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Abstract

This paper surveys theM/G/1 queue with regularly varying service requirement distribution. It studies the effect of
the service discipline on the tail behavior of the waiting-time and/or sojourn-time distribution, demonstrating that different
disciplines lead to quite different tail behavior. The orientation of the paper is methodological: We outline four different
methods for determining tail behavior, illustrating them for service disciplines like FCFS, Processor Sharing and LCFS.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Measurements indicate that traffic in high-speed networks exhibits burstiness on a wide range of
time scales, manifesting itself in long-range dependence and self-similarity, see for instance[42,51].
The occurrence of these phenomena is commonly attributed to extreme variability and heavy-tailed
characteristics in the underlying activity patterns (connection times, file sizes, scene lengths), see for
instance[10,30,56]. This has triggered a lively interest in queueing models with heavy-tailed traffic
characteristics.

Although the presence of heavy-tailed traffic characteristics is widely acknowledged, the practical
implications for network performance and traffic engineering remain to be fully resolved.

While several studies indicate that small buffer sizes, high levels of aggregation, and flow control
algorithms limit the impact on packet-scale buffer dynamics (see, e.g.[5,24]), heavy-tailed traffic char-
acteristics do dramatically affect flow-level delays experienced by users. A particularly interesting aspect
is the role of scheduling and priority mechanisms in controlling the latter negative effect.

In a fundamental paper, Anantharam[4] considered a single-server queue fed by a Poisson arrival pro-
cess of sessions, whose generic length is distributed as some integer random variableT with
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P{T = k} ∼ αk−(α+1)L(k), where 1< α < 2 andL(·) is a slowly varying function (seeDefinition 2.1).
Each session brings in work at unit rate while it is active. Hence, the work brought in by each arrival
is regularly varying and, because 1< α < 2, the arrival process of work is long-range dependent, but
E{T } <∞. Anantharam shows that, in the steady-state case, foranystationary Non-Preemptive service
policy, the sojourn-time of a typical session must stochastically dominate a regularly varying random vari-
able having infinite mean. Non-preemption means that once service on a session has begun, it is continued
until all the work associated with it has been completed. Anantharam does not make any assumptions
as to whether the service policy is work-conserving, or whether the length of a session is known at the
time of arrival. In contrast, Anantharam further shows that there also exist causal stationarypreemptive
policies, which do not need information about the session durations at the time of their arrival, for which
the sojourn-time of a session is stochastically dominated by a regularly varying random variable with
finite mean. The results of Anantharam raise several questions, like (i) are there (preemptive) service
disciplines for which the tail of the sojourn-time distribution is not heavier than the tail of the service
requirement distribution, and (ii) what is the effect of various well-known scheduling disciplines on the
tail behavior of the waiting-time and/or sojourn-time distribution?

A related issue arises when there areseveral classesof customers, which may be treated in different
ways by the server (e.g., using fixed priorities, or according to a polling discipline). Then it is important
to understand under what conditions, or to what extent, the tail behavior of the service requirements of
one class affects the performance of other classes. The above issues have recently been investigated by
the present authors and some of their colleagues. This paper summarizes the results. We focus on the
classicalM/G/1 queue and its multi-class generalizations (although some of the recently obtained results
allow a general renewal arrival process, or a fluid input).

The orientation of the paper is methodological. After introducing the model and reviewing the main
results for various basic disciplines inSection 2, we discuss four different methods for obtaining the tail
behavior of waiting-time and/or sojourn-time distributions forM/G/1-type queues with regularly varying
service requirement distribution(s): (i) an analytical one, which relies on Tauberian theorems relating the
tail behavior of a probability distribution to the behavior of its Laplace–Stieltjes transform near the origin;
(ii) a probabilistic one, which exploits a Markov-type inequality, relating an extremely large sojourn (or
waiting) time to a single extremely large service requirement; (iii) a probabilistic one, which is based on
sample-path arguments which lead to lower and upper bounds for tail probabilities; (iv) a probabilistic
one, which is based on explicit (random-sum) representations of the waiting-time distribution, which
are applicable to the larger class of subexponential distributions. These four approaches are described
in Sections 3–6, respectively.Sections 3, 5 and 6also discuss the multi-class case. Concluding remarks
are given inSection 7. The present paper is an extended version of[16]. In the present version, minor
changes have been made inSections 3 and 4, Section 5is significantly improved at several points, and
Section 6is new.

2. Model description and main results

In this section, we formally describe the model, introduce some concepts and notation, and give an
overview of the main results.

As mentioned earlier, we focus on theM/G/1 queue. In this system, customers arrive according to
a Poisson process, with rateλ, at a single server who works at unit rate. Their service requirements
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B1, B2, . . . are independent and identically distributed, with distributionB(·) with meanβ and Laplace–
Stieltjes transform (LST)β{·}. A generic service requirement is denoted byB. There is no restriction on
the number of customers in the system. We assume that the offered traffic loadρ := λβ < 1, so that the
system reaches steady-state. We study the steady-state sojourn-timeS of a customer, and in some cases
also the steady-state waiting-timeW until service begins.

