0	00	000	0000	$\begin{aligned} & \text { o} \\ & \text { or } \\ & \stackrel{\rightharpoonup}{3} \\ & 0 \end{aligned}$
			0001	
		001	0010	
			0011	
	01	010	0100	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
			0101	
		011	0110	
			0111	0
1	10	100	1000	$\frac{\xi}{i}$
			1001	
		101	1010	$\stackrel{\Im}{0}$
			1011	
	11	110	1100	$\underset{\sim}{e}$
			1101	
		111	1110	
			1111	

Figure 5.1. The symbol coding budget. The 'cost' 2^{-l} of each codeword (with length l) is indicated by the size of the box it is written in. The total budget available when making a uniquely decodeable code is 1 .
You can think of this diagram as showing a codeword supermarket, with the codewords arranged in aisles by their length, and the cost of each codeword indicated by the size of its box on the shelf. If the cost of the codewords that you take exceeds the budget then your code will not be uniquely decodeable.

Book by David MacKay

a_{i}	$c\left(a_{i}\right)$	l_{i}							
a	1000	4							
$C_{0}:$									
b	0100	4							
c	0010	4							
d	0001	4	\quad	$C_{3}:$					
:---	:---	:---	:---	:---	:---	\quad			
:---	:---	:---	:---	:---	:---				

$C_{6}:$				
a_{i}	$c\left(a_{i}\right)$	p_{i}	$h\left(p_{i}\right)$	l_{i}
a	0	$1 / 2$	1.0	1
b	01	$1 / 4$	2.0	2
c	011	$1 / 8$	3.0	3
d	111	$1 / 8$	3.0	3

C_{0}			
0	00	000	0000
			-10001
		001	
			0011
	01	010	0100
			0101
		011	0110
			0111
1	10	100	
			1001
		101	1010
			1011
	11	110	1100
			1101
		111	1110
			1111

a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$	l_{i}	$c\left(a_{i}\right)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
c	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
e	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
l	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
o	0.0689	3.9	4	1011
p	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
w	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
y	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
-	0.1928	2.4	2	01

Figure 5.6. Huffman code for the English language ensemble (monogram statistics).
ure 5.6. This code has an expected length of 4.15 bits; the entropy of the ensemble is 4.11 bits. Observe the disparities between the assigned codelengths and the ideal codelengths $\log _{2} 1 / p_{i}$.

Context (sequence thus far)			
	$P(\mathrm{a})=0.425$	$P(\mathrm{~b})=0.425$	$P(\square)=0.15$
b	$P(\mathrm{a} \mid \mathrm{b})=0.28$	$P(\mathrm{~b} \mid \mathrm{b})=0.57$	$P(\square \mid \mathrm{b})=0.15$
bb	$P(\mathrm{a} \mid \mathrm{bb})=0.21$	$P(\mathrm{~b} \mid \mathrm{bb})=0.64$	$P(\square \mid \mathrm{bb})=0.15$
bbb	$P(\mathrm{a} \mid \mathrm{bbb})=0.17$	$P(\mathrm{~b} \mid \mathrm{bbb})=0.68$	$P(\square \mid \mathrm{bbb})=0.15$
bbba	$P(\mathrm{a} \mid \mathrm{bbba})=0.28$	$P(\mathrm{~b} \mid \mathrm{bbba})=0.57$	$P(\square \mid \mathrm{bbba})=0.15$

Figure 6.4 shows the corresponding intervals. The interval b is the middle 0.425 of $[0,1)$. The interval bb is the middle 0.567 of b , and so forth.

Figure 6.4. Illustration of the arithmetic coding process as the sequence bbba \square is transmitted.

