Stopping Rules and Wald's Equality

Arianna Novaro
Information Theory
Master of Logic - UvA
December 18, 2014

Overview

1 The Secretary Problem
2 Stopping Rules
3 Wald's Equality

The Secretary Problem

The Secretary Problem

- Exactly one position available
- Known number n of applicants
- Sequentially and in random order
- Ranking is possible
- No second thougths
- Only the best is acceptable

Solution to the Secretary Problem

Strategy k

- Reject a certain number $k-1$ of candidates.
- Select the first candidate who is better than all the previous ones.
- If all of them are worse, choose the last one (= failure).

Solution to the Secretary Problem

Strategy k

- Reject a certain number $k-1$ of candidates.
- Select the first candidate who is better than all the previous ones.
- If all of them are worse, choose the last one (= failure).

Solution to the Secretary Problem

$B_{j}=$ the j-th candidate is the best
$S_{j}=$ the j-th candidate is selected
Probability of success with strategy k

$$
\begin{gathered}
P\left(B_{j}\right)=\frac{1}{n} \\
P\left(S_{j} \mid B_{j}\right)= \begin{cases}0, & j<k \\
\frac{k-1}{j-1}, & j \geq k\end{cases} \\
P\left(B_{j} \cap S_{j}\right)=P\left(B_{j}\right) \times P\left(S_{j} \mid B_{j}\right)= \begin{cases}\frac{1}{n}, & k=1 \\
\frac{k-1}{n} \sum_{j=k}^{n} \frac{1}{j-1}, & k \geq 2\end{cases}
\end{gathered}
$$

Stopping Times

Let $\mathbf{X}=\left\{X_{n}: n \geq 0\right\}$ be a stochastic process.

Random Time

A random time τ is a discrete random variable on the same probability space as \mathbf{X}, taking values in the time set $\mathbb{N}=\{0,1,2, \ldots\}$.

Stopping Times

Let $\mathbf{X}=\left\{X_{n}: n \geq 0\right\}$ be a stochastic process.

Random Time

A random time τ is a discrete random variable on the same probability space as \mathbf{X}, taking values in the time set $\mathbb{N}=\{0,1,2, \ldots\}$.

Stopping Time

A stopping time with respect to \mathbf{X} is a random time such that for each $n \geq 0$, the event $\{\tau=n\}$ is completely determined by (at most) the total information known up to time $n,\left\{X_{0}, \ldots, X_{n}\right\}$.

Are these stopping rules?

■ Playing until you reach the fifth gamble.

- Playing until you reach a total fortune of $N \$$ for the first time in the evening.
■ Playing until you reach a total fortune of $N \$$ for the last time in the evening.
- Playing until you either reach a total fortune of $N \$$ or you run out of money.

Are these stopping rules?

■ Playing until you reach the fifth gamble.

- Playing until you reach a total fortune of $N \$$ for the first time in the evening.

■ Playing until you reach a total fortune of $N \$$ for the last time in the evening.

- Playing until you either reach a total fortune of $N \$$ or you run out of money.

Stopping Rules

■ Playing until you reach the fifth gamble.
Independent case
τ is a random time that is independent of \mathbf{X}. In this case, $\{\tau=n\}$ doesn't depend at all on \mathbf{X}.

Stopping Rules

■ Playing until you reach the fifth gamble.

Independent case

τ is a random time that is independent of \mathbf{X}. In this case, $\{\tau=n\}$ doesn't depend at all on \mathbf{X}.

- Playing until you reach a total fortune of $N \$$ for the first time in the evening.

