
Master of Logic Project Report:

Lattice Based Cryptography and Fully

Homomorphic Encryption

Maximilian Fillinger

August 18, 2012

1 Preliminaries

1.1 Notation

Vectors and matrices are denoted by bold lowercase and uppercase letters. For
purposes of matrix multiplication, all vectors are considered as column vectors.
We denote the floor and ceiling functions by b·c and d·e respectively. Rounding
to the closest integer (to the smaller one if there are two) is denoted by b·e.
For q ∈ Z, let Zq = (bq/2c, bq/2c] ∩ Z and for x ∈ Z, let [x]q be the unique
y ∈ Zq such that x = y+kq for some integer k. For vectors x ∈ Zn, [x]q denotes
the component-wise application of this operation. Note that here, Zq does not
denote the ring Z/Zq. In particular, for x ∈ R and y ∈ Zq, x · y denotes the
multiplication of x and y in R. The standard scalar product is denoted by 〈·, ·〉
and the euclidean norm by || · ||.

Let ∼⊆ R × R be the relation defined by x ∼ y ⇔ ∃k ∈ Z : x + k = y. Let
T = R/ ∼. For x ∈ R, we denote x/ ∼∈ T by x mod T.

A function ε : N → R is called negligible if for every polynomial function
p, there is some n0 ∈ N such that for all n ≥ n0, ε(n) < p(n)−1. A function
δ : N → R is called overwhelming if there is a negligible function ε such that
δ(n) ≥ 1− ε(n) for all n.

For s > 0 and c ∈ Rn,let ρ
(n)
s,c (x) = exp(π||(x− c)/s||2). The total measure

is
∫
x∈Rn ρs,c(x)dx = sn and the density function of the continuous Gaussian

distribution centered on c with parameter s is D
(n)
s,c (x) = ρs,c(x)/sn. The

discrete Gaussian distribution on a discrete subset S ⊆ Rn is defined by

D
(n)
S,s,c(x) =

{
Ds,c(x)/Ds,c(S) if x ∈ S
0 otherwise

When n is clear from context, it is left out.
We can approximate sampling from a continuous Gaussian distribution by

selecting a sufficiently fine discrete grid on Rn and sampling from the discrete

1

Gaussian distribution on this grid. For simplicity, we assume that we can sample
from this distribution directly.

For α ∈ (0, 1), let Ψα = D
(1)
α,0 mod T. For χ a continuous probability density

function on [0, 1), let χ̄(q) be its discretization to Zq. Usually, q will be clear
from context and not written. For Ψ a density function on T, we identify the
elements of T with their unique representatives in [0, 1) and define Ψ̄ as the
discretization.

1.2 Homomorphic Encryption

A homomorphic encryption scheme is a cryptographic scheme that allows to
outsource computation to another party without disclosing the input and output
of the computed function. It differs from a regular (private-key or public-key)
cryptographic scheme by having one additional type of key, the evaluation key,
and one additional (probabilistic polynomial time) algorithm Eval. For security
purposes, we assume that the evaluation key is known to the adversary. Eval
takes as input an evaluation key evk, a circuit C and for each input wire of
C an encryption of 0 or 1 under the corresponding public key pk. We call
such a scheme L-homomorphic if for any circuit C of depth ≤ L the following
holds: Let n be the number of input wires, (pk, sk, evk) a possible output of
Gen and m0, ...,mn ∈ {0, 1}n. If ci ← Encpk(mi) then Evalevk(C, c1, ..., cn)
decrypts to C(m1, ...,mk) under sk. It is called a fully homomorphic encryption
(FHE) scheme if it is L-homomorphic for every L and it is called leveled fully
homomorphic if it is L-homomorphic for an arbitrary value of L supplied at key
generation.

To be useful, a homomorphic encryption scheme must also have a property
called compactness. Compactness requires that the length of results of Eval is
bounded by a polynomial in the security parameter n (assuming that C has one
output wire). A scheme is compact iff its decryption algorithm can be described
by a family of circuits (Cn)n∈N with size polynomial in n where Cn computes the
decryption algorithm for security parameter n. Without compactness, homo-
morphic evaluation of a circuit C could lead to a ciphertext of size polynomial
in C. Thus, its size could grow independently of n which could result in the
decryption taking time independent of n. In fact, disregarding compactness
makes fully homomorphic encryption trivial: Let Π be any encryption scheme.
We could create a non-compact fully homomorphic scheme (without an evalu-
ation key) by taking the identity function as Eval and modifying Dec so that
when it is given a circuit and ciphertexts as input, it decrypts the ciphertexts
and evaluates the circuit on the plain texts.

In [7], Craig Gentry presents a process called bootstrapping to generate (lev-
eled) fully homomorphic encryption schemes from a homomorphic encryption
scheme that is able to correctly evaluate its own decryption circuits. He also de-
scribed a bootstrappable encryption scheme. In the leveled fully homomorphic
variant, the bootstrapped scheme depends on the same hardness assumptions
as the original scheme. In the fully homomorphic variant, the bootstrapped

2

scheme requires as an additional assumption that the original scheme is circular
secure. That is, it must be secure even if the adversary is given an encryption
of the secret key under the corresponding public key. This was the first fully
homomorphic encryption scheme.

Homomorphic schemes often operate in the following way: Encrypted mes-
sages are usually single bits which are encrypted by hiding them inside “noise”
generated from a public key and random noise. The secret key-public key pairs
are such that the holder of the secret key can remove the noise from the pub-
lic key and retrieve the encrypted bit by rounding. In schemes that are L-
homomorphic but not fully homomorphic, evaluations result in ciphertexts with
increased random noise. When it gets too large, decryption may fail. Turning
such a scheme into a (leveled) FHE scheme requires some way of controlling the
growth of the noise. Gentry’s bootstrapping method achieves this by evaluating
the decryption circuit homomorphically (details follow in section 2.5).

Later schemes are based on weaker security assumptions and could avoid
bootstrapping to some extent. In schemes with Znq as ciphertext space, the
growth of the noise could be controlled by switching to smaller moduli q dur-
ing evaluation, for example [3]. In [2], a scale-invariant scheme was proposed
which can control the growth of the noise without modulus switching. It can
be made leveled fully homomorphic without bootstrapping, but it can also be
bootstrapped into a fully homomorphic scheme. In the following, this scheme
will be described and it will be shown how its security follows from the hardness
of the LWE (learning with errors) problem. We will also see how approximating
the shortest vector of a lattice, a problem which is conjectured to be hard both
in classical and quantum computation, reduces to LWE.

1.3 The LWE-problem

The “Learning With Errors” (LWE)-problem is a problem introduced by Oded
Regev [13]. For a function q : N→ N and a family of distributions χ = (χn)n∈N
on Zq(n) and s ∈ Znq , define the distribution As,q,χ as the distribution that is
sampled by the following process:

1. Let n be the length of s. Sample a uniformly from Znq(n).

2. Sample e from χ. This is called the error or noise of the sample.

3. Output the pair (a, [〈a, s〉+ e]q(n)).

For a function N : N → N and the other parameters as before, the search
problem LWEN,q,χ is to output s on input of N samples from As,q,χ. We can
represent these samples by a matrix A ∈ Zn×Nq sampled uniformly at random

and a vector b = [A>s + e]q for e sampled from χN .
The decisional variant of LWE is called DLWE. For N, q, χ and As,q,χ as

before, the problem DLWEN,q,χ is to distinguish N samples drawn from As,q,χ

from N samples drawn uniformly from Znq × Zq. We say that an algorithm A
solves DLWEN,q,χ in the average case if there is a non-negligible function f such

3

that for each n, there is a set Sn ⊆ Znq with the properties that |Sn| ≥ f(n)|Znq |
and A distinguishes with non-negligible advantage between the distributions
ANs,q,χ and U

(
Znq × Zq

)
for all s ∈ Sn. Stating this less formal, we require

that A distinguishes ANs,q,χ from uniform with non-negligible advantage for a
non-negligible fraction of the s in Znq .

An algorithm is said to solve this problem in the worst case if it distinguishes
As,q,χ from uniform with overwhelming advantage for all s ∈ Znq . Clearly, the
average case reduces to the worst case of DLWE, which in turn reduces to
solving LWE with overwhelming probability. Also, DLWEN,q,χ is hard in the
average case if and only if the distribution that is sampled by selecting s ∈ Znq
uniformly at random and outputting N samples of As,q,χ is computationally
indistinguishable from random.

There also is a continuous version of (D)LWEN,q,χ where χ is a distribution
on T and a sample of As,q,χ is of the form (a, 〈a, s〉/q + e mod T).

We write LWEq,χ and DLWEq,χ to denote the LWE problem when the ad-
versary is given an oracle that samples As,q,χ instead of inputs sampled from
this distribution and the problem of distinguishing an oracle that outputs As,q,χ

from an oracle that outputs uniform samples. Obviously, there is an algorithm
that solves (D)LWEq,χ in polynomial time if and only if there is a polynomial
time algorithm that solves (D)LWEN,q,χ for some function N = poly(n).

The average-case DLWE problem serves as a good basis for cryptographic
schemes because it is equivalent to a statement about computational indistin-
guishability and because, for certain choices of parameters, worst-case DLWE
reduces to average-case DLWE and LWE reduces to worst-case DLWE. More-
over, the lattice problem GapSVPγ reduces to LWE for an appropriate choice
of the distribution χ for γ subexponential in n. A lattice is a discrete additive
subgroup of Rn and GapSVPγ is the problem to approximate the length of the
shortest vector in a given lattice within a factor of γ. Lattice problems have
been studied since the 1980s and so far, the best known polynomial time algo-
rithm, the LLL-algorithm found by Lenstra, Lenstra and Lovász in 1982, solves
GapSVPγ only for mildly exponential γ. Moreover, for γ <

√
2, the problem

GapSVPγ is known to be NP-hard under probabilistic reductions (see [8], Chap-
ter 4). For these reasons, the problem GapSVPγ is conjectured to be hard for
subexponential γ.

We will have a closer look at lattices in section 3. For now, let us take a
look at the worst-case to average case and search to decision reductions. The
worst-case to average-case reduction for DLWEq,χ is proved in [13] and only
requires that log q ∈ poly(n) so that a probabilistic polynomial time algorithm
can sample from Znq .

Lemma 1.1 (Worst-case to average-case). Let q be an integer function with
log q ∈ O(n). Suppose that there is an algorithm A that solves DLWEq,χ. That
is, for every n, there is a non-negligible fraction of the s ∈ Znq such that A
given input 1n distinguishes an oracle sampling As,q,χ from an oracle sampling
the uniform distribution with non-negligible probability. Then there also is a
polynomial time algorithm that for any n and any s ∈ Znq outputs 1 with proba-

4

bility exponentially close to 1 on input 1n and given oracle acces to As,q,χ and
outputs 0 with probability exponentially close to 1 on input 1n and given access
to an uniform oracle.

Proof Sketch: Define ft(a,b) = (a, [b + 〈a, t〉]q). On input sampled from
As,q,χ, the output of ft is distributed identically to As+t,q,χ and on input sam-
pled uniformly, the output will be distributed uniformly. Note that for a fixed
s and for t sampled uniformly at random, s + t is distributed uniformly. There
is a polynomial p such that if we sample p(n) elements s ∈ Znq uniformly at
random, we will obtain with probability exponentially close to 1 at least one
s on which A has non-negligible advantage. With an oracle for average-case
DLWEq,χ, we can solve worst-case DLWEq,χ by the following procedure: Given
input 1n and access to an oracle O, let R be the unknown distribution sampled
by O. Do the following p(n) times:

1. Sample t uniformly at random from Znq .

2. Estimate the acceptance probability of A on input 1n with access to an
oracle that samples the uniform distribution. We can do this by running
A several times and returning random results when it queries its oracle.
By the Chernoff bound, polynomially many repetitions suffice to produce
a close enough estimate with probability exponentially close to one.