Before surveying the tail asymptotics of the waiting-time and/or sojourn-time distributions for various
service disciplines, we first introduce some useful notation and terminology. For any two real functions
g(·) and h(·), we use the notational conventiong(x) ∼ h(x) to denote limx→∞g(x)/h(x) = 1, or
equivalently,g(x) = h(x)(1+ o(1)) asx→∞. For any stochastic variableX with distribution function
F(·), with E{X} < ∞, denote byFr(·) the distribution function of the residual lifetime ofX, i.e.,
Fr(x) = 1/E{X} ∫ x

0 (1− F(y))dy, and byXr a stochastic variable with distributionFr(·).
We focus on the classR of regularly varyingdistributions (which contains the Pareto distribution). This

class is a subset of the class of subexponential distributions[39] as treated inSection 6, which includes
for example the lognormal and Weibull distributions as well.

Definition 2.1. A distribution functionF(·) on [0,∞) is calledregularly varying of index−ν (F(·)
∈ R−ν) if

1− F(x) = x−νL(x), ν ≥ 0,

whereL : R+ → R+ is a slowly varying function, i.e., limx→∞L(ηx)/L(x) = 1, η > 1.

The class of regularly varying functions was introduced by Karamata[37], and its potential for proba-
bility theory was extensively discussed in[33]. A key reference is[12].

In the remainder of this section, we present an overview of the tail asymptotics of the waiting-time
and/or sojourn-time distributions in theM/G/1 queue for six key disciplines: (i) First-Come-First-Served
(FCFS); (ii) Processor Sharing (PS); (iii) Last-Come-First-Served Preemptive-Resume (LCFS-PR); (iv)
Last-Come-First-Served Non-Preemptive Priority (LCFS-NP); (v) Foreground-Background Processor
Sharing (FBPS); (vi) Shortest-Remaining-Processing-Time-First (SRPTF).

(i) TheM/G/1FCFS queue. The next theorem characterizes the tail asymptotics of the distribution of
the steady-state waiting-timeW for the FCFS service discipline.

Theorem 2.1. In the case of regular variation, i.e., P{B > ·} ∈ R−ν,

P{W > x} ∼ ρ

1− ρ
P{Br > x}, x→∞. (1)

Remark 2.1. The waiting-time tail in theM/G/1 FCFS queue is ‘one degree heavier’ than the service
requirement tail, in the regularly varying case. This may be explained by the fact that an arriving customer
has a positive probability of arriving during a service time. Its waiting-time is then at least equal to the
residual duration of the ongoing service—which is regularly varying of index 1− ν (cf. [12]).

Theorem 2.1was first proved by Cohen[25] (who in fact considered theGI/G/1 case), and subse-
quently extended by several authors. In particular, Pakes[49] proved that the relationP{W > x} ∼ ρ/

(1 − ρ)P{Br > x} even holds for the larger class of service requirement distributions for which the
residual service requirement distribution is subexponential, cf.Section 6.
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The fact that the sojourn-time of a customer in theM/G/1 FCFS queue equals the sum of its
waiting-time and its lighter-tailed service requirement, the two quantities being independent, implies
that the tail behavior of the sojourn-time distribution is also given by the right-hand side of(1).

(ii) TheM/G/1 PSqueue. The PS (processor sharing) service discipline operates as follows. If there
aren ≥ 1 customers present, then they are all served simultaneously, each at a rate of 1/n. At the ITC
conference in 1997, Roberts raised the question whether the tail of the distribution of the steady-state
sojourn-timeSPS in theM/G/1 PS queue might be just as heavy as the tail of the service requirement
distribution. This question was motivated by the following observations: (i) in a PS queue short jobs can
overtake long jobs, so the influence of long jobs on the sojourn-time of short jobs is limited, and (ii) the
mean sojourn-time in theM/G/1 PS queue only involves thefirst moment of the service requirement,
whereas in theM/G/1 FCFS queue it involves the first moment of theresidualservice requirement, and
hence thesecondmoment of the service requirement. In fact, ifP{B > ·} ∈ R−ν with 1 < ν < 2, then
the second moment of the service requirement does not exist, and neither does the first moment of the
waiting-time in theM/G/1 FCFS case. Roberts’ question can be answered affirmatively, as shown by
the next theorem proven in[63].

Theorem 2.2. If P{B > ·} ∈ R−ν,

P{SPS > x} ∼ P{B > (1− ρ)x}, x→∞. (2)

Apparently, in theM/G/1 PS queue the sojourn-time tail is just as heavy as the service requirement
tail, which agrees with the observations (i) and (ii).

