Introduction to Modern Cryptography

Master of Logic

3rd Block: Feb/March 201617

Outline of the Course

- Historical cryptography & principles of modern cryptography
- perfectly-secret encryption

Auguste Kerckhoffs

1835 - 1903

- Dutch linguist and cryptographer
- Kerckhoffs' principle:

"A cryptosystem should be secure even if everything about the system, except the key, is public knowledge"

leader of Volapük movement

Claude Elwood Shannon

1916 - 2001

- Father of Information Theory
- Graduate of MIT
- Bell Labs
- juggling, unicycling, chess
- ultimate machine

Modern Cryptography

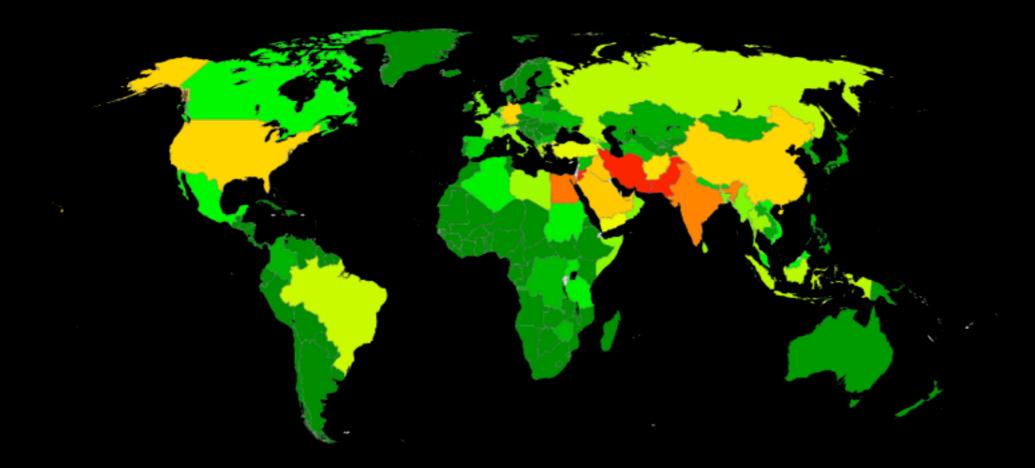
- "scientific study of techniques for securing digital information, transactions and distributed computations"
- crypto is everywhere!

Modern Cryptography

- "scientific study of techniques for securing digital information, transactions and distributed computations"
- crypto is everywhere!

Edward Joseph Snowden

1983 -


- former CIA employee and NSA contractor
- whistleblower
- on (temporary) asylum in Russia
- Traitor or Hero?

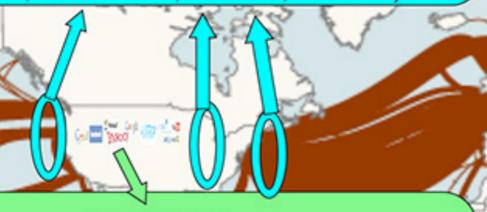
Politics of Cyberwar

- In 2013, Snowden leaked many thousand top secret documents to various media, documenting a
- mass surveillance programs by secret services from all over the world

Politics of Cyberwar

(TS//SI/NF) FAA702 Operations

Two Types of Collection



Upstream

 Collection of communications on fiber cables and infrastructure as data flows past.

(FAIRVIEW, STORMBREW, BLARNEY, OAKSTAR)

You Should **Use Both**

PRISM

 Collection directly from the servers of these U.S. Service Providers: Microsoft, Yahoo, Google Facebook, PalTalk, AOL, Skype, YouTube Apple.

TOP SECRET//SI//ORCON//NOFORN

Outline of the Course II

	secret key	public key	
confidentiality	private-key encryption	public-key encryption	
authentication	message authentication codes (MAC)	digital signatures	

Outline of the Course II

 reduction proofs pseudorandomness block ciphers: DES, AES 	secret key public key	
confidentiality	private-key encryption	public-key encryption
authentication	message authentication codes (MAC)	digital signatures

Outline of the Course II

- algorithmic number theory
- key distribution, Diffie-Hellmann
- RSA

•	red	luctio	n pr	oofs

- pseudorandomness
- block ciphers: DES, AES

secret key

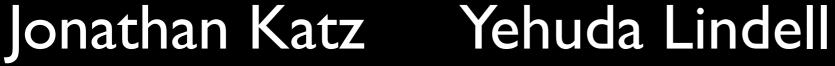
public key

confidentiality

private-key encryption

public-key encryption

authentication

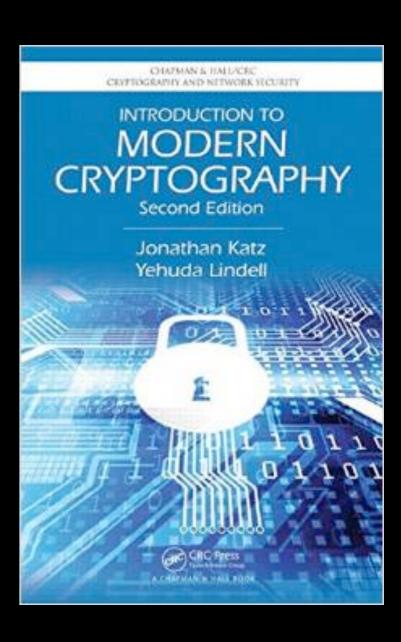

message authentication codes (MAC)

digital signatures

Fun Stuff

- bitcoin (guest lecture by Marc Stevens, CWI)
- zero-knowledge proofs
- multi-party computation (secret sharing, bit commitment, oblivious transfer)
- electronic voting and auctions
- quantum cryptography
- position-based cryptography

• ...



• 3 Basic Principles of Modern Cryptography

1. Formulation of Exact Definitions

 "a cryptographic scheme is secure if no adversary of a specified power can achieve a specified break" example: encryption

2. Reliance on Precise Assumptions

- unconditional security is often impractical (unfortunate state of computational complexity)
- validation of assumptions (independent of cryptography) example: factoring
- allows to compare crypto schemes

3. Rigorous Proofs of Security

- Intuition is not good enough. History knows countless examples of broken schemes
- bugs vs security holes software users vs adversaries
- reduction proofs: Given that Assumption X is true, Construction Y is secure.
 Any adversary breaking Construction Y can be used as subroutine to violate Assumption X.

Questions?

Python Programming Project: BibTeX Parser

Python Programming Project: BibTeX Parser

- Block 2 (Nov/Dec), starting asap, 3 ECTS
- Goal: creating the "perfect" bibtex file (for articles in a certain research domain, such as quantum cryptography)

Python Programming Project: BibTeX Parser

- Block 2 (Nov/Dec), starting asap, 3 ECTS
- Goal: creating the "perfect" bibtex file (for articles in a certain research domain, such as quantum cryptography)
- https://github.com/sciunto-org/python-bibtexparser

Python Programming Project: BibTeX Parser

- Block 2 (Nov/Dec), starting asap, 3 ECTS
- Goal: creating the "perfect" bibtex file (for articles in a certain research domain, such as quantum cryptography)
- https://github.com/sciunto-org/python-bibtexparser
- extensions to this parser:
 - create alphastyle citation keys
 - look up article information from crossref, dblp, arXiv
 - provide various bibtex file formats
 - create a website where articles can be looked up "on the fly"
 - ...