3. Estimate the acceptance probability of A on input 1n and with access to
an oracle that samples (a,b) ← R and returns ft(a,b). If R is the uni-
form distribution, this is again uniform; if it is As,q,χ then this procedure
samples As+t,q,χ.

4. Compare the two estimates. If they differ sufficiently, output 1 and halt.
Otherwise, start the next repetition; if this was the last repetition, output
0 and halt.

An analogous procedure works for the continuous version.
The search to decision reduction was proved in the same paper for any prime

q with q = poly(n). For the continuous variant with χ = Ψα for some α with
0 < α ≤ 1/ω(

√
log n) (ω(

√
log n) denotes an arbitrary function growing faster

than log n.) this result was further extended, to q = qe11 · ... · qemm where the qi
are polynomially bounded distinct primes with qi ≥ ω(log n)/α in [Micciancio,
Peikert 2011], Theorem 3.1. In [Regev 2005,2009], it is also proved that if χ is
a distribution on T and χ̄ its discretization to Zq and if there is a polynomial
time algorithm A for the discrete version DLWEN,q,χ̄ then there is a polynomial
time algorithm B for continuous average-case DLWEN,q,χ. The algorithm B
proceeds by discretizing the samples it receives to Zq and running A on the
results. Taking all this together gives us:

Theorem 1.2 (LWE reductions). Let χ = Ψα for 0 < α ≤ 1/ω(
√

log n) (where
ω(
√

log n) stands for an arbitrary but fixed function growing faster than
√

log n)
and χ̄ its discretization to Zq. Let q = qe11 ...q

ek
k for qi distinct primes with

5

ω(log n)/α ≤ qi ≤ O(n). If there is a polynomial time algorithm that solves
LWEN,q,χ̄ for N polynomial in n then there is a polynomial time algorithm that
solves LWEq,χ with probability exponentially close to 1.

2 Brakerski’s FHE Scheme without Modulus Switch-
ing

2.1 Regev’s Encryption Scheme

Brakerski’s fully homomorphic encryption scheme relies on the following (non-
homomorphic) scheme by Oded Regev [13]. The scheme will be called Regev.
Let q be a function on N with integer values and log q ∈ O(n), let χ = (χn)n∈N
be an ensemble of probability distributions on Zq for which there is B with
Prχ [b] = 0 for |b| > B and let N be a polynomially bounded function with
values in N. When the security parameter n is clear from context, q is written
for q(n) etc. In order to base the security of the scheme on GapSVPÕ(n), we

need χ = Ψ̄α and q satisfying the conditions in theorem 1.2, q ≥ 2n/2 · log n/
√
n

and N ≥ (n + 1) log q. To have the scheme always decrypt correctly we need
q > N · B and to make Brakerski’s final scheme (leveled) fully homomorphic
using bootstrapping, we require that q/B ≥ O(n log q)L(n)+O(1) where L(n)
is the depth of the decryption circuit +1. Note that Ψ̄α is not bounded by
a B < q/2, but we can find an appropriate B such that Ψ̄α has negligible
statistical distance to a B-bounded distribution. The scheme Regev consists
of the following algorithms:

• Regev.SecretKeygen(1n): sample a vector s from Znq uniformly at ran-
dom and output it as the secret key sk.

• Regev.PublicKeygen(s): Select a matrix A ∈ ZN×nq uniformly at ran-

dom and sample e from χN . Then compute b = [As + e]q and output

P = [b| −A] ∈ ZN×(n+1)

as the public key pk.

• Regev.Encpk(m) for m ∈ {0, 1}: Let P = pk, sample a vector r uniformly

from {0, 1}N and define m = (m, 0, ..., 0) ∈ Zn+1. Output

c =
[
P>r +

⌊q
2

⌋
m
]
q
∈ Zn+1

q

as the ciphertext.

• Regev.Decsk(c): Let s = sk and output[⌊
2 ·

[〈c, (1, s)]q
q

⌉]
2

6

In order to prove correctness, we need the following lemma.

Lemma 2.1. Let n,N, q, χ,B be parameters for the Regev scheme, let s ∈ Znq
and m ∈ {0, 1}. For P← Regev.PublicKeygen(s) and c← Regev.EncP(m),
there exists e ∈ Zq with |e| ≤ N ·B such that

〈c, (1, s)〉 =
⌊q

2

⌋
m+ e.

Proof. Modulo q, the following equivalencies hold:

〈c, (1, s)〉 ≡
〈
P>r, (1, s)

〉
+
⌊q

2

⌋
〈(m, 0, ..., 0), (1, s)〉

≡ r>P(1, s) +
⌊q

2

⌋
·m

≡
⌊q

2

⌋
·m+ r> (b−As)

≡
⌊q

2

⌋
·m+ 〈r, e〉

where r ∈ {0, 1}N is the random vector sampled in Regev.Enc and e is sampled
from χN . Since χ is bounded by B, we have:

|〈r, e〉| =

∣∣∣∣∣
N∑
i=1

riei

∣∣∣∣∣ ≤
N∑
i=1

ri|ei| ≤
N∑
i=1

B = N ·B

so for e = 〈r, e〉, the lemma holds.

The next lemma implies that if |e| < bq/2c/2, the algorithm Regev.Dec
will decrypt correctly. Thus, for q > 4NB, the decryptions in Regev are always
correct.

Lemma 2.2 (Correctness). If |e| < bq/2c/2, then⌊
2 ·
⌊
q
2

⌋
m+ e

q

⌉
= m

Proof. For m = 0, bq/2cm+ e ∈ (−(q − 1)/4, q/4) ∩ Z and therefore

2 ·
⌊
q
2

⌋
m+ e

q
∈
(
−1

2
+

1

2q
,

1

2

)
.

If m = 1 then bq/2cm+ e ∈ ((q − 1)/4, 3q/4) ∩ Z and therefore

2 ·
⌊
q
2

⌋
m+ e

q
∈
(

1

2
− 1

2q
,

3

2

)
∩ 1

q
Z.

Since 1
qZ contains no element both larger than 1

2 −
1
2q and smaller than 1

2 , it
follows that

2 ·
⌊
q
2

⌋
m+ e

q
∈
[

1

2
,

3

2

)

7

and thus, for every m, ⌊
2 ·
⌊
q
2

⌋
m+ e

q

⌉
= m.

To reduce the security of this scheme to the DLWE problem, we are going
to need the following special case of the leftover hash lemma (see [13] and [9]).
Informally, it states that if we select a n × N -matrix over Zq uniformly at
random for N large enough, then with high probability, adding a randomly
selected subset of columns from this matrix generates pseudorandom elements
of Znq .

Lemma 2.3. Let q : N → N be such that for every constant c and sufficiently
large n, q(n) > nc. Let N ≥ (n+1) log q. For a matrix M ∈ Zn×Nq , let φM on Znq
be the distribution which is sampled by selecting r ∈ {0, 1}N uniformly at random
and outputting [Mr]q. If we select M from Zn×Nq uniformly at random then
except with negligible probability, the distribution φM has negligible statistical
distance from the uniform distribution on Znq . It follows that it is pseudorandom.

Proof. It holds that

φM(x) = Prr [[Mr]q = x] =
1

2N
·
∣∣{r ∈ {0, 1}N |[Mr]q = x

}∣∣
and thus∑

x∈Znq

φM(x)2 =
∑
x∈Znq

Prr,r′
[
[Mr]q =

[
Mr′

]
q

= x
]

= Prr,r′
[
[Mr]q =

[
Mr′

]
q

]
≤ Prr,r′ [r = r′] + Prr,r′

[
[Mr]q =

[
Mr′

]
q
|r 6= r′

]
=

1

2N
+ Prr,r′

[
[Mr]q =

[
Mr′

]
q
|r 6= r′

]
Let r, r′ be any two distinct vectors in {0, 1}N and i the least index such that
ri 6= r′i. Let Mj be the jth column of M. If ri = 1, then

PrM

[
[Mr]q = [Mr′]q

]
= PrM

Mi =

 N∑
j=i+1

Mj · (rj − r′j)


q

 =
1

qn

and if ri = 0, the same probability can be calculated analogously. Taking the

8

expecation over M, it follows that

EM

∑
x∈Znq

φM(x)2

 ≤ 1

2N
+ EM

[
Prr,r′

[
[Mr]q =

[
Mr′

]
q
|r 6= r′

]]

=
1

2N
+
∑
M

 1

qn·N

∑
r 6=r′

[
[Mr]q =

[
Mr′

]
q

]
2N · (2N − 1)


=

1

2N
+
∑
r6=r′

 1

2N (2N − 1)

∑
M

[
[Mr]q =

[
Mr′

]
q

]
qn·N


=

1

2N
+
∑
r6=r′

PrM

[
[Mr]q =

[
Mr′

]
q

]
2N (2N − 1)

=
1

2N
+

1

qn

where [A = B] = 1 if A = B and is 0 otherwise. Now consider, for a fixed M,

v = (φM(x)− q−n)x∈Znq
as a vector in Rqn . Then we have

∑
x∈Znq

∣∣∣∣φM(x)− 1

qn

∣∣∣∣ = ||v||1 ≤
√
qn||v||2

=

√√√√qn
∑
x∈Znq

(
φM(x)− 1

qn

)2

=

√√√√√qn

∑
x∈Znq

φM(x)2 − 2

qn

∑
x∈Znq

φM(x) +
∑
x∈Znq

1

q2n



=

√√√√√qn

∑
x∈Znq

φM(x)2

− 2

qn
+

1

qn



=

√√√√√qn

∑
x∈Znq

φM(x)2

− 1

qn



9

It follows that

EM

∑
x∈Znq

∣∣∣∣PM(x)− 1

qn

∣∣∣∣
 ≤ √qn · EM


√√√√√
∑

x∈Znq

PM(x)2

− 1

qn


≤
√
qn

√√√√√EM

∑
x∈Znq

PM(x)

− 1

qn

≤
√
qn

2N

where the second inequality follows since x 7→
√
x is a concave function and

by Jensen’s inequality, for any concave function ψ, E(ψ(X)) ≤ ψ(E(X)). By
Markov’s inequality,

PrM

∑
x∈Znq

∣∣∣∣φM(x)− 1

qn

∣∣∣∣ > (qn2N

)1/4
 < (qn

2N

)−1/4

EM

∑
x∈Znq

∣∣∣∣φM(x)− 1

qn

∣∣∣∣


=

(
qn

2N

)1/4

For N ≥ (n+ 1) log q and q superpolynomial,
(
qn/2N

)1/4 ≤ q−1/4 is negligible.
Therefore, except with negligible probability (taken over M),

∑
x |PM(x)− q−n|

is negligible. Now let M be a matrix such that this sum is negligible and let
A be a (possibly non-efficient) Turing machine. Without loss of generality,
A is deterministic. Let A ⊆ Znq be the set for which A outputs 1. The
probability that x ∈ Znq sampled from the uniform distribution is in A is |A|/qn
and the probability Mx sampled from φM is inA is

∑
x∈A φM(x). The difference

between those two probabilities is∣∣∣∣∣∑
x∈A

φM(x)− |A|
qn

∣∣∣∣∣ ≤ ∑
x∈Znq

∣∣∣∣φM(x)− 1

qn

∣∣∣∣
and thus, this difference is negligible. So A on input sampled from φM outputs
1 with almost the same probability as on input chosen uniformly at random
from Znq . Thus, φM is pseudorandom on Znq .

Now we can reduce the security of Regev to the DLWE problem.

Theorem 2.4 (Security). Let q,N, χ,B be parameters such that average-case
DLWEN,q,χ is hard. Then the ensembles of distributions D0(n) and D1(n) gen-
erated by running sk ← Regev.SecretKeygen (1n), P← Regev.PublicKeygen(sk),
c ← Regev.EncP(m) for m = 0, 1 respectively and outputting (P, c) are com-
putationally indistinguishable. Therefore, if DLWEN,q,χ is hard, Regev is se-
mantically secure.