Remark 2.2. Formula(2) states that the probability that a tagged customer’s sojourn-time exceeds the
valuex is asymptotically (forx → ∞) equal to the probability that a customer’s service requirement
exceeds a value(1 − ρ)x. This property can be made intuitively plausible as follows: if a customer
with an extremely large service requirement is placed in the queue, then the queue remains stable,
which heuristically implies that all other customers eventually leave the system. Hence, the average
capacity devoted to the service of other customers is approximately equal toρ. Thus, the average service
capacity devoted to the tagged customer is approximately 1− ρ. Since the service time of the tagged
customer is heavy-tailed, the tagged customer stays in the system long enough to observe this average
behavior. Note thatEq. (2) and this intuitive argument are not valid in, e.g., theM/M/1 PS queue
[15].

(iii) TheM/G/1 LCFS-PR queue. In the LCFS Preemptive-Resume discipline, an arriving customer
K is immediately taken into service. However, this service is interrupted when another customer arrives,
and it is only resumed when all customers who have arrived afterK have left the system.

The fact that no customer has to wait for the completion of a residual service requirement, sug-
gests that the tail of the sojourn-time distribution is just as heavy as the tail of the service require-
ment distribution. This was indeed proven in[20], using the following observation: the sojourn-time
of K has exactly the same distribution as the busy-period of thisM/G/1 queue. The busy-period
obviously has the same distribution for LCFS-PR as for FCFS. The tail behavior of the busy-period
distribution in theM/G/1 queue has been studied by De Meyer and Teugels[43] for the case of a
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regularly varying service requirement distribution. This yields the next theorem (SLPR denoting the steady-
state sojourn-time).

Theorem 2.3. If P{B > ·} ∈ R−ν,

P{SLPR > x} ∼ 1

1− ρ
P{B > (1− ρ)x}, x→∞. (3)

(iv) The M/G/1 LCFS-NP queue. Let WLNP denote the steady-state waiting-time in theM/G/1
LCFS-NP queue. The impossibility of preemption suggests that the tail ofWLNP will be determined
by the tail of a residual service requirement. Indeed, in this paper we prove the following result, which
in fact also holds for the sojourn-timeSLNP = WLNP + B, as is shown inSection 4.

Theorem 2.4. If P{B > ·} ∈ R−ν,

P{WLNP > x} ∼ ρP{Br > (1− ρ)x}, x→∞. (4)

(v) TheM/G/1 FBPS queue. The Foreground-Background Processor Sharing discipline allocates an
equal share of the service capacity to the customers which so far have received the least amount of service,
see[38] or [58]. It was proven in[47] (only for the case 1< ν < 2) that the tail of the distribution of the
sojourn-timeSFB is the same as that for the ordinary PS discipline.

Theorem 2.5. If P{B > ·} ∈ R−ν with 1 < ν < 2,

P{SFB > x} ∼ P{B > (1− ρ)x}, x→∞. (5)

Although not proven here, it can be shown that the result remains true forν ≥ 2.
(vi) TheM/G/1SRPTF queue. With this service discipline the total service capacity is always allocated

to the customer(s) with the shortest remaining processing time (Shortest-Remaining-Processing-Time-
First). Assuming thatB(x) is a continuous function, with probability 1, no two customers in the system
have the same remaining service requirement[54]. The service of a customer is preempted when a
new customer arrives with a service requirement smaller than the remaining service requirement of the
customer being served. The service of the customer that is preempted is resumed as soon as there are no
other customers with a smaller amount of work in the system. For the sojourn-timeSSR we will prove the
following theorem, cf.[47].

Theorem 2.6. If P{B > ·} ∈ R−ν with 1 < ν < 2,

P{SSR > x} ∼ P{B > (1− ρ)x}, x→∞. (6)

Note that the tail of the service requirement distribution behaves as those of the PS and FBPS disciplines.
Again, we remark (without proof) that the result is also valid forν ≥ 2.

In the sequel we prove these theorems using different methods. This serves as an illustration of
the various methods and allows us to compare them.Theorems 2.2 and 2.4are proven in each of
Sections 3–6; Theorems 2.1 and 2.3are proven inSections 3 and 5, andTheorems 2.5 and 2.6are proven in
Section 4.
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3. Transform approach

In this section we outline an LST approach to the study of tails of waiting-time and/or sojourn-time dis-
tributions in theM/G/1 queue and some of its generalizations. InSection 3.1we consider the single-class
M/G/1 queue, with as service discipline either FCFS, PS, LCFS-PR, or LCFS-NP. InSection 3.2we
consider the multi-classM/G/1 queue, in which the classes are served according to some scheduling
mechanism.

For several of the above-mentioned cases, expressions for the LST of the waiting-time and/or
sojourn-time distribution are available in the literature. Such expressions lend themselves to determine
the tail behavior of the associated distributions: there exists a very useful relation between the tail
behavior of a regularly varying probability distribution and the behavior of its LST near the origin.
That relation often enables one to conclude from the form of the LST of the waiting-time and/or
sojourn-time distribution, that the distribution itself is regularly varying at infinity. We present this
relation inLemma 3.1.

LetF(·) be the distribution of a non-negative random variable, with LSTφ{s} and finite firstn moments
µ1, . . . , µn (andµ0 = 1). Define

φn{s} := (−1)n+1


φ{s} −

n∑
j=0

µj

(−s)j

j!


