuming the channel is a binary symmetric channel; $\gamma \equiv(1-f) / f$.

S	0	0	1	0	1	1	0
t	$\overbrace{000}^{0}$	$\overbrace{000}^{0}$	$\overbrace{111}^{1}$	$\overbrace{000}^{0}$	$\overbrace{111}$	$\overbrace{111}$	$\overbrace{000}^{0}$
n	000	001	000	000	101	000	000
r	$\underbrace{000}$	$\underbrace{001}$	$\underbrace{111}$	$\underbrace{000}$	$\underbrace{010}$	$\underbrace{111}$	$\underbrace{000}$
S	0	0	1	0	0	1	0
ors		\star					
ors					\star		

Book by David MacKay

Book by David MacKay

Figure 1.12. Error probability p_{b} versus rate for repetition codes over a binary symmetric channel with $f=0.1$. The right-hand figure shows p_{b} on a logarithmic scale. We would like the rate to be large and p_{b} to be small.

s	t	s	t	s	t	S	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Table 1.14. The sixteen codewords $\{\mathbf{t}\}$ of the $(7,4)$ Hamming code. Any pair of codewords differ from each other in at least three bits.

Figure 1.17. Transmitting 10000 source bits over a binary symmetric channel with $f=10 \%$ using a $(7,4)$ Hamming code. The probability of decoded bit error is about 7%.

Figure 1.18. Error probability p_{b} versus rate R for repetition codes, the $(7,4)$ Hamming code and BCH codes with blocklengths up to 1023 over a binary symmetric channel with $f=0.1$. The righthand figure shows p_{b} on a logarithmic scale.

Book by David MacKay

$C \simeq 0.53$. Let us consider what this means in terms of noisy disk drives. The repetition code R_{3} could communicate over this channel with $p_{\mathrm{b}}=0.03$ at a rate $R=1 / 3$. Thus we know how to build a single gigabyte disk drive with $p_{\mathrm{b}}=0.03$ from three noisy gigabyte disk drives. We also know how to make a single gigabyte disk drive with $p_{\mathrm{b}} \simeq 10^{-15}$ from sixty noisy one-gigabyte drives (exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk drives and codes and says:

'What performance are you trying to achieve? 10^{-15} ? You don't need sixty disk drives - you can get that performance with just two disk drives (since $1 / 2$ is less than 0.53). And if you want $p_{\mathrm{b}}=10^{-18}$ or 10^{-24} or anything, you can get there with two disk drives too!'
$C \simeq 0.53$. Let us consider what this means in terms of noisy disk drives. The repetition code R_{3} could communicate over this channel with $p_{\mathrm{b}}=0.03$ at a rate $R=1 / 3$. Thus we know how to build a single gigabyte disk drive with $p_{\mathrm{b}}=0.03$ from three noisy gigabyte disk drives. We also know how to make a single gigabyte disk drive with $p_{\mathrm{b}} \simeq 10^{-15}$ from sixty noisy one-gigabyte drives (exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk drives and codes and says:

'What performance are you trying to achieve? 10^{-15} ? You don't need sixty disk drives - you can get that performance with just two disk drives (since $1 / 2$ is less than 0.53). And if you want $p_{\mathrm{b}}=10^{-18}$ or 10^{-24} or anything, you can get there with two disk drives too!'
[Strictly, the above statements might not be quite right, since, as we shall see, Shannon proved his noisy-channel coding theorem by studying sequences of block codes with ever-increasing blocklengths, and the required blocklength might be bigger than a gigabyte (the size of our disk drive), in which case, Shannon might say 'well, you can't do it with those tiny disk drives, but if you had two noisy terabyte drives, you could make a single high-quality terabyte drive from them'.]