10

Proof. We can represent N samples (ai, bi) of the As,q,χ(n) distribution as a
matrix P = [b|−A] where b is a vector with ith entry bi and A is a matrix with
ith column ai. If DLWEN,q,χ is hard, the distribution generated by sampling
s ∈ Znq uniformly at random and then sampling As,q,χ(n)N is computationally
indistinguishable from uniform. It follows that the distributions DA and DB

generated by sampling s ∈ Znq uniformly at random and M from As,q,χ(n)N or

from the uniform distribution on ZN×(n+1)
q , respectively, and r from {0, 1}N and

outputting

(
M,
[
M>r

]
q

)
are computationally indistinguishable. Note that a

pair sampled from DA is a pair of a public key (corresponding to some n-bit
secret key s sampled uniformly at random) and an encryption of 0, that is,
DA = D0.

By lemma 2.3, DB is computationally indistinguishable from uniform except
with negligible probability over the choice of M. It follows that the distribution
D0 is computationally indistinguishable from uniform. Also, D1 is indistinguish-
able from uniform, for suppose we had a PPT algorithm A that distinguishes
D1 from uniform with non-negligible probability. Then we can construct an
algorithm A ′ that on input (M,x) computes (M,x + (bq/2c, 0, ..., 0)) and runs
A on it and outputs its result. The operation x 7→ [x + (bq/2c, 0, ..., 0)]q takes
encryptions of 0 to encryptions of 1 and takes input sampled from the uniform
distribution to uniformly distributed output. Thus, A ′ would be able to distin-
guish D0 from uniform with non-negligible probability which is impossible.

Both D0 and D1 are computationally indistinguishable from uniform, so
they are computationally indistinguishable from each other and Regev is se-
mantically secure.

2.2 Switching Keys

Regev’s scheme is already somewhat homomorphic with respect to addition.
We could simply add two ciphertexts modulo q. However, the error terms e of
those two ciphertexts would add up and when they grow larger than the upper
bound established in lemma 2.2, correct decryption is no longer guaranteed.
Multiplication is more difficult: If we have ciphertexts c1, c2 encrypting m1,m2

respectively under a private key belonging to a secret key s, then (2/q) · c1⊗ c2

decrypts to the product of the encrypted plaintexts in the following way: It
holds that

〈2
q
· c1 ⊗ c2, (1, s)⊗ (1, s)〉

=
2

q
· 〈c1, (1, s)〉 · 〈c2, (1, s)〉

=
2

q
·
(⌊q

2

⌋
m1 + e1

)
·
(⌊q

2

⌋
m2 + e2

)
mod q

=
⌊q

2

⌋
·m1m2 + emult mod q

11

for some error term emult. The problem with this approach is that the length of
the ciphertext vector is squared by this operation which violates the compactness
requirement for FHE schemes. But by key switching, a technique from [4]
and [3], we can transform this into a normal-sized ciphertext. A switch key
Ps:t from a source secret key s to a target secret key t allows to compute an
encryption of a message m under (1, t) from an encryption of m under s without
revealing the secret keys or helping to decrypt a ciphertext.

The key switching process will also make use of the following two operations
to control the growth of the error term: The first is decomposing vectors in Znq
into their bit representation. If x ∈ Znq , there are unique vectors wi ∈ {0, 1}n
for 0 ≤ i ≤ dlog qe − 1 such that

x =

dlog qe−1∑
i=0

2iwi.

Let
BitDecompq(x) =

(
w0, ...,wdlog qe−1

)
∈ {0, 1}n·dlog qe.

The second function is

PowersOfTwoq(y) =
[(

y, 2y, ..., 2dlog qe−1y
)]

q
∈ Zn·dlog qe

q .

These functions can be computed efficiently and for any x,y ∈ Znq ,

〈x,y〉 =
〈
BitDecompq(x),PowersOfTwoq(y)

〉
because modulo q, 〈

BitDecompq(x),PowersOfTwoq(y)
〉

≡
dlog qe−1∑
i=0

〈
wi, 2

iy
〉

≡

〈dlog qe−1∑
i=0

2iwi,y

〉
≡ 〈x,y〉

For the key switching process the following algorithms are used, where q and χ
are parameters as for Regev:

• SwitchKeyGenq,χ(s, t): Let ns be the dimension of s, nt the dimension
of t and n̂s = ns · (dlog qe) the dimension of PowersOfTwoq(s). Gener-
ate a matrix A ∈ Zn̂s×ntq uniformly at random, sample e from χn̂s and
compute

b = [At + e + PowersOfTwoq(s)]q .

Then output the matrix
Ps:t = [b| −A]

as the switch key.

12

• SwitchKeyq(Ps:t, cs): Compute and output

ct =
[
P>s:t ·BitDecompq(cs)

]
q

.

The next lemma gives an upper bound on the error introduced by key-switching.

Lemma 2.5. Let s ∈ Znsq and t ∈ Zntq and cs ∈ Znsq . For Ps:t ← SwitchKeyGenq,χ(s, t)
and ct ← SwitchKeyq(Ps:t, cs),

〈cs, s〉 = 〈ct, (1, t)〉 − 〈BitDecompq(cs), e〉 mod q

Proof. Modulo q, it holds that

〈ct, (1, t)〉 ≡
〈[

P>s:t ·BitDecompq(cs)
]
q
, (1, t)

〉
≡
〈
BitDecompq(cs),b

〉
−
〈
BitDecompq(cs),At

〉
≡
〈
BitDecompq(cs),PowersOfTwoq(s)

〉
+ 〈BitDecompq(cs), e〉

≡ 〈cs, s〉+ 〈BitDecompq(cs), e〉

The security of the key switching algorithms reduces to the hardness of the
DLWE problem.

Lemma 2.6 (Security). Suppose that average-case DLWEn̂s,n,q,χ is hard. Let
s be an arbitrary vector in Znsq and let t ← Regev.SecretKeygen (1n). Then
P ← SwitchKeyGen(s, t) is computationally indistinguishable from a matrix
selected uniformly at random from Zn̂s×n+1

q .

Proof. Since s is arbitrary but fixed, the switch keys are, essentially, samples
of An̂st,q,χ with some constants added. Therefore, the hardness of DLWE implies
that the switch keys are indistinguishable from random. In more detail, if
average-case DLWEn̂s,n,q,χ is hard, then a matrix generated by sampling A ∈
Zn̂s×nq uniformly at random and e from χns and outputting P′ = [At+e|−A]q
is indistinguishable from random. Since s is an arbitrary but fixed vector,
v = PowersOfTwoq(s) is a constant vector. If there was a PPT algorithm
A that could distinguish P from uniform with non-negligible advantage, then
the algorithm A ′ that on input [At + e| −A]q runs A on [At + e + v| −A]q
and outputs its result would distinguish P′ from uniform with non-negligible
advantage. But this is impossible, so P is computationally indistinguishable
from uniform.

2.3 Scale-Invariant Homomorphic Encryption

Braskerski’s scale invariant leveled FHE scheme consists of the following algo-
rithms for parameters N,χ,B as in the Regev scheme, where n is a security
parameter and L the number of homomorphic operations which can be per-
formed on the ciphertexts.

13

• SI-HE.KeyGen
(
1L, 1n

)
: Generate L+1 secret keys s0, ..., sL by running

Regev.SecretKeygen (1n), let P0 ← Regev.PublicKeygen(s0) and
for all integers i with 0 < i ≤ L, let

s̃i−1 = BitDecompq((1, si−1))⊗BitDecompq((1, si−1))

and
Pi−1:i ← SwitchKeyGenq (s̃i−1, si) .

Output pk = P0 as the public key, sk = sL as the secret key and evk =
(P0:1,P1:2, ...,PL−1:L) as the evaluation key.

• SI-HE.Encpk(m): The same as Regev.Enc.

• SI-HE.Evalevk(C, c1, ..., cn) where C is a depth-L circuit consisting of
bitwise ‘+’- and ‘·’-gates with n input bits: The circuit is evaluated using
the algorithms SI-HE.Add and SI-HE.Mult described below.

• SI-HE.Decsk(c): The same as Regev.Dec. It is assumed that c is the
result of L homomorphic evaluations. If it is not, some trivial homomor-
phic evaluations need to be performed before decryption, or all the keys
s1, ..., sL need to be included in sk.

We will now describe the algorithms for homomorphic addition and multiplica-
tion of ciphertexts. Both algorithms take input ciphertexts c1, c2 belonging to
the same key si−1 and compute an intermediate ciphertext c̃ under s̃i−1. Then,
the switch keys are used to turn it into a ciphertext belonging to the key si.

Let us now consider those algorithms in detail.

• SI-HE.Addevk,i(c1, c2): Let

c̃ = PowersOfTwoq(c1 + c2)⊗PowersOfTwoq((1, 0, ..., 0))

where the length of the (1, 0, ..., 0)-vector is the same as c1 + c2. Output

c = SwitchKeyq(Pi:i+1, c̃).

In this algorithm, we add both ciphertexts as described in the beginning of
section 2.2 and transform the result into a ciphertext under key s̃i by computing
PowersOfTwoq and tensoring the result with a vector that will not affect the
outcome of decryption. If we take the scalar product of c̃ and s̃i, we get

〈c̃, s̃i〉
=
〈
PowersOfTwoq(c1 + c2),BitDecompq((1, si))

〉
·
〈
PowersOfTwoq((1, 0, ..., 0)),BitDecompq((1, si))

〉
mod q

= 〈c1 + c2, (1, si)〉 · 〈(1, 0, ..., 0), (1, si)〉 mod q

= 〈c1 + c2, (1, si)〉

as required. For a bound on the total error introduced by addition and key-
switching, see lemma 2.8.

14

• SI-HE.Multevk,i(c1, c2): Let

c̃ =

⌊
2

q
(PowersOfTwoq(c1)⊗PowersOfTwoq(c2))

⌉
and output

c = SwitchKeyq(Pi:i+1, c̃).

Here, we have not only errors introduced by multiplication and addition, but
also by rounding. Taking the scalar product of c̃ and s̃i results in

〈c̃, s̃i〉 =

〈⌊
2

q
(PowersOfTwoq(c1)⊗PowersOfTwoq(c2))

⌉
, s̃i

〉
≈ 2

q

〈
PowersOfTwoq(c1),BitDecompq(1, si)

〉
·
〈
PowersOfTwoq(c2),BitDecompq(1, si)

〉
=

2

q
〈c1, (1, si)〉 · 〈c2, (1, si)〉

which is the same formula for multiplication as in section 2.2. For an upper
bound on the total error, see again lemma 2.8.

The reduction of the security of this scheme to DLWE follows from a hybrid
argument using the security of Regev and the fact that switch keys are compu-
tationally indistinguishable from random provided that DLWE is hard. We need
to show that the distributionsDm (m = 0, 1) given by (pk, evk,SI-HE.Encpk(m))
where pk and evk are sampled according to SI-HE.KeyGen(1n) are compu-
tationally indistinguishable. It holds that evk = (P0:1,p1:2, ...,PL−1:L) where
Pi:i+1 ← SwitchKeyGenq(s̃i, si+1). Define evk(L) = evk and

evk(i) = (P0:1, ...,Pi−1:i,Ri+1, ...,RL)

for 0 ≤ i < L where the Rj are matrices of the same size as the switch
keys but selected uniformly at random. Let Di

m be the distribution given by(
pk, evk(i),SI-HE.Encpk(m)

)
.