 .

Lemma 3.1. Letn < ν < n+ 1,C ≥ 0. The following statements are equivalent:

φn{s} = (C + o(1))sνL

(
1

s

)
, s ↓ 0, s real,

1− F(x) = (C + o(1))
(−1)n

Γ(1− ν)
x−νL(x), x→∞.

The caseC > 0 is due to Bingham and Doney[11]. The caseC = 0 was first obtained by Vincent
Dumas, and is treated in[23, Lemma 2.2]. The case withν integer-valued is more complicated; see
Theorem 8.1.6 and Chapter 3 of[12].

3.1. The single-class case

(i) TheM/G/1 FCFS queue. In theM/G/1 FCFS queue, the LST of the steady-state waiting-time
distribution is given by the Pollaczek–Khintchine formula[26]:

E{e−sW} = 1− ρ

1− ρβr{s} , Res ≥ 0, (7)

whereβr{s} = (1−β{s})/βs is the LST of the residual service requirement distributionBr(·). A Karamata
theorem (cf. Section 1.5 of[12]) implies that ifP{B > ·} ∈ R−ν, then the integrated tailP{Br > ·} ∈ R1−ν.
More precisely, if

P{B > x} ∼ x−νL(x), ν > 1, x→∞, (8)
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then

P{Br > x} = 1

β

∫ ∞
x

P{B > y}dy ∼ 1

(ν − 1)β
x1−νL(x), x→∞.

We now demonstrate how the following statement, which impliesTheorem 2.1, is easily obtained from
the LST expression(7) andLemma 3.1. For 1< ν < 2, x→∞,

P{B > x} ∼ x−νL(x) ⇔ P{W > x} ∼ ρ

1− ρ

1

(ν − 1)β
x1−νL(x). (9)

It follows from (8) andLemma 3.1that

1− βr{s} = 1− 1− β{s}
βs

= −
(

Γ(1− ν)

β
+ o(1)

)
sν−1L

(
1

s

)
, s ↓ 0. (10)

Combining this result with(7) yields:

1− E{e−sW} = ρ(1− βr{s})
1− ρβr{s} ∼ −

ρ

1− ρ

Γ(1− ν)

β
sν−1L

(
1

s

)
, s ↓ 0.

Another application ofLemma 3.1gives the⇒ part of(9). The reverse part is obtained in a similar way.
A similar approach can be followed for non-integer values ofν > 2; we ignore the subtleties required in
applyingLemma 3.1for integer values ofν.

(ii) TheM/G/1 PS queue. Theorem 2.2indicates that, contrary to the FCFS case, the sojourn-time tail
in theM/G/1 PS queue is just as heavy as the service requirement tail. We now sketch the proof in[63],
which is based on the application ofLemma 3.1to an explicit expression of the sojourn-time LST.

There are several expressions known for the LST of the sojourn-time, cf.[48,55,57], but they con-
tain contour integrals which are inversion formulas of Laplace transforms. Starting-point in[63] is an
expression in[48] for the conditionalLST of a customer’s sojourn-timeSPS(τ), given that his service
requirement isτ: for Res ≥ 0, τ ≥ 0,

E{e−sSPS(τ)} = 1− ρ

(1− ρ)H1(s, τ)+ sH2(s, τ)
,

where the functionsH1(s, τ) andH2(s, τ) are given by their LST w.r.t.τ∫ ∞
0

e−xτ dH1(s, τ) = x− λ(1− β{x})
x− s− λ(1− β{x}) , Rex > 0,

∫ ∞
0

e−xτ dH2(s, τ) = ρx− λ(1− β{x})
x(x− s− λ(1− β{x})) , Rex > 0.

It follows from these relations that, for Res ≥ 0 and Rex > 0,∫ ∞
0

e−xτ d[E{e−sSPS(τ)}]−1 = 1+ 1

1− ρ

s

x

1

1− sE{e−xW}/(x(1− ρ))
, (11)

whereW denotes the steady-state waiting-time in theM/G/1 FCFS queue (we will denote its distribution
by W(·)). Formula(11) implies (see[63]) that

E{e−sSPS(τ)} =
[ ∞∑

k=0

sk

k!
αk(τ)

]−1

, (12)
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with α0(τ) := 1,α1(τ) := τ/(1− ρ), and fork ≥ 2,

αk(τ) := k

(1− ρ)k

∫ τ

x=0
(τ − x)k−1W(k−1)∗(x)dx.

In Corollary 3.2 of[63], Eq. (12)is shown to imply that thekth moment of the sojourn-time in theM/G/1
PS queue is finite iff thekth moment of the service requirement is finite. ButEq. (12)is also suitable for
applyingLemma 3.1. With SPS the steady-state sojourn-time in theM/G/1 PS queue, and using the fact
thatE{e−sSPS} = ∫∞

0 E{e−sS(τ)}dB(τ), it can be shown[63] that, for 1< ν < 2,

E{e−sSPS} − β

{
s

1− ρ

}
= o

(
sνL

(
1

s

))
, s ↓ 0, s real.