First passage - Hitting Times

Suppose that \mathbf{X} has a discrete state space and let i be a fixed state. The first passage time of the process into state i is:

$$
\tau=\min \left\{n \geq 0: X_{n}=i\right\}
$$

Stopping Rules

$A=\{i\}:$ collection of states

$$
\begin{gathered}
\tau=\min \left\{n \geq 0: X_{n} \in A\right\} \\
\{\tau=n\}=\left\{X_{0} \neq i, \ldots, X_{n-1} \neq i, X_{n}=i\right\}
\end{gathered}
$$

Stopping Rules

$A=\{i\}$: collection of states

$$
\begin{gathered}
\tau=\min \left\{n \geq 0: X_{n} \in A\right\} \\
\{\tau=n\}=\left\{X_{0} \neq i, \ldots, X_{n-1} \neq i, X_{n}=i\right\}
\end{gathered}
$$

Hitting times are stopping times

$$
\{\tau=0\}=\left\{X_{0} \in A\right\}
$$

$=$ it only depends on X_{0}.

$$
\{\tau=n\}=\left\{X_{0} \notin A, \ldots, X_{n-1} \notin A, X_{n} \in A\right\}
$$

$=$ it only depends on $\left\{X_{0}, \ldots, X_{n}\right\}$ for $n \geq 1$.

Gambler's Ruin Problem

- Playing until you either reach a total fortune of $N \$$ or you run out of money

First passage time to the set $A=\{0, N\}$.

Gambler's Ruin Problem

R_{n} : total fortune after the $n^{\text {th }}$ gamble $\left(R_{0}=i\right)$. $\left\{R_{n}: n \geq 0\right\}$:

$$
\begin{gathered}
R_{n}=\Delta_{1}+\cdots+\Delta_{n} \\
\tau_{i}=\min \left\{n \geq 0: R_{n} \in\{0, N\} \mid R_{0}=i\right\}
\end{gathered}
$$

- If $R_{\tau_{i}}=N$ you WIN.
- If $R_{\tau_{i}}=0$ you GET RUINED.

$$
\begin{gathered}
P_{i}=P\left(R_{\tau_{i}}=N\right)=p P_{i+1}+q P_{i-1} \\
\quad P_{i}= \begin{cases}\frac{1-\left(\frac{q}{p}\right)^{i}}{1-\left(\frac{q}{p}\right)^{N}}, & \text { if } p \neq q \\
\frac{i}{N}, & \text { if } p=q=\frac{1}{2}\end{cases}
\end{gathered}
$$

Abraham Wald (1902-1950)

"He was a master at deriving complicated results in amazingly simple ways. " (Johnson \& Kotz, 1997)

Wald's Equality

Let $\left\{X_{n}: n \geq 1\right\}$ be a sequence of IID RVs, each of expectation $\mathbb{E}[X]$. If τ is a stopping time for $\left\{X_{n}: n \geq 1\right\}$ and if $\mathbb{E}[\tau]<\infty$, then the sum $S_{\tau}=X_{1}+X_{2}+\cdots+X_{\tau}$ at the stopping time τ satisfies:

$$
\mathbb{E}\left[S_{\tau}\right]=\mathbb{E}[X] \mathbb{E}[\tau]
$$

Wald's Equality

$$
\begin{aligned}
\mathbb{E}\left[S_{\tau}\right]= & {\left[\sum_{n} x_{n} \mathbb{I}_{\tau \geq n}\right]=} \\
& =\sum_{n} \mathbb{E}\left[X_{n} \mathbb{I}_{\tau \geq n}\right]= \\
& =\sum_{n} \mathbb{E}\left[X_{n}\right] \cdot \mathbb{E}\left[\mathbb{I}_{\tau \geq n}\right]= \\
& =\mathbb{E}[X] \sum_{n} \mathbb{E}\left[\mathbb{I}_{\tau \geq n}\right]= \\
& =\mathbb{E}[X] \sum_{n} \operatorname{Pr}\{\tau \geq n\}= \\
& =\mathbb{E}[X] \mathbb{E}[\tau]
\end{aligned}
$$

Further readings and References

■ Blackwell D. (1946), "On an Equation of Wald", Ann. Math. Statist., 17, 1: 84-87.
■ Ferguson T. (1989), "Who solved the Secretary Problem?", Statistical Science, 4, 3: 282-289.

- Sigman K. (2009), Stopping Times, 1-6. (available at: http://www.columbia.edu/ ks20/stochastic-I/stochastic-I-ST.pdf)

Thank you!

