English Text over Erasure Channel

10% erasures:

A_ she said_this she l_oked down at her han_s, _nd was surpris_d to _ee _hat she had put on one of th_ Rabbit's _ittle white _id_gloves wh_le she was talking._'How CAN I have done that?'_she_th__ght. '_ m_st be growing small again.' She got up and _ent to the table to measure hersel_ by it,_a_d_fo_nd that,_as n_arly as she could gu___, __e was now **20% erasures:**

a_out _wo fe__ high,_an_ _as_go__g _n__h__nking rapid__: she _oon found out that t_e _ause of this was the fa_ she_wa_ holding, _nd__he dropp_d it has_ily,_just i_ t__e to_avoid shrinking away altog_ther. 'That__AS a narrow es_ape!' said ___ce,_a good deal _righ__ned at _h_ s_dde_ change,_but very glad_to _in_ __rsel_ s_ill_in existence; '_nd

English Text over Erasure Channel

30% erasures:

n___r th__gard_n!'__nd _he_r__wit__ll _p_e___c__to _he_li_tl_door: _u_, _l__! the litt_e doo_ w_s__hut __ain, a__ t_e_li__l_g_lde_ key was lying on t_e _l_ss_t_ble__s be_ore, 'and _hing_ are wor_e th_n _v_r,' t_ought_t__po_r child, 'f_r_l neve__s_o __ll_as th__ be_o_e, _e_e_! And l_dec_are i_'__t__ bad,_tha___t is!'

40% erasures:

_s __e_s __ t_es __w_rds h___oot_sli_ped, and in_ano_her ___ent, ___as _! she wa_ up ____e_ c_in in _alt water. _e_ first _d_a _as t_at s___ had ___eh __ fal_e_ int __t ____a, _'_nd i_ th ___ase_I_can go_ba_k_by r_il_ay,' __he s_i_ to_her_e__. (Alice had __e_ to_the se ___d ___nc __in __r_li__, an _ h __ c_me_t_ th _ gener ____cl ___, __a ___her __e __ou ___

English Text over Erasure Channel

50% erasures:

___on t__Eng_i___a_____a ____ ba___ng ma_h_n_s in_th_ s__, s___h___n_ig_i___in_the san_____woode_ s____, _h__a_r_w of___gin__h___s,_an_ behin_ the__a _ailway st___o_.) H_we__r, _h_ s___ ma_e_ou_ tha___e_w_s__n_h__o___f_e___w_i__she_h_d w_p_w__n____ __s n____e__h_h.

60% erasures:

'_w_sh_l_h__'__r__s_m__!'_a_d __c_, as_s_s_am_a_out, __g ___fi__h___t. '__h_l___s_ed_fo__t__w, l_u_po__, __ b___g_r_w_ed_n ____r!_h___l_L __q___hi__, ___u_e! Ho_e_e_, _v_ry___g is_u_e__o-_y.' ____th___h_ar___eth_g s__h___bo___n__p___l__l___

Source-channel separation

- For (time-varying) DMC we can design the source encoder and channel coder separately and still get optimum performance
- Not true for:
 - Correlated Channel and Source
 - Multiple access with correlated sources
 - Broadcast channel

ECE 534 by Natasha Devroye

Figure 1.5. A binary data sequence of length 10 000 transmitted over a binary symmetric channel with noise level f = 0.1. [Dilbert image Copyright©1997 United Feature Syndicate, Inc., used with permission.]

Received sequence \mathbf{r}	Likelihood ratio $\frac{P(\mathbf{r} \mid s = 1)}{P(\mathbf{r} \mid s = 0)}$	Decoded sequence $\hat{\mathbf{s}}$
000	γ^{-3}	0
001	γ^{-1}	0
010	γ^{-1}	0
100	γ^{-1}	0
101	γ^1	1
110	γ^1	1
011	γ^1	1
111	γ^3	1

Algorithm 1.9. Majority-vote decoding algorithm for R₃. Also shown are the likelihood ratios (1.23), assuming the channel is a binary symmetric channel; $\gamma \equiv (1 - f)/f$.

Figure 1.11. Transmitting 10000 source bits over a binary symmetric channel with f = 10%using a repetition code and the majority vote decoding algorithm. The probability of decoded bit error has fallen to about 3%; the rate has fallen to 1/3.

Figure 1.12. Error probability $p_{\rm b}$ versus rate for repetition codes over a binary symmetric channel with f = 0.1. The right-hand figure shows $p_{\rm b}$ on a logarithmic scale. We would like the rate to be large and $p_{\rm b}$ to be small.

S	t	S	t	S	\mathbf{t}	S	\mathbf{t}
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Table 1.14. The sixteen codewords{t} of the (7,4) Hamming code.Any pair of codewords differ fromeach other in at least three bits.

Figure 1.17. Transmitting $10\,000$ source bits over a binary symmetric channel with f = 10%using a (7, 4) Hamming code. The probability of decoded bit error is about 7%.

Figure 1.18. Error probability $p_{\rm b}$ versus rate R for repetition codes, the (7, 4) Hamming code and BCH codes with blocklengths up to 1023 over a binary symmetric channel with f = 0.1. The righthand figure shows $p_{\rm b}$ on a logarithmic scale.

figure 1.18.

Book by David MacKay

 $H = C/(1 - H_2(p_b))$, where C and H_2 are defined in equation (1.35).

 $C \simeq 0.53$. Let us consider what this means in terms of noisy disk drives. The repetition code R₃ could communicate over this channel with $p_{\rm b} = 0.03$ at a rate R = 1/3. Thus we know how to build a single gigabyte disk drive with $p_{\rm b} = 0.03$ from three noisy gigabyte disk drives. We also know how to make a single gigabyte disk drive with $p_{\rm b} \simeq 10^{-15}$ from sixty noisy one-gigabyte drives (exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk drives and codes and says:

'What performance are you trying to achieve? 10^{-15} ? You don't need sixty disk drives – you can get that performance with just two disk drives (since 1/2 is less than 0.53). And if you want $p_{\rm b} = 10^{-18}$ or 10^{-24} or anything, you can get there with two disk drives too!' $C \simeq 0.53$. Let us consider what this means in terms of noisy disk drives. The repetition code R₃ could communicate over this channel with $p_{\rm b} = 0.03$ at a rate R = 1/3. Thus we know how to build a single gigabyte disk drive with $p_{\rm b} = 0.03$ from three noisy gigabyte disk drives. We also know how to make a single gigabyte disk drive with $p_{\rm b} \simeq 10^{-15}$ from sixty noisy one-gigabyte drives (exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk drives and codes and says:

'What performance are you trying to achieve? 10^{-15} ? You don't need sixty disk drives – you can get that performance with just two disk drives (since 1/2 is less than 0.53). And if you want $p_{\rm b} = 10^{-18}$ or 10^{-24} or anything, you can get there with two disk drives too!'

[Strictly, the above statements might not be quite right, since, as we shall see, Shannon proved his noisy-channel coding theorem by studying sequences of block codes with ever-increasing blocklengths, and the required blocklength might be bigger than a gigabyte (the size of our disk drive), in which case, Shannon might say 'well, you can't do it with those *tiny* disk drives, but if you had two noisy *terabyte* drives, you could make a single high-quality terabyte drive from them'.]