One can now applyLemma 3.1. Using the well-known fact thatE{SPS} = β/(1− ρ), it is seen that
Theorem 2.2holds for 1< ν < 2 (and via a similar approach it is shown in[63] that this holds for all
non-integerν > 1). In fact, a two-way application ofLemma 3.1yields (cf.[63]): for non-integerν > 1,
x→∞,

P{B > x} ∼ x−νL(x) ⇔ P{SPS > x} ∼ 1

(1− ρ)ν
x−νL(x).

(iii) TheM/G/1 LCFS-PR queue. As observed inSection 2, the sojourn-time in theM/G/1 LCFS-PR
queue has the same distribution as the busy-period in theM/G/1 queue. De Meyer and Teugels[43] have
studied the tail of the latter distribution in the case of a regularly varying service requirement distribution.
Their starting-point is the fact that the LSTµ{s} of the steady-state busy-period lengthP is the unique
solution of the equation

µ{s} = β{s+ λ(1− µ{s})} (13)

with |µ{s}| ≤ 1 for Res ≥ 0. They applyLemma 3.1to show the following equivalence: forν > 1,
x→∞,

P{B > x} ∼ x−νL(x) ⇔ P{P > x} ∼ 1

(1− ρ)ν+1
x−νL(x). (14)

Hence, the tail of the busy-period distribution is just as heavy as that of the service requirement distribution.
Theorem 2.3immediately follows from(14).

(iv) The M/G/1 LCFS-NP queue. Let WLNP denote the steady-state waiting-time in theM/G/1
LCFS-NP queue. The following is observed in[26, p. 431]. If an arriving customer in theM/G/1
LCFS-NP queue meets a customer in service with a residual service requirementw, then its waiting-time
distribution is that of a busy-period with a special first service requirementw. That residual service re-
quirement has distributionBr(·) with LSTβr{s} as introduced in the beginning of this section[26, p. 432].
It is now readily seen (cf., e.g.,[27, p. 299]) that

E{e−sWLNP} = 1− ρ + ρβr{δ{s}}, Res ≥ 0, (15)

with δ{s} the unique zero in Res ≥ 0 of λ(1 − β{w}) − w + s, Rew ≥ 0. In fact, cf.(13), δ{s} =
s+ λ(1− µ{s}). In combination with(15), this gives an alternative derivation of Eq. (III.3.10) of[26]:

E{e−sWLNP} = 1− ρ + ρ

β

1− µ{s}
s+ λ(1− µ{s}) , Res ≥ 0. (16)
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Using Lemma 3.1, we can now easily verify that the tail ofWLNP is regularly varying of degree one
heavier than the tail of the service requirement (as may be expected in view of the possibility of having
to wait at least a residual service requirement). If(8) and hence also(10) hold, then it follows from(14)
andLemma 3.1that

1− µ{s} − β

1− ρ
s ∼ − Γ(1− ν)

(1− ρ)ν+1
sνL

(
1

s

)
, s ↓ 0, (17)

and therefore

1− E{e−sWLNP} ∼ − λΓ(1− ν)

(1− ρ)ν−1
sν−1L

(
1

s

)
, s ↓ 0. (18)

On the other hand, starting from(18) and using(16), one gets(17). Application ofLemma 3.1and(14)
now yields: forν > 1, x→∞,

P{B > x} ∼ x−νL(x) ⇔ P{WLNP > x} ∼ λ

(ν − 1)(1− ρ)ν−1
x1−νL(x).

Both relations implyTheorem 2.4.

3.2. The multi-class case

In this section we consider theM/G/1 queue withK classes of customers. We study several of the most
important service disciplines, rules that specify at any time which class of customers is being served. We
are interested in the question under what conditions, or to what extent, the tail behavior of the service
requirements of one class affects the performance of other classes.

The notation is as introduced inSection 2, but quantities relating to class-i customers receive an indexi.
Hence, class-i customers arrive according to a Poisson process with rateλi, and their service requirements
have distributionBi(·) with meanβi; ρi := λiβi andρ :=∑K

i=1 ρi.
(i) Fixed priorities: Non-Preemptive priority. Assume that there are only two priority classes, class 1

having Non-Preemptive priority over class 2. Cohen[26, Section III.3.8]gives the following expressions
for the LST of the distribution of the steady-state waiting-timeW1 of class-1 customers:

E{e−sW1} = 1− ρ + ρ2β
r
2{s}

1− ρ1β
r
1{s}

, Res ≥ 0, ρ < 1, (19)

E{e−sW1} = (1− ρ1)β
r
2{s}

1− ρ1β
r
1{s}

, Res ≥ 0, ρ1 < 1, ρ ≥ 1. (20)

In both cases,Lemma 3.1can readily be applied to determine the tail behavior of the waiting-time
distribution. Actually, this is one of the rare cases in which the LST can be easily inverted. Forρ < 1
this gives (Br