We now show that D
(i)
m is computationally indistinguishable from D

(i−1)
m . A

sample
(
pk, evk(i),SI-HE.Encpk(m)

)
of D

(i)
m does not contain any information

which depends on si except for the switch key Pi−1:i. Because the secret key si is
sampled uniformly at random, the switch key Pi−1:i ← SwitchKeyGenq(s̃i−1, si)
is computationally indistinguishable from random if average-case DLWEN,q,χ is

hard. Therefore D
(i)
m and D

(i−1)
m are computationally indistinguishable.

By the security proof for Regev’s scheme, theorem 2.4, we know that, as-
suming the hardness of average-case DLWEN,q,χ, the distributions D′m given
by (pk,SI-HE.Encpk(m)) for m = 0, 1 are computationally indistinguishable.

Then also the distributions D
(0)
0 and D

(0)
1 must be computationally indistin-

guishable because they are just D′0 or D′1 respectively, together with a tuple of

15

random matrices. This implies that D0 and D1 are computationally indistin-
guishable which completes the proof of semantic security.

Theorem 2.7 (Security). If average-case DLWEN,q,χ is hard, then the scheme
SI-HE with parameters N, q, χ is semantically secure.

2.4 Homomorphic Properties of SI-HE

Let us now look at the homomorphic properties of Brakerski’s scheme. We show
that if

q

B
≥ O(n log q)L+4

then for any depth-L circuit C and (pk, sk, evk) ← SI-HE.KeyGen
(
1L, 1n

)
,

the result of

SI-HE.Evalevk(C,SI-HE.Encpk(m1), ...,SI-HE.Encpk(mn))

decrypts to C(m1, ...,mn) under sk. This result is based on the following lemma:

Lemma 2.8. Let q,N, χ,B be parameters for SI-HE with N = O(n log q)
and (pk, sk, evk) ← SI-HE.KeyGen

(
1L, 1n

)
. For i ∈ {1, ..., L}, suppose that

c1, c2 ∈ Zn+1
q are such that

〈c1, (1, si−1)〉 =
⌊q

2

⌋
m1 + e1

〈c2, (1, si−1)〉 =
⌊q

2

⌋
m2 + e2

where |e1|, |e2| ≤ E for some E < bq/2c/2. Then for

cadd ← SI-HE.Addevk,i(c1, c2)

cmult ← SI-HE.Multevk,i(c1, c2)

it holds that

〈cadd, (1, si)〉 =
⌊q

2

⌋
[m1 +m2]2 + eadd

〈cmult, (1, si)〉 =
⌊q

2

⌋
m1 ·m2 + emult

for |eadd|, |emult| ≤ O(n log q) ·max(E,O(n log2(q))B).

The constants hidden in the O-notation will be made explicit in the proof.

Proof. Let us first look at the simpler case, addition. Here, we need to find an
upper bound for two types of errors: The error introduced by key-switching, δ1
and the error term in the sum of the ciphertexts, δ2. By lemma 2.5, we have

〈cadd, (1, si)〉 =
〈
SwitchKeyq(Pi−1:i, c̃add), (1, si)

〉
mod q

= 〈c̃add, s̃i−1〉+ 〈BitDecompq(c̃add), ẽ〉 mod q.

16

where

c̃add =PowersOfTwoq([c1 + c2]q)

⊗PowersOfTwoq((1, 0, ..., 0)) ∈ Z(n+1)2dlog qe2
q

and thus BitDecompq(c̃add) ∈ {0, 1}(n+1)2dlog qe3 and ẽ is sampled from χ(n+1)2dlog qe3 .
Let δ1 = 〈BitDecompq(c̃add), ẽ〉. This is the error introduced by key switch-
ing. We can find an upper bound for |δ1| the following way: Since |χ| ≤ B and
BitDecompq(c̃add) is a binary vector of length (n+ 1)2dlog qe3, it follows that

|δ1| = |〈BitDecompq(c̃add), ẽ〉| ≤ (n+ 1)2dlog qe3B.

Now we find an upper bound for the error δ2 in 〈c̃add, s̃i−1〉:

〈c̃add, s̃i−1〉 = 〈PowersOfTwoq([c1 + c2]q),BitDecompq((1, si−1))〉
· 〈PowersOfTwoq((1, 0, ..., 0)),BitDecompq((1, si−1))

= (〈c1, (1, si−1)〉+ 〈c2, (1, si−1)〉) · 〈(1, 0, ..., 0), (1, si−1)〉 mod q

=
⌊q

2

⌋
m1 + e1 +

⌊q
2

⌋
m2 + e2 mod q

=
⌊q

2

⌋
[m1 +m2]2 −

(
−
⌊q

2

⌋
(m1 +m2 − [m1 +m2]2)

)
+ e1 + e2 mod q

Let m̃ = [−bq/2c(m1 +m2 − [m1 +m2]2)]q so that

〈c̃add, (1, s̃i−1)〉 =
⌊q

2

⌋
[m1 +m2]2 − m̃+ e1 + e2 mod q.

Note that m1 + m2 − [m1 + m2]2 = 2 if and only if m1 = m2 = 1. Otherwise,
it equals 0. Therefore, if q is even, m̃ ∈ {0, [−q]q} = {0}. If q is odd and
m1 = m2 = 1, then m̃ = [−(q − 1)]q = 1 = (1/2)(m1 +m2 − [m1 +m2]2). This
gives us

m̃ =

{
0 if q is even
1
2 (m1 +m2 − [m1 +m2]2) if q is odd

therefore m̃ ∈ {0, 1} and we get the following bound for the error δ2:

|δ2| = | − m̃+ e1 + e2| ≤ 1 + 2E.

Setting eadd = δ1 + δ2, we have

〈cadd, (1, si)〉 =
⌊q

2

⌋
[m1 +m2]2 + eadd

and

|eadd| = |δ1 + δ2| ≤ (n+ 1)2dlog qe3B + 1 + 2E

= O(n log q)(n+ 1) log2 q ·B +O(1) · E
≤ O(n log q) ·max((n+ 1) log2 q ·B,E)

= O(n log q) ·max(O(n log2 q)B,E)

17

This shows that the lemma holds for addition. Now for multiplication: Here,
we have an error term from key-switching, δ1, from rounding, δ2 and from
multiplying the ciphertexts, δ3. The key-switching error is the same as in the
case of addition.

〈cmult, (1, si)〉 = 〈c̃mult, s̃i−1〉+ δ1 mod q

where δ1 = 〈BitDecompq(c̃mult), ẽ〉 is the error introduced by key switching.
As before, |δ1| ≤ (n+ 1)2dlog qe3B. Now consider

〈c̃mult, s̃i−1〉 =

〈⌊
2

q
(PowersOfTwoq(c1)⊗PowersOfTwoq(c2))

⌉
, s̃i−1

〉
We need to make use of the properties of the tensor to proceed, but since the
tensor product is rounded, we first need to take the error introduced by rounding
into account. For some vector c′ ∈ (− 1/2, 1/2](n+1)2dlog qe2 , we have

〈c̃mult, s̃i−1〉 =

〈
2

q
(PowersOfTwoq(c1)⊗PowersOfTwoq(c2)), s̃i−1

〉
+ 〈c′, s̃i−1〉

Let δ2 = 〈c′, s̃i−1〉. Since s̃i−1 = BitDecompq(si−1) ⊗ BitDecompq(si−1) is
a binary vector of length (n+ 1)2dlog qe2, it follows that

|δ2| ≤
(n+ 1)2dlog qe2

2

Splitting up the tensor product, we get

〈c̃, s̃i−1〉 − δ2 =
2

q
〈PowersOfTwoq(c1),BitDecompq((1, si−1))〉

· 〈PowersOfTwoq(c2),BitDecompq((1, si−1))〉

Using the fact that 〈PowersOfTwoq(cb),BitDecompq((1, si−1))〉 = 〈cb, (1, si−1)〉
mod q and our assumption that 〈cb, (1, si−1)〉 = bq/2cmb + eb mod q, we can
conclude that there are integers I1, I2 such that

〈PowersOfTwoq(c1),BitDecompq((1, si−1))〉 =
⌊q

2

⌋
m1 + e1 + qI1

〈PowersOfTwoq(c2),BitDecompq((1, si−1))〉 =
⌊q

2

⌋
m2 + e2 + qI2

18

and hence,

〈c̃, s̃i−1〉 − δ2

=
2

q

(⌊q
2

⌋
m1 + e1 + qI1

)(⌊q
2

⌋
m2 + e2 + qI2

)
=

2

q

(⌊q
2

⌋2

m1m2 +
⌊q

2

⌋
m1e2 +

⌊q
2

⌋
m1qI2 +

⌊q
2

⌋
e1m2 + e1e2 + qe1I2

+
⌊q

2

⌋
qI1m2 + qI1e2 + q2I1I2

)
=
⌊q

2

⌋
m1m2 −

2

q

(q
2
−
⌊q

2

⌋) ⌊q
2

⌋
m1m2 +m1e2 −

2

q

(q
2
−
⌊q

2

⌋)
m1e2

+ qm1I2 − 2
(q

2
−
⌊q

2

⌋)
m1I2 + e1m2 −

2

q

(q
2
−
⌊q

2

⌋)
e1m2

+
2e1e2

q
+ 2e1I2 + qI1m2 − 2

(q
2
−
⌊q

2

⌋)
I1m2 + 2I1e2 + 2qI1I2

=
⌊q

2

⌋
m1m2 + q · (I1m2 + I2mq + 2I1I2) + δ3

=
⌊q

2

⌋
m1m2 + δ3 mod q

where

δ3 =
(q

2
−
⌊q

2

⌋)
·
(
−2

q

⌊q
2

⌋
m1m2 −

2

q
m1e2 −

2

q
e1m2 − 2m1I2 − 2m2I1

)
+m1e2 + e1m2 +

2e1e2

q
+ 2e1I2 + 2I1e2

To find an upper bound for δ3, we need to find one for I1, I2. For b = 0, 1, it
holds that〈

PowersOfTwoq(cb),BitDecompq((1, si−1))
〉
≤ q

2
(n+ 1)dlog qe

since the entries of the first vector in the scalar product are in Zq and the second
one is a binary vector of length (n+ 1)dlog qe. Therefore, we get

|Ib| =
|
〈
PowersOfTwoq(cb),BitDecompq((1, si−1))

〉
−
⌊
q
2

⌋
mb − eb|

q

≤ 1

2
(n+ 1)dlog qe+

1

q

⌊q
2

⌋
mb +

E

q

≤ 1

2
(n+ 1)dlog qe+

1

2
+

1

4

=
1

2
(n+ 1)dlog qe+

3

4

19

Since (q/2)− bq/2c = 0 or = 1/2,

|δ3| ≤
1

2
·
(

1 +
4E

q
+ 2I1 + 2I2

)
+ 2E +

2E2

q
+ 2EI1 + 2EI2

≤ 1

2
+

2E + 2E2

q
+ (2 + 4E)

(
1

2
(n+ 1)dlog qe+

3

4

)
< 1 +

E

2
+ 2(2E + 1)

(
1

2
(n+ 1)dlog qe+

3

4

)
using E < bq/2c/2 ≤ q/4 for the last inequality. Taking all three error terms
together, we have

|emult| = |δ1 + δ2 + δ3|

< (n+ 1)2dlog qe3B +
(n+ 1)2dlog qe2

2

+ 1 +
E

2
+ 2(2E + 1)

(
1

2
(n+ 1)dlog qe+

3

4

)
= O(n log q)O(n log2 q)B +O(n2 log2 q) +O(n log q)E

≤ O(n log q) max(E,O(n log2 q)B)

which completes the proof.

From this lemma, the following theorem follows by induction:

Theorem 2.9. Let N, q, χ,B be parameters for SI-HE with N = O(n log q)
and |χ| ≤ B < bq/2c/2 and

q

B
≥ O(n log q)L+4.

Then for n large enough, the scheme SI-HE is L-homomorphic when the keys
are generated by SI-HE.KeyGen

(
1L, 1n

)
.