1,i has the residual service requirement distributionBr
1(·), andBr

2 has the residual service
requirement distributionBr

2(·)), with=d denoting equality in distribution,

W1
d=Br

1,1+ · · · + Br
1,N + Z,

whereN is geometrically distributed with parameterρ1 whileZ is zero with probability(1−ρ)/(1−ρ1)

andZ = Br
2 with probabilityρ2/(1− ρ1). Forρ1 < 1 butρ ≥ 1, inversion of the LST in(20)yields:

W1
d=Br

1,1+ · · · + Br
1,N + Br

2.
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These results imply the following. If the service requirement distribution with the heaviest tail is regularly
varying at infinity of index−ν, then the waiting-time distribution of the high-priority customers is
regularly varying at infinity of index 1− ν. More specifically: if the heaviest tail belongs to class 1, then
the waiting-time tail of class-1 customers is as if no class 2 exists. If the heaviest tail belongs to class 2,
then the waiting-time tail of class-1 customers behaves like the tail of a residual service requirement of
class 2 ifρ1 < 1 andρ ≥ 1, and like that tail multiplied by the factorρ2/(1− ρ1) if ρ < 1.

For class 2 the following result has been proven in[21]. If the service requirement distribution with
the heaviest tail is regularly varying at infinity of index−ν, then the waiting-time distribution of the
low-priority customers is regularly varying at infinity of index 1− ν. This is proven by exploiting a
representation for the LST of that waiting-time distribution, as given by Abate and Whitt[2], and then
usingLemma 3.1. The result is not surprising, when one realizes that a low-priority customer may have to
wait for a residual service requirement of either class. See[21] for more details. Alternative approaches
to this model may be found inSections 5 and 6.

(ii) Fixed priorities: Preemptive-Resume priority. First assume that there are only two priority classes,
class 1 having Preemptive-Resume priority over class 2. Clearly, class-1 customers are not affected by
class-2 customers, so the results ofSection 3.1(for FCFS) apply to class 1. The waiting-time distribution
of the low-priority customersuntil the start of the—possibly interrupted—serviceis the same as in the
Non-Preemptive case. Those possible interruptions consist of full service requirements of high-priority
customers, and in the regularly varying case these are less heavy thanresidualservice requirements of
those customers. Hence, in the scenario of regular variation, the tail behavior of low-priority customers
is the same as in the Non-Preemptive case.

If there areK > 2 classes, then in studying classj one may aggregate classes 1, . . . , j − 1 into one
high-priority class w.r.t. classj, while the existence of classesj + 1, . . . , K is irrelevant for classj.

(iii) Polling. Deng[31] has considered the extension of the two-class Non-Preemptive priority model to
the case in which the server requires a switchover time to move from one class of customers to the other.
She proves: if the service requirement distributionor the switchover-time distributionwith the heaviest
tail is regularly varying at infinity of index−ν, then the waiting-time distributions of both classes are
regularly varying at infinity of index 1− ν. Again the key of the derivation is an explicit expression for
the LST of the waiting-time distributions, in combination withLemma 3.1.

The above two-class model may also be viewed as apolling model with two queuesQ1, Q2 and a
server who alternatingly visits both queues, servingQ1 exhaustively (i.e., until it is empty) and applying
the 1-limited service discipline atQ2 (i.e., serving one customer, if there is one, and then moving on to
the other queue). In[22] a polling model withK queues has been studied, with the exhaustive or gated
service discipline being employed at the various queues. In a similar way, the same conclusions as above
have been obtained.

(iv) Processor sharing with several customer classes. In the multi-class disciplines that were discussed
above, the worst tail behavior of any class determined the waiting-time tail behavior of all classes (except
for high-priority customers in the case of Preemptive-Resume priority). Processor sharing turns out to
be better capable of protecting customer classes from the bad behavior of other classes. Zwart[59]
showed that the sojourn-time distribution of a class-i customer is regularly varying of index−νi iff the
service requirement distribution of that class is regularly varying of index−νi, regardlessof the service
requirement distributions of the other classes. His method again relied onLemma 3.1.

(v) Generalized processor sharing. The generalized processor sharing (GPS) discipline operates as
follows [50]. Customer classi is assigned a weightφi, i = 1, . . . , K, with

∑K
i=1 φi = 1. If customers of
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all classes are present, then one customer from each class is served simultaneously (processor sharing),
a class-i customer receiving a fractionφi of the server capacity. If only some of the classes are present,
then the service capacity is shared in proportion to the weightsφi among the head-of-the-line customers
of those classes.