Proof. Consider the homomorphic evaluation of a depth-L circuit C. Let Ei be
the maximum of the absolute values of the error terms after evaluating all gates
at depth i. It holds that

E0 ≤ NB = O(n log q)B ≤ q ·O(n log q)−L−3 <
⌊q

2

⌋
/2

for n large enough. Using the lemma, we show that if Ei < bq/2c/2 and Ei ≤
O(n log q)i+3B then Ei+1 < bq/2c/2 and Ei+1 ≤ O(n log q)i+4B as long as
i < L. First, let us consider the case that (n log2 q)B ≥ Ei. Then, it follows
from lemma 2.8 that

Ei+1 ≤ O(n log q)3B ≤ q ·O(n log q)−L−1 <
⌊q

2

⌋
/2

20

If Ei > (n log2 q)B, then

Ei+1 ≤ O(n log q)O(n log q)i+3B = O(n log q)i+4B

≤ q ·O(n log q)−L−i

<
⌊q

2

⌋
/2

which proves that EL < bq/2c/2. Since the decryption algorithm in SI-HE is
the same as in Regev and this algorithm decrypts correctly if the error is smaller
than bq/2c/2, it follows that the decryption of the result of the homomorphic
evaluation will be correct.

2.5 Applications of the Homomorphic Properties

If we allow q to depend on both n and L, we can make SI-HE a leveled fully
homomorphic encryption scheme. However, it can not be made fully homo-
morphic, because we have no guarantee that decryption will succeed for an
unlimited number of homomorphic evaluations. Craig Gentry’s bootstrapping
theorem allows to modify the evaluation algorithm so that it becomes a leveled
fully homomorphic encryption scheme with q independent of L or a fully homo-
morphic encryption scheme. However, proving the latter scheme secure requires
an additional assumption, circular security.

Theorem 2.10 (Bootstrapping). Let Π be a homomorphic encryption scheme
whose decryption algorithm can be computed by a family of circuits (Cn)n∈N
where n is the security parameter supplied at key generation. Let Ln be the depth
of Cn. If the results of its evaluation algorithm decrypt correctly for circuits with
addition- and multiplication-gates of depth Ln + 1 for all n, then the evaluation
algorithm can be modified to a leveled fully homomorphic scheme Π′ which is
cpa-secure if Π is. It can also be modified to a fully homomorphic scheme Π′′

which is cpa-secure if Π is cpa-secure and circular secure. Informally, circular
security means that knowing an encryption of the secret key does not help an
adversary.

Proof. To create Π′ from Π = (Gen,Enc,Dec,Eval), we let Gen′(1L, 1n) be
an algorithm that generates L public key - secret key - evaluation key triples

(pk0, sk0, evk0), ..., (pkL−1, skL−1, evkL−1)

using Gen(1n) and outputs sk = (sk0, ..., skL−1), pk = pk0 and

evk =(pk0, evk0, pk1, evk1,Encpk1(sk0), pk2, evk2,Encpk2(sk1), ...,

pkL−1, evkL−1,EncpkL−1
(skL−2))

where Encpkl+1
(skl) denotes the bitwise encryption of skl (preserving their or-

der). The encryption algorithm Enc′ remains the same as Enc. Decryption is
accomplished by using Dec with the appropriate secret key from the tuple sk.

21

This requires some indication about how many homomorphic evaluations have
been performed on the ciphertext. We now show how Eval′ homomorphically
evaluates a gate G with inputs c0 and c1 such that for some m0,m1 ∈ {0, 1},
Decskl(cb) = mb for b = 0, 1. Our goal is to compute cG which decrypts to
G(m0,m1) under skl+1. We can then conclude by induction that Eval cor-
rectly evaluates depth-L circuits.

First, compute c′b ← Encpkl+1
(cb) for b = 0, 1. Now, c′0, c

′
1 have an outer

encryption (by pkl+1) and an inner encryption (which can be removed by se-
cret key skl). Since we have an encryption of skl under pkl+1 in evk, we can
use the algorithm Evalevkl+1

to homomorphically decrypt the inner encryption.
Removing the inner encryption removes the noise that was generated by the
inner encryption and subsequent homomorphic evaluations and “refreshes” the
ciphertext. However, the homomorphic evaluation of the decryption circuit adds
noise of its own; if that noise is not too large the result will be a ciphertext with
reduced noise. If Eval is able to correctly evaluate two copies of the decryption
circuit joined by G, we can do the following:

Let G′ be the circuit that results from placing a copy of the decryption
circuit at each input wire of G. The result of the gate evaluation is

cG ← Evalevkl+1

(
G′,Encpkl+1

(skl), c
′
0,Encpkl+1

(skl), c
′
1

)
and since we supposed thatG′ is correctly evaluated, it will decrypt toG(m0,m1)
under skl+1.

Since circuits of depth 0 can trivially be evaluated, we have a base for the
induction. Now suppose that we can correctly evaluate circuits of depth k < L,
receiving ciphertexts which can be correctly decrypted by skk. We need to show
that we can evaluate circuits of depth k + 1. Let C be a circuit of this depth.
Without loss of generality, C consists of two circuits C0 and C1 of depth k
joined by a gate G, because if one circuit is more shallow, we can augment its
depth with gates performing trivial operations. Let c0 and c1 be the results
of the homomorphic evaluation of C0 and C1. The gate-evaluation procedure
described above requires only that the input ciphertexts decrypt correctly under
key skk, which holds by induction hypothesis. If we apply this procedure, we
receive a ciphertext c that decrypts under skk+1 to the correct result.

Now that we have proved that the scheme is leveled fully homomorphic, let
us focus on its security. Let A be an adversary for Π′. There is no difference
between ciphertexts under Π and Π′. Therefore, the only difference between
adversaries for Π′ and Π is that an adversary for Π′ is given a longer evaluation
key containing several public keys, evaluation keys and encrypted secret keys of
Π. If Π is cpa-secure, then from the point of view of A , EncpkL−1

(skL−2) is
indistinguishable from an encryption of an all-zero string of the same length as
skL−2 since A is given no input that depends on skL−1. With a hybrid argument
we can conclude that replacing the encrypted secret keys with encryptions of
all-zero strings can at most reduce A ’s advantage by a negligible amount. Thus,
an adversary for Π has all it needs to simulate the “world” of an adversary for
Π′ and use it to break Π. So cpa-security of Π implies cpa-security of Π′.

22

The scheme Π′′ changes the following: Gen′′(1n) computes (pk, sk, evk) ←
Gen(1n) and outputs (pk, sk, (evk, pk,Encpk(sk))). The evaluation of a gate in
Eval′′ works in the same way as in Eval′ except that pk replaces pkl and pkl+1

and sk replaces skl and skl+1. This allows us to evaluate circuits of unlimited
depth if Π is able to evaluate circuits of depth Ln + 1. However, we now need
to assume circular security of Π to prove that Π′′ is secure.

Cpa-security of Π does not guarantee that Encpk(sk) is indistinguishable
from Encpk(0...0): Consider a cpa-secure scheme where key- and message-length
are the same. If Encpk(sk) is not given to the adversary, the only way to obtain
it would be to guess sk and encrypt it which can happen only with negligible
probability since the scheme was cpa-secure. But if the encryption algorithm
is such that Encpk(sk) = sk for any key-pair (pk, sk), giving an adversary
Encpk(sk) breaks the scheme completely. It has been conjectured that bit
encryption schemes are circular secure, however, see [14] for a bit encryption
scheme whose secret key can be completely recovered when given an encryption
of it even though it is cpa-secure given an extension of the Symmetric External
Diffie-Hellman (SXDH) assumption1 to l-multilinear groups for all l. This is
not an assumption which is usually believed to be true but it is not known to
be false either. To prove the conjecture about bit encryption, this assumption
must be proved false.

To select q and L in SI-HE such that it can be bootstrapped, we need to
know the depth of the decryption circuit. In [4], Lemma 4.5 shows that the de-
cryption algorithm used in SI-HE can be computed by a depth-O(log n log log q)
circuit. This shows that for q/B ≥ O(n log q)O(logn log log q) we can make SI-HE
bootstrappable if we fix L accordingly.

3 Reduction of GapSVP to LWE

3.1 Lattices

Let B ∈ Rn×m be a matrix whose columns are linear independent vectors in
Rn. The lattice generated by B is

L (B) = {Bz |z ∈ Zm }

and we say that B is a (lattice) basis for L (B). A set L ⊆ Rn is a lattice iff it
is a lattice generated by some basis or equivalently, iff it is a discrete additive
subgroup of Rn. If L is generated by B ∈ Rn×n it is called a lattice of full rank.
Lattices in this sense have no relation to lattices in Order Theory.

1Let G0, G1, G be circular groups of prime order p, q, r respectively. A bilinear map from
G0 × G1 to G is a non-degenerate map f such that for g0 ∈ G0 and g1 ∈ G1, we have
f(ga0 , g1) = f(g0, g1)a and f(g0, ga1) = f(g0, g1)a. The SXDH assumption states that there
are (families of) groups G0, G1, G such that there is a bilinear map from G0 × G1 to G
where the Decisional Diffie-Hellman assumption holds for both G0 and G1. The definition of
l-multilinear maps and of the extended SXDH assumption is immediate.

23

The dual of a lattice L is defined as

L∗ = {y ∈ span(B)|∀x ∈ L : 〈x,y〉 ∈ Z}

where span(B) is the subspace of Rn spanned by the column vectors of B. For

square B, this is Rn itself. If B is a basis of L then B
(
B>B

)−1

is a basis of

L∗. For square B, this basis for L∗ equals
(
B>
)−1

. For any lattice L, it holds

that L = L∗∗. From now on, we only consider lattices of full rank.

If we let D =
(
B−1

)>
and b̄1, ..., b̄n the Gram-Schmid orthogonalization of

B = (b1, ...,bn), we have d̄i = b̄i/||b̄i||2. It follows that ||d̄i|| = 1/||b̄i||. This
holds because di is the ith row of B−1 and thus 〈di,bi〉 = 1.

Given a lattice basis B, the set

P(B) = {Bv |v ∈ [0, 1)n }

is called the fundamental paralleliped of B. For a vector v ∈ Rn, we define v
mod P(B) to be the unique point w in P(B) such that v = w + x for some
x ∈ L (B).

An important lattice parameter is λ(L) = min {||v|| |v ∈ L \ {0}}, the length
of the shortest vector in L. This parameter is well defined because L is discrete
and thus, any sequence v0,v1, ... converging to 0 must have vi = 0 for all i larger
than some i0. Also, the distance between two distinct lattice vectors x and y is
at least λ(L) because otherwise, the lattice vector x− y would be shorter than
λ(L). For an arbitrary vector t ∈ Rn, the distance of t from lattice L is defined
as dist(t,B) = min {||t− x|| |x ∈ L}.

Let us now look at the shortest vector problem (SVP). In fact, SVP is a
family of problems: Search-SVP is the problem to find a vector of minimal
length in L (B) on input B. Optimization-SVP is the problem to find λ(L (B))
on input B. Finally, decision-SVP is the problem to decide on input (B, d)
whether λ(L (B)) ≤ d. These problems are NP-hard under randomized and
non-uniform reductions. ([8], Chapter 4).

Easier variants of these problems only require approximate solutions within
some factor γ. For some function γ : N → R+, the approximate version of
decision-SVP can be formulated as the promise problem GapSVPγ . A proba-
bilistic algorithm A that outputs 0 or 1 solves this problem if it satisfies the
following conditions:

• On input (B, d) with λ(L (B)) ≤ d, it outputs 1 with probability ≥ 2
3 .

Such inputs are called YES-instances of GapSVPγ .

• On input (B, d) with L (B) of rank n and λ(L (B)) > γ(n) · d, it outputs
1 with probability < 1

3 . Such inputs are called NO-instances of GapSVPγ .

On all other inputs, the output of A is irrelevant. So far, no polynomial-time
classical or quantum algorithm that solves GapSVPγ for γ subexponential in n
has been found. Another variant of GapSVP is GapSVPγ,ζ which adds a promise

24

that the shortest vector has length at most ζ. That is, a valid input is (B, d)
such that λ(L (B)) ≤ ζ, mini ||b̄i|| ≥ 1 and 1 ≤ d ≤ ζ/γ; a YES-instance has
λ(L (B)) ≤ d in addition and a NO-instance has λ(L (B)) > γd. We can achieve
the condition mini ||b̄i|| ≥ 1 by scaling the lattice and for d > ζ/γ the input is
a NO-instance if λ(L (B)) ≤ ζ. Therefore, these two additional conditions are
no additional restrictions. For γ ≥ 2n/2, this problem is equivalent to GapSVPγ
because the lattice and we can use the LLL-algorithm on a basis B to obtain a
basis B′ whose first vector is shorter than 2n/2 ·mini ||b̄

′
i||. Scaling the lattice

and d by a factor of 1/min ||b̄i|| yields a valid input for GapSVPγ,ζ .
Another important class of problems are the closest vector problems (CVP).

Given a basis B and a vector t, the goal is to find a vector x ∈ L (B) with
minimum distance from t. Similar to SVP, optimization and decision variants,
as well as approximate variants of this problem can be formulated.

3.2 Gaussian Distributions on Lattices and the Smoothing
Parameter

Given ε > 0, the smoothing parameter ηε(L) is the least s such that ρ1/s,0 (L∗ \ {0}) <
ε. Its name derives from the fact that for any lattice L = L (B) and s ≥ ηε(L),
the distribution Ds,c mod P(B) and the uniform distribution U(P(B)) have
statistical distance ε/2. (see [10], Lemma 4.1)

We have the following upper bound on η2−n(L) ([10], Lemma 3.2):

η2−n(L) ≤
√
n

λ(L∗)

3.3 The Reduction

There are two reductions of GapSVPγ for γ slightly superpolynomial to LWEq,Ψα ,
the first one is a quantum reduction by Oded Regev in [13], the second one is
classical and was found by Chris Peikert in [11]. The first step in Regev’s reduc-
tion was to find for ε(n) negligible in n, α(n) ∈ (0, 1), q(n) ≥ 2 and N = O(n)
a classical probabilistic algorithm RW,D that does the following:

A valid input for R is (B, r,x) with B a n×n lattice basis, r ≥
√

2q · ηε(L∗)
and x ∈ Rn having distance at most αq/(

√
2r) from L = L (B). If it has access

to an oracle W that solves LWEq,Ψα given a polynomial number of samples
and an oracle D that samples from DL (B)∗,r,0, it outputs a vector y ∈ L with
minimal distance to x with overwhelming probability. On other inputs, it may
output anything. The algorithm R will be described in the next section. For
now, we use it as a “black box”.

In [12], an algorithm is described that, given a lattice basis B and r ≥
ω(log n) ·maxi ||b̄i|| samples a distribution with negligible statistical distance to
DL (B),r,0, so for r large enough, R only needs the LWE-oracle.

It is not immediately obvious how R could be useful. As Regev notes, the
only sure way to create valid inputs seems to be to take a lattice vector v and
disturb it by some small amount. But then we already know that R will output v

25

with overwhelming probability and learn nothing from its output. Nevertheless,
this algorithm is useful in the setting of quantum computation, because it allows
us to “uncompute” v from v + w for w small enough. This is what R is used
for in Regev’s reduction.

The key idea of Peikert’s classical reduction is that the size of the disturbance
which R can handle correctly contains information on λ(L) and that we can use
the “useless” procedure described above to test for which disturbance vectors
w the algorithm returns v on input v + w.

The reduction from GapSVPγ,ζ with γ ≥ n/(α·
√

log n) to LWEq,Ψα with q ≥
(ζ/
√
n) ·ω(log n) proceeds as follows: The input is (B, d) such that mini ||b̄i|| ≥

1, 1 ≤ d ≤ ζ/γ and λ(L (B)) ≤ ζ. Repeat the following procedure N times
where N is some large polynomial in n.

1. Let d′ = d·
√
n/(4 log n). Sample w from the uniform distribution on d′·Bn

where Bn is the n-dimensional unit ball and define x = w mod P(B).

2. Run the algorithm R on input (B, r,x) for

r =

√
2nq

γ · d

where the oracle that samples DL (B)∗,r,0 is implemented by sampling the
algorithm from [12] mentioned above. If the result differs from x − w,
accept.

If the algorithm did not accept after N iterations, reject.
We can replace the oracle for DL (B)∗,r,0 because we have maxi ||d̄i|| ≤

1/mini ||b̄i|| ≤ 1 for the dual basis D =
(
B−1

)>
and therefore

r =

√
2nq

γ · d
≥
√

2nq

ζ
≥ ω(log n) ≥ ω(log n) max

i
||d̄i||

as required. Now suppose that (B, d) is a NO-instance. It suffices to show that
the parameters for R are such that it has to output x −w with overwhelming
probability. Since d > γ · λ(L (B)), it follows that

η2−n(L (B)∗) ≤
√
n

γ · d

so r ≥
√

2qη2−n . Since x = w mod P(B), x − w ∈ L (B) and the distance
between x and x−w is

||w|| ≤ d′ = d ·
√

n

log 4n
≤ α · γ · d√

4n
=

αq√
2r

.

Since λ(L (B)) > γd ≥ 2d′, x − w is the unique closest vector to x. This
proves that R will output x−w with overwhelming probability, so the algorithm
described above rejects with overwhelming probability.

26

Now suppose (B, d) is a YES-instance, that is, d ≤ λ(L (B)). Let y be
a vector in L (B) be a vector of length λ(L (B)). By lemma 3.6 and the
following discussion in [Goldreich, Goldwasser 1998], for any constants c, d > 0
and y ∈ L (B) with ||y|| ≤ d and d′ = d ·

√
n/(c log n), the statistical distance

between the uniform distributions on d′ · Bn and d′ · Bn + y is 1 − 1/poly(n).
Let w′ = w+y. Since y ∈ L (B), it holds that x′ = w′ mod P(B) = x. Since
statistical distance does not increase under any function, we have

Pr [R(x) = w− x] ≤ 1− 1

poly(n)
+ Pr [R(x′) = w′ − x′]

= 2− 1

poly(n)
+ Pr [R(x) 6= w′ − x]

≤ 2− 1

poly(n)
+ Pr [R(x) = w− x]

It follows that Pr [R(x) = w− x] ≤ 1 − 1/poly(n). Therefore, for N large
enough, R will output something else than x − w on one iteration with over-
whelming probability.

3.4 Description of R

We now complete the reduction by giving a description of the algorithm R
from [13]. First, we need some additional reductions. The first one shows that
it suffices to compute the coefficients of the vector returned by R modulo q for
any q ≥ 2.

Lemma 3.1. There is a polynomial-time algorithm that, on input q ≥ 2, a
lattice basis B, d < λ(L (B)) and x with ||x|| ≤ d outputs the coefficient vector
a ∈ Zn of the closest lattice vector y = Ba to x given access to an oracle that
outputs these coefficient vectors modulo q.

Proof. Define sequences of vectors x1, ...,xn+1 and a1, ...,an+1 by x1 = x, ai =
B−1κL (B)(xi) the coefficients of the closest lattice vector to xi and xi+1 =
(xi −B(ai mod q)) /q. Note that we can efficiently compute the xi+1 using
the oracle on input xi. We then apply an algorithm for approximately solving
the closest vector problem on (B,xn+1), see [8], Section 2.3 for example. The
distance of xn+1 from the lattice is at most d/qn. Applying the algorithm will
give us a lattice point within distance

2n · d
qn

≤ d < λ(L (B))

2

of xn+1. But there can be only one point within this distance, so the closest
lattice vector x′ to xn+1 will be computed exactly. This gives us an+1 = B−1x′.
Using the fact that ai+1 = B (ai + (ai mod q)) /q, we can work our way back-
wards to compute a1.

27

The second one shows that it is possible to distinguish samples of As,q,Ψβ

for unknown β from uniform given access to an oracle that solves LWEq,Ψα for
some α ≥ β. For this, we need an algorithm to verify whether a vector s′ is
really the solution to a round of LWEq,Ψβ without access to an oracle. This is
the subject of the next lemma.

Lemma 3.2. There exists a polynomial-time algorithm that, on input s′ and
n samples of As,q,Ψβ for some unknown β < 1 decides whether s = s′ with
overwhelming probability.

Proof. Let (a1, x1), ..., (an, xn) be the samples of As,Ψβ and let yi = xi−〈ai, s′〉
mod T for i = 1, ..., n. Compute

z =
1

n

n∑
i=1

cos(2πyi)

and accept if z > 0.02; otherwise reject.
Let ξ be the distribution given by e+〈a, s−s′〉 mod T for e sampled from Ψβ

and a sampled uniformly from Znq . The yi are sampled from this distribution.
If s = s′, ξ = Ψβ . If that is the case,

Ey∼ξ(cos(2πy)) =

∫ 1

0

cos(2πy)ξ(y)dy = Re

[∫ 1

0

exp(2πiy)ξ(y)dy

]
from whic it follows that E(cos(2πy)) = exp(−πβ2) ≥ 0.04. By the Chernoff
bound, |z − E(cos(2πy))| ≤ 0.01 with probability exponentially close to 1. So
in this case, the algorithm will decide correctly with overwhelming probability.

Now suppose that s 6= s′. Then, ξ has period 1/k for some k ≥ 2. Let j be
an index for which sj 6= s′j . The distribution aj · (sj−s′j) mod T for aj selected
uniformly from Zq. We have gcd(q, sj − s′j) < q, so aj · (sj − s′j)/q mod T has
period 1/k for k ≥ 2. Since we can write ξ = aj · (sj − s′j)/q mod T + ξ′ for
some distribution ξ′ sampled independently, it follows that ξ has period 1/k.
From∫ 1

0

exp(2πiy)ξ(y)dy =

∫ 1

0

exp

(
2πiy +

1

k

)
ξ(y)dy = exp

(
2πi

k

)
·
∫ 1

0

exp(2πiy)ξ(y)dy

it follows that E(cos(2πy)) = 0 and by the Chernoff-bound, the algorithm
rejects with probability exponentially close to 1.

Lemma 3.3. There is an efficient algorithm that on input α and given polyno-
mially many samples from As,q,Ψβ for some unknown β ≤ α ≤ 1, given access
to an oracle which solves LWEq,Ψα with overwhelming probability using polyno-
mially many samples from As,q,Ψα , outputs s with overwhelming probability.

Proof. The basic idea is that if we add additional error terms to the samples
from As,q,Ψβ , we can transform them so that they are exponentially close to
samples of Ψα. If we increased them by the right amount, the oracle will output

28

s. If not, there is no guarantee that its output will be correct, but using the
algorithm of lemma 3.2, we can find out. Let c be a constant such that nc

samples suffice for the oracle. Let Z =
{
k · n−2cα2

∣∣k ∈ Z, 0 ≤ k ≤ n−2c
}

. For
every element γ ∈ Z, we do the following n times: We obtain nc samples of
As,Ψ√

β2+γ
by adding an error term sampled from Ψ√γ . Then we run the oracle

on these samples and receive a candidate s′ for the solution. If the algorithm of
the previous lemma accepts, output s′ and halt. Otherwise continue.