GPS-based scheduling algorithms, such as Weighted Fair Queueing, play a major role in achieving
differentiated quality-of-service in integrated-services networks. Hence, it is important to study the extent
to which GPS is capable of protecting one class of customers from the adverse effects of bad traffic
characteristics of other classes. Unfortunately, the queueing analysis of GPS is very difficult. A slightly
more general model forK = 2 is the model with two parallelM/G/1 queues with service speeds
depending on whether the other queue is empty or not. For general service requirement distributions,
the joint distribution of the amounts of work of both classes has been obtained in[27] by solving a
Wiener–Hopf problem (see[32,40] for the case of exponential service requirement distributions). The
results of[27] have been exploited in[13,17,18]. In those papers, service requirements atQ1 are either
exponential or regularly varying; atQ2 they are regularly varying. Whether the service requirement tail
behavior atQ2 affects the workload tail atQ1 is shown to depend crucially on whether or notQ1 is
able to handle all its offered work by working at the low speed that occurs whileQ2 is non-empty (i.e.,
whether or notρ1 < φ1). The method employed in[13,17,18]starts from a, complicated, expression for
the workload LST. In some casesLemma 3.1is applicable, but in other cases an extension of this lemma
must be used. ForK ≥ 3 coupled queues, respectively, for GPS withK ≥ 3 classes, no explicit results
are known. However, the sample-path techniques discussed inSection 5have proven useful in obtaining
tail asymptotics for an arbitrary number of classes[14].

4. Tail equivalence via conditional moments

With heavy-tailed distributions, it is often the case that large occurrences of the variable of interest
(e.g., a customer’s waiting-time or sojourn-time) are essentially caused by asinglelarge occurrence of
one input variable (e.g., a service requirement). In this section we describe a generic approach that may be
used to prove that the tails of the distributions of thecausal variableand theresultantvariable areequally
heavy. Specifically, we say that two non-negative random variablesX andY have equally heavy-tailed
distributions ifP{Y > ḡx} ∼ P{X > x} for some constant̄g > 0. In the examples below, a customer’s
own service requirement (denoted byB) or the residualservice requirement of some other customer
(denoted byBr) will play the role of the causal variableX and the customer’s sojourn-time (denoted
by S) that of the resultantY . In order to explicitly express the dependence of the sojourn-time on the
(residual) service requirement, we useS(τ) to denote a customer’s sojourn-timegiventhat the (residual)
service requirement equalsτ. Consequently, we may alternatively writeS(B) or S(Br) (depending on the
causal variable) for the unconditional sojourn-timeS.

Theorem 4.1relates the tails of the distributions ofS and the causal variableX (later replaced with
eitherB or Br). We make two assumptions: one regarding the distribution of the causal variable and one
regardingS(τ).

Assumption 4.1. P{X > ·} ∈ R−α for someα > 0.

This assumption can be relaxed to distributions ofintermediate regular variation, a class introduced
by Cline[29], without invalidatingTheorem 4.1, see[47].
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Assumption 4.2. The following three conditions are satisfied:

(a) E{S(τ)} ∼ ḡτ, for someḡ > 0;
(b) With α as inAssumption 4.1, there existsκ > α such that

P{S(τ)− E{S(τ)} > t} ≤ h(τ)

tκ

with h(τ) = o(τκ−δ), τ →∞, for someδ > 0;
(c) S(τ) is stochastically increasing inτ ≥ 0, i.e., for all t ≥ 0, the probabilityP{S(τ) > t} is

non-decreasing inτ ≥ 0.

Theorem 4.1. Suppose Assumptions4.1 and4.2 are satisfied. Then the tails of the distributions of the
random variablesX andS(X) are equally heavy in the sense that:

P{S(X) > ḡx} ∼ P{X > x}.
In particular, the distribution ofS(X) is also regularly varying with the same index−α as that ofX.

Proof. We only give a sketch of the proof and refer to[47] for details. The proof consists of two parts.
For the first part we write, withε > 0,

P{S(X) > ḡx} ≤ P{S(X) > ḡx;X ≤ x(1− ε)} + P{X > x(1− ε)}. (21)

By conditioning onX and integrating over the distribution ofX, it can be shown (usingAssumptions
4.1 and 4.2) that

P{S(X) > ḡx;X ≤ x(1− ε)} = o(P{X > x(1− ε)}), x→∞. (22)

Hence, we may neglect the first term on the right-hand side of(21)and write

lim sup
x→∞

P{S(X) > ḡx}
P{X > x} ≤ lim sup

x→∞
P{X > x(1− ε)}

P{X > x} = (1− ε)−α.

Letting ε ↓ 0, the right-hand side tends to 1.
For the second part of the proof we write, forε > 0,

P{S(X) > ḡx} ≥ P{S(X) > ḡx;X > x(1+ ε)}.
By conditioning again onX, it can be shown that

lim
x→∞

P{S(X) > ḡx;X > x(1+ ε)}
P{X > x(1+ ε)} = 1. (23)

Hence,

lim inf
x→∞

P{S(X) > ḡx}
P{X > x} ≥ lim inf

x→∞
P{X > x(1+ ε)}

P{X > x} = (1+ ε)−α.