The algorithm from lemma 3.2 prevents us from outputting a wrong answer,
except with neglgible probability. It remains to show that we will obtain the
correct answer with overwhelming probability in one of the iterations. Let γ be
the smallest element of Z such that γ ≥ α2 − β2. Then γ < α2 − β2 + n−2cα2.
Let α′ =

√
β2 + γ. Then

α ≤ α′ ≤
√
α2 + n−2cα2 ≤

(
1 + n−2c

)
α

By [13], Claim 2.2, the distributions Ψα and Ψβ for 0 < α ≤ β ≤ 2α have
statistical distance at most 9(β/α − 1). It follows that Ψα and Ψα′ have sta-
tistical distance at most 9n−2c. Therefore, Ψnc

α has at most statistical distance
9n−c from Ψnc

α′ . Let Oα and Oα′ denote the output of the oracle when given nc

samples of Ψα and Ψα′ respectively. Since the application of functions does not
increase statistical distance, it follows that

|Pr [Oα 6= s]− Pr [Oα′ 6= s] | ≤ 9n−c

⇒ Pr [Oα′ 6= s] ≤ 9n−c + Pr [Oα 6= s] ≤ 9n−c + 2−Ω(n)

We can conclude that for nc samples of As,Ψα′ , the oracle will output s with
probability at least 1/2 (for n large enough), so with overwhelming probability,
in one of the n iterations for γ, the correct result s will be found.

The algorithm in the following lemma allows to compute R together with
the algorithms of the previous lemmas.

Lemma 3.4. Let ε be a negligible function and α : N → (0, 1). There is an
efficient algorithm that, given access to an oracle solving LWEq,Ψβ for all β ≤ α
and given input (B, r,x) with x having distance r >

√
2qηε(L (B)) from L (B)

and polynomially many samples of DL (B),r returns the coefficients (modulo p)
of the vector in L (B)∗ that is closest to x.

Proof Sketch: To solve this problem, we generate polynomially many samples
from a distribution close to As,Ψβ for β ≤ α and s = B>κL (B)∗(x) mod q and
then use our oracle to find s.

To generate the samples, we do the following: Let v be a vector sampled
form DL (B),r and let a = B−1v mod p. Output (a, 〈x,v〉/q + e mod T) for
e sampled from Ψαq/

√
2r. By claims 3.8 to 3.10 in [13], it follows that this has

negligible statistical distance to our target distribution. In more detail, a is
close to uniform on Zq. Now fix a and let x′ = x − κL (B)∗(x). Then we have
〈x,v〉/q + e = 〈x′/q,v〉+ e+ 〈κL (B)∗(x),v〉.

29

It holds that

〈κL (B)(x),v〉 =
〈
B>κL (B)∗(x),B−1v

〉
= 〈s,a〉 mod q

and it follows from Corollary 3.10 in [13] that 〈x′/q,v〉+ e is within negligible
statistical distance of Ψβ for β =

√
(r||x′||2/q) + α2/2 ≤ α.

Together with the previous section, this implies the following theorem:

Theorem 3.5 (Reduction to LWE). Let α(n) ∈ (0, 1), q(n) ≥ (ζ/
√
n)ω(

√
log n)

and γ ≥ n/(α ·
√

log n). There exists a polynomial-time algorithm that solves
with overwhelming probability GapSVPγ,ζ given access to an oracle that solves
LWEq,Ψα using polynomially many samples of As,Ψα .

The hardness of Brakerski’s scheme can be based on this reduction.

Corollary 3.6 (Security of Brakerski’s encryption scheme). Suppose that there
is a polynomial-time adversary that breaks with non-negligible probability the
cpa-security of Brakerski’s scheme with parameters χ = Ψ̄α for α ≤ 1/ log n
and q = qe11 ...q

em
m where the qi are distinct polynomially bounded primes with

log n/α ≤ qi and N polynomial in n. If q ≥ 2n/2 · log n/
√
n, there is a

polynomial-time algorithm that solves GapSVPγ for γ ∈ Õ(n) = O(n log n).

Proof. If there is such an adversary, then, by theorem 2.4, there is an efficient
algorithm that solves DLWEN,q,Ψ̄α in the average case. By theorem 1.2, this
implies that there exists a polynomial-time algorithm that solves LWEq,Ψα .
Since it runs in polynomial time, it requires only polynomially many samples
from its oracle. Therefore, we could use it to instantiate the LWE-oracle in the
algorithm of the previous theorem. For any γ with

γ ≥ n

α ·
√

log n
=
n log n√

log n
= n

√
log n

this would give us an algorithm to solve GapSVPγ in polynomial time with
overwhelming probability.

4 Private Information Retrieval and Information-
theoretic FHE

4.1 Introduction

A Private Information Retrieval (PIR) protocol is a protocol that allows an user
to access a database stored on one or more server(s) such that the information
about which entry was queried by the user remains private. The trivial solution
is to simply download the whole database and access it privately. In a paper
from 1998, Chor, Goldreich, Kushilevitz and Sudan ([6]) proved that, in the
case of a single server, no PIR protocol can achieve perfect privacy with com-
munication complexity less than that of the trivial protocol. It follows that no

30

fully homomorphic encryption scheme with compactness that allows to encrypt
at least n bits on security parameter n can achieve perfect secrecy: If there were
such a scheme we could use it to design a PIR protocol which achieves perfect
privacy with less communication.

In 2007, Chakrabarti and Shubina ([5]) described lower bounds for almost-
private information retrieval where we allow a small amount of information to be
leaked and some probability for error. These have implications for FHE-schemes
which allow some amount of leakage and/or some probability of decryption
error. The leakage and decryption error can not grow arbitrarily small when
the security parameter n grows larger. Consider the case with no decryption
error as an example: If we let δ(n) be the maximal statistical distance between
the encryptions of two messages m0,m1 then δ(n) must either be ≥ 2 for all but
finitely many n or it must increase towards 2 as the security parameter grows.

4.2 Private Information Retrieval

The database is modeled as a string x = x0...xn−1 of n bits. The user is
interested in some bit xi in the string. The formal definition for single-server
PIR (similar to [6] and [5]) is the following:

An (ε, δ)-PIR protocol consists of three (not necessarily efficient) functions

• Q(i, r), a query from the user to the server where i is the index the user is
interested in and r is a random string of length l(n) for some fixed function
l.

• A(x,Q), the server’s answer when the database is x and the query is Q.

• R(i, r, A), the function that allows the user to reconstruct xi from the
server’s answer.

such that the following conditions hold:

• ε-correctness: The probability that the user ends up with a wrong result
is at most ε, or, more formal, for any x and i,

Prr [R(i, r, A(x,Q(i, r))) 6= xi] ≤ ε.

• δ-privacy: The queries the user makes do not reveal much information
about the index he is interested in. For all pairs (i, j) of indices,∑

q∈Ran(Q)

|Prr [Q(i, r) = q]− Prr [Q(j, r) = q]| ≤ δ.

4.3 Lower Bound for (0, 0)-PIR and an Impossibility Re-
sult for Perfectly Secret FHE

A trivial (0, 0)-PIR protocol is that the user makes no query at all (Q(i,r) is
always the empty string) and the server sends the whole database to the user
who then reads the index he is interested in. For (0, 0)-PIR, this is already
optimal with respect to communication complexity.

31

Theorem 4.1. Let Π be a (0, 0)-PIR protocol. In the worst case, the answer
of the server must have a length of at least n bits where n is the length of the
database. It follows that Π has communication complexity n.

Proof. The idea of the proof is that for every possible database the answer must
contain information about all n bits of the database, because otherwise, either
the user would not be able to always reconstruct the right bit or the server must
have received some amount of information about the desired entry. Let us now
make this proof more formal:

Let Π be a (0, 0)-PIR protocol. Fix some q = Q(0, r0) for arbitrary random-
ness r0 and define Aq = Ran(A(·, q)). Suppose that the answer of the server is
always shorter than n bits. Then |A0| < 2n. Therefore, there exist two distinct
databases x and y of size n such that A(x, q) = A(y, q). Now fix some index
k where x and y differ. By the privacy requirement for our protocol, it follows
that q = Q(k, r1) for some string r1. Now let aq = A(x, q) = A(y, q).

By 0-correctness, we have for every possible randomness r,

xk = R(k, r, A(x,Q(k, r)))

yk = R(k, r, A(y,Q(k, r)))

And thus, in particular

xk = R(k, r1, A(x,Q(k, r1))) = R(k, r1, A(x, q)) = R(k, r1, aq)

yk = R(k, r1, A(y,Q(k, r1))) = R(k, r1, A(y, q)) = R(k, r1, aq) = xk

but we have chosen k such that xk 6= yk. This proves that a (0, 0)-PIR protocol
requires answers of length n in the worst case and that no such protocol with
communication complexity < n exists.

This implies the following impossibility result for FHE with perfect secrecy.

Corollary 4.2. Let Π = (Gen,Enc,Dec,Eval) be a fully homomorphic en-
cryption scheme with perfect secrecy. Assume further that it is compact, that
is, there are polynomials p and q such that the encryption of a message m has
length p(n) · |m| for security parameter n and the length of the output of Eval
for a circuit with one output wire is q(n). Suppose that the scheme can encrypt
messages of length n. (If it could not, then the homomorphic properties would
not be very useful as the input size would be very limited.)2

If there were such a scheme, there also would be a (0, 0)-PIR protocol with
less than n bits of communication.

2If we allow for schemes that can only encrypt logn bits, then there is a trivial FHE-
scheme with perfect secrecy: As keys, we use bijective functions k : {0, ..., logn−1}×{0, 1} →
{0, ..., 2 logn− 1}. Key generation consists in selecting such a function uniformly at random.
If b is the ith bit to be encrypted, its encryption is k(i, b). An encryption c of a single bit
is decrypted by looking up k−1(c). The function Eval(C, c1, ..., ck) for a circuit C with one
output wire outputs a list ci1 , ..., cil that contains all the ciphertexts from c1, ..., ck without
repetitions and a “truth table” of C for every possible combination of values for ci1 , ..., cil .
If the scheme is executed correctly, there are at most logn distinct cis, so the table has size
polynomial in n, satisfying compactness. Decryption of such a table is done by decrypting
the listed ciphertexts and looking up the result in the table.

32

Proof. Consider the following protocol where the user encrypts the index of the
desired entry with the FHE scheme and the server homomorphically evaluates
a circuit that outputs the bit corresponding to the index:

• Q(i, (r1, r2)): Run Gen
(
1logn

)
with randomness r1 and let k be the re-

sulting key. Output the result of Enck(i) with randomness r2.

• A(x,Q): Fix a circuit C that outputs xj on input j for every possible
index j. Then output the result of Eval(C,Q).

• R(i, (r1, r2), A): Generate the key k from randomness r1 and output
Deck(A).

Correctness follows if the encryption scheme is correct. Because of perfect se-
crecy, Q(i, (r1, r2)) and Q(j, (r1, r2)) are identically distributed. Therefore, this
is a (0, 0)-PIR protocol. The communication is

p(log n) · log n+ q(log n) ≤ (log n)c1 + (log n)c2

for some constants c1, c2. This is asymptotically smaller than n.

Therefore, the existence of such an FHE-scheme contradicts the lower bound
proved before.

4.4 Lower Bound for (0, δ)-PIR and FHE with Imperfect
Information-theoretic Security

The following theorem was proved in [5].

Theorem 4.3. In a (0, δ)-PIR protocol, the answer of the server needs have a
length of at least (1− δ/2) · n bits in the worst case. Therefore, such a protocol
has communication complexity at least (1− δ/2) · n bits.

Proof. Let Π = (Q,A,R) be a (0, δ)-PIR protocol. We will find z ∈ Ran(Q)
such that the range of A(·, z) must contain at least 2(1−δ/2)n elements. For
q ∈ Ran(Q) and indices i ≤ n, define piq = Prr [Q(i, r) = q] and Jq = {i ∈
N|1 ≤ i ≤ n, piq > 0}. Then we have

|Jq|p1q ≥
n∑
i=1

min(p1q, piq) =

n∑
i=1

(
p1q + piq

2
− |p1q − piq|

2

)
where the inequality holds because for i 6∈ Jq, piq = 0. Summing over the

33

q ∈ Ran(Q) gives us

∑
q∈Ran(Q)

|Jq|p1q ≥
∑

q∈Ran(Q)

n∑
i=1

(
p1q + piq

2
− |p1q − piq|

2

)

=

n∑
i=1

 ∑
q∈Ran(Q)

p1q + piq
2

−
∑

q∈Ran(Q)

|p1q − piq|
2


≥

n∑
i=1

(
1− δ

2

)

The last inequality holds because
∑
q pkq = 1 for any index k, since we are

summing over the range of Q and because of δ-privacy. Choose z such that |Jz| is
maximal. Since

∑
q |Jq|p1q ≤ |Jz|

∑
q p1q = |Jz|, it follows that |Jz| ≥ (1−δ/2)n.

Now suppose that the number of possible outputs of A(·, z) is less than |Jz|.
Let Y = {x ∈ {0, 1}n|xj = 0 for j 6∈ J}. Then |Y | = 2|Jz| and thus, there
are distinct x, y ∈ Y such that A(x, z) = A(y, z). Let j be an index such that
xj 6= yj . Then j must be in Jz, so pjz > 0. But then it follows that for some
r, Q(j, r) = z. Therefore, we would have A(x,Q(j, r)) = A(y,Q(j, r)) and a
contradiction follows as in theorem 4.1.

A protocol that almost achieves this lower bound for arbitrary δ was de-
scribed in the same paper. It needs to communicate dlog ne+ d(1− δ/(2 + δ))en
bits. Let δ′ = δ/(2 + δ) and for i ∈ {0, ..., n− 1}, let

Si = {k ∈ {0, ..., n− 1} |(k − i) mod n ≤ d(1− δ′)ne}
Ti = {k ∈ {0, ..., n− 1} |(i− k) mod n ≤ d(1− δ′)ne}

The protocol consists of the following functions:

• Q(i, r): For r sampled uniformly at random, the output of Q(i, r) is dis-
tributed uniformly on Si.

• A(x,Q): Let i1, ..., ik be the indices in TQ in ascending order. Output
xi1 , ..., xik .

• R(i, r, A): List the indices in TQ(i,r) in ascending order. As proved below,
i will be in this list. Let j be the position of i. Output Aj .

Lemma 4.4 (Correctness). If j ∈ Si, then i ∈ Sj. Therefore, the above protocol
always returns the correct result.

Proof. If j ∈ Si, then (j − i) mod n ≤ (1− δ′)n. Since (j − i) = −(i− j), we
have (j − i) mod n = (i− j) mod n.

34

Lemma 4.5 (Privacy). It holds that for any pair i, j of indices,∑
q∈Ran(Q)

|Prr [Q(i, r) = q]− Prr [Q(j, r) = q] ≤ δ

Therefore, the protocol satisfies δ-privacy.

Proof. For any i, |Si| ≥ (1− δ′)n. Consider two distinct indices i and j. For
q ∈ Si∩Sj , Prr [Q(i, r) = q] = Prr [Q(j, r) = q]. The same holds for q 6∈ Si∪Sj .
For q ∈ (Si \ Sj) ∪ (Sj \ Si) on the other hand, we have

|Prr [Q(i, r) = q]− Prr [Q(j, r) = q] | ≤ 1

min(|Si|, |Sj |)
≤ 1

(1− δ′)n

Also, |Si \ Sj | ≤ n − (1− δ′)n = δ′n and likewise, |Si \ Sj | ≤ δ′n. Therefore,
the privacy parameter of this scheme has the upper bound

2δ′n

(1− δ′)n
=
δ (1− δ′)

1− δ′
= δ

Lemma 4.6 (Communication Complexity). The protocol requires communica-
tion of

dlog ne+

⌈(
1− δ

2 + δ

)
n

⌉
= O(log n) +

(
1− δ

2
+O

(
δ2
))

n

bits.

Proof. The query is an integer between 0 and n − 1 and therefore requires
dlog ne bits. The answer is a string of length |Tj | for some j, that is, it consists
of d(1− δ

2+δ)ne bits.

Taking all this together, we get the following theorem.

Theorem 4.7. For every δ, there is a (0, δ)-PIR protocol with communication
complexity O(log n) + (1− δ/2 +O(δ2))n.

We can apply the lower bound to FHE schemes:

Corollary 4.8. Let Π = (Gen,Enc,Dec) be an FHE-scheme with compactness
that can encrypt n bits on security parameter n. Let δ be a function such that
for any two messages m0, m1 of length n, we have∑

c∈Ran(Enc)

|Pr [Enck(m0) = c]− Pr [Enck(m1) = c] | ≤ δ(n)

where the probabilities are taken over the key generation and the randomness in
Enc. Then for every constant δ′ < 2, δ(n) > δ′ for n large enough.

35

Proof. Suppose there were a scheme Π with δ(n) ≤ δ′ < 2 for all n except for
finitely many. Using the same protocol as in the (0, 0)-case, we could get a
(0, δ′)-PIR protocol that needs to communicate at most O(log n) bits. But the
lower bound on (0, δ′)-PIR is c · n for some constant c > 0, so such a scheme is
impossible.

It follows that either δ(n) ≥ 2 for all n except finitely many or δ(n)→ 2 for
n→∞.

4.5 Allowing Errors

The lower bound for (ε, δ)-PIR is based on the following fact which is implied
by [1], Theorem 1.

Fact 4.9. Let Indexn be the following problem: Alice holds a string x0...xn−1

of bits and Bob an index i. The goal is to output xi. A public-coin one-way
communication protocol that solves this problem with error probability at most ε
requires communication of (1−H(ε))n bits. Here, H(ε) is the Shannon entropy,
H(ε) = −ε log ε− (1− ε) log(1− ε).

Proof. We first need to define the following characteristics of a boolean function
f in two variables. The deterministic communication complexity of f , DC(f), is
the minimal communication complexity of a deterministic one-way communica-
tion protocol to compute f(x, y). Let CM(f) be the communication matrix for
f and nrow(f) the number of distinct rows in it. We say that Y is a control set
for f if for every two x, x′ such that there exists a y with f(x, y) 6= f(x′, y), there
is y ∈ Y such that f(x, y) 6= f(x′, y). Let ts(f) be the cardinality of the smallest
control set for f . The value dcc(f) = ts(f)/ log(nrow(f)) is called the deter-
ministic communication characteristic of f . The probabilistic communication
characteristic for success probability p is defined by pccp(f) = dcc(f) ·H(p).

By Theorem 1 from [1], if f is a Boolean function and C a probabilistic one-
way communication protocol that correctly computes f(x, y) with probability
≥ p for p > 1/2, then C has communication complexity at least DC(f)(1 −
pccp(f))− 1. If f is the function for the Indexn problem, that is,

f : {0, 1}n × {0, 1}dlogne → {0, 1}, (x, i) 7→ xi

then we get (1 − H(p))n − 1 as the lower bound because DC(f) = n, a con-
trol set for f needs to contain every possible index and for every two x, x′ ∈
{0, 1}n, the rows in CM(f) associated to x and x′ differ. Thus, ts(f) = n and
log(nrow(f)) = n. Taking ε = 1− p as the maximal error probability and using
the fact that H(p) = H(1− p) gives us the following lower bound:

PC(f) ≥ (1−H(ε))n

From this fact, the following theorem was derived in [5].

36

Theorem 4.10. Let ε, δ be such that ε + δ/2 < 1/2. Then every single-server
(ε, δ)-PIR protocol needs to communicate at least (1−H(ε+ δ/2))n bits.

Proof. Let Π be such a protocol and let ρ be the length of the random string r.
Define Di,q to be the conditional distribution of the random string r given that
Q(i, r) = q. Let the function

D : {0, ..., n− 1} × Ran(Q)× {0, 1}ρ
′
→ {0, 1}ρ

be such that for r′ ∈ {0, 1}ρ′ selected uniformly at random, D(i, q, r′) is dis-
tributed according to Di,q. For

f(i, x, q, r′) =

{
0 if R(i,D(i, q, r′), A(x, q)) = xi

1 otherwise

we get the expected value

Er,r′ [f (i, x,Q(i, r), r′)] = Prr,r′ [R(i,D(i, Q(i, r), r′), A(x,Q(i, r))) 6= xi]

= Prr [R(i, r, A(x,Q(i, r)) 6= xi]

≤ ε

because of the bound on the error. By δ-privacy, it follows that

Er,r′ [f (i, x,Q(1, r), r′)] ≤ ε+ δ/2

Therefore, we can use the following protocol to solve Indexn with error proba-
bility at most ε + δ/2. Alice and Bob share random strings (r, r′). Alice sends
a = A(x,Q(1, r)) to Bob who then computes R(i,D(i, Q(1, r), r′), a) and out-
puts the result as his guess for xi. By the fact stated before, the length of
A(x,Q(1, r)) must be (1−H(ε))n in the worst case.

Appyling this to FHE schemes which allow for decryption errors with prob-
ability ε(n) and δ(n) as in the previous section, we can conclude that ei-
ther ε(n) + δ(n)/2 ≥ 1/2 or for every constant k < 1 and n large enough,
H(ε(n) + δ(n)/2) > k. From this, it follows that either ε(n) + δ(2)/2 ≥ 1/2 for
all except finitely many n or ε(n) + δ(n)/2→ 1/2 for n→∞.

References

[1] Farid Ablayev. Lower bounds for one-way probabilistic communication
complexity and their application to space complexity. Theoretical Computer
Science, 157:139–159, 1996.

[2] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP. In CRYPTO, 2012.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homo-
morphic Encryption withoug Bootstrapping. In ITCS, 2012.

37

[4] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic
Encryption from (Standard) LWE. In CRYPTO, pages 505–524, 2011.

[5] Amit Chakrabarti and Anna Shubina. Nearly Private Information Re-
trieval. In MFCS, pages 383–393, 2007.

[6] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
Information Retrieval. J. ACM, 45:965–982, 1998.

[7] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford University, 2009.

[8] Shafi Goldwasser and Daniele Micciancio. Complexity of Lattice Problems.
A Cryptographic Perspective. Kluwer Academic Publishers, 2002.

[9] Russel Impagliazzo and David Zuckerman. How to Recycle Random Bits.
In FOCS, pages 248–253, 1989.

[10] Daniele Micciancio and Oded Regev. Worst-case to Average-case Reduc-
tions on Gaussian Measures. SIAM J. on Computing, 37(1):267–302, 2007.

[11] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem (extended abstract). In STOC, pages 333–342, 2009.

[12] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
CRYPTO, pages 80–97, 2010.

[13] Oded Regev. On Lattices, Learning With Errors, Linear Codes and Cryp-
tography. J. ACM, 56(6):Article 34, 2009.

[14] Ron Rothblum. On the Circular Security of Bit Encryption. Cryptology
ePrint Archive, Report 2012/102, 2012. http://eprint.iacr.org/2012/

102.

38

http://eprint.iacr.org/2012/102
http://eprint.iacr.org/2012/102

	Preliminaries
	Notation
	Homomorphic Encryption
	The LWE-problem

	Brakerski's FHE Scheme without Modulus Switching
	Regev's Encryption Scheme
	Switching Keys
	Scale-Invariant Homomorphic Encryption
	Homomorphic Properties of SI-HE
	Applications of the Homomorphic Properties

	Reduction of GapSVP to LWE
	Lattices
	Gaussian Distributions on Lattices and the Smoothing Parameter
	The Reduction
	Description of R

	Private Information Retrieval and Information-theoretic FHE
	Introduction
	Private Information Retrieval
	Lower Bound for (0,0)-PIR and an Impossibility Result for Perfectly Secret FHE
	Lower Bound for (0,)-PIR and FHE with Imperfect Information-theoretic Security
	Allowing Errors