Again, the right-hand side tends to 1 asε ↓ 0. �

Remark 4.1. Formulas(22) and (23)in fact allow us to prove the stronger statement that essentiallyX

andS(X) can only ‘simultaneously exceed’ the valuesx andḡx, respectively, forx→∞.
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We will employ Theorem 4.1to show for several queueing models that the tail of the sojourn-time
distribution is as heavy as that of the (residual) service requirement distribution. Assuming that the service
requirement distribution is regularly varying, it suffices to verify thatS(τ), the sojourn-time conditioned
on the (residual) service requirement, satisfiesAssumption 4.2. Parts (a) and (c) ofAssumption 4.2are
often not hard to verify. We will use the following variant of Markov’s inequality to verify part (b):

P{S(τ) > t} ≤ E{S(τ)κ} − (E{S(τ)})κ
(t − E{S(τ)})κ , τ ≥ 0, t > E{S(τ)}, (24)

whereκ ≥ 2. In [47] Markov’s inequality itself was used, but for the analysis of theM/G/1 LCFS-NP
below, the form of(24) is more convenient. To see that this inequality holds, letc(y), y ≥ 0, be a convex
function with a convex derivativec′(y) andc(0) = c′(0) = 0. If Y is a non-negative random variable and
t ≥ E{Y}, then

c(Y)− c(E{Y})− c′(E{Y})(Y − E{Y}) ≥ 1{Y>t}c(t − E{Y}),
where1{·} denotes the indicator function. Taking expectations with respect to the distribution ofY , we
obtain

E{c(Y)} − c(E{Y}) ≥ P{Y > t}c(t − E{Y}).
Choosingc(y) = yκ, with κ ≥ 2, leads to the desired result.

The strength of the method described here is that it does not rely on the availability of the LST for the
sojourn-time distribution. In particular, the method’s flexibility was demonstrated in[45] where it was
employed in the analysis of anM/G/1 PS queue with random service interruptions (for that model even
basic performance measures such as mean queue length are not available). A limitation of the method
is that it relies on the fact that an extreme occurrence of the performance measure of interest (e.g., the
sojourn-time) is essentially caused by the occurrence ofa singleextreme input variable.

(i) TheM/G/1 PS queue. Consider again theM/G/1 PS queue described inSection 2. In this section
SPS(τ) will stand for the sojourn-time of a customer with service requirementτ ≥ 0, arriving when the
system has reached steady-state. As before, the unconditional sojourn-time will be denoted bySPS, i.e.,
SPS= SPS(B), where the random variableB stands for the customer’s service requirement. We first list
some known results for the moments ofSPS(τ). Then we will use these to verifyAssumption 4.2and
subsequently applyTheorem 4.1.

It is well-known [38,53] that the mean of the conditional sojourn-time is proportional to the service
requirement

E{SPS(τ)} = τ

1− ρ
. (25)

The variance ofSPS(τ) is given by

Var{SPS(τ)} = 2

(1− ρ)2

∫ τ

u=0
(τ − u)P{W > u}du, (26)

cf. [57]. As before,W is distributed as the steady-state waiting-time in theM/G/1 queue. When the
second moment of the service requirement distribution is finite, we have fork = 2,3, . . . , cf. [63],

E{SPS(τ)
k} =

(
τ

1− ρ

)k

+ λk(k − 1)E{B2}
2(1− ρ)k+1

τk−1+ o(τk−1), τ →∞. (27)
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In the literature these results have mostly been obtained from expressions for the LST ofSPS(τ). However,
(25)–(27)can be obtained directly from a set of differential equations instead of deriving the LST ofSPS(τ),
see[57, Remark 3]for an outline of how this can be done for the variance ofSPS(τ), and[45,46]for higher
moments. Later in this section we use similar ideas to derive differential equations for the moments of
the conditional sojourn-time in theM/G/1 LCFS-NP.

We now provide a new proof ofTheorem 2.2. As before, we assume thatB(·) ∈ R−ν. We further
require thatν �= 2; in [47] it is indicated how this technical condition can be avoided. Focusing on the
sojourn-time of a particular customer, its own service requirementB will act as the causal variableX,
i.e., in the light ofAssumption 4.1we chooseα = ν. We now verify thatAssumption 4.2is automatically
satisfied. First we note that the monotonicity ofP{SPS(τ) > t} in τ, the last condition inAssumption 4.2, is
easily verified using a sample-path argument: comparing the sojourn-times of two customers, for the same
sequences of inter-arrival times and service requirements of other customers, it follows immediately that
the one requiring the smaller amount of service leaves before the one with the larger service requirement.
As a consequence of(25), we also have that Condition (a) ofAssumption 4.2holds withḡ = 1/(1− ρ).

We now focus on Condition (b) and first consider the case thatν > 2, ensuring thatE{B2} < ∞.
Choose any integerκ > ν and use(27) to conclude that Condition (b) is satisfied for anyδ ∈ (0,1).
Hence,Theorem 4.1can be applied.

In the case that 1< ν < 2, it follows from (26) that Var{SPS(τ)} = o(τ3−ν+ε) for all ε > 0. Thus,
Assumption 4.2is satisfied (withκ = 2 and 0< δ < ν − 1) and, hence,Theorem 4.1can again be
applied. In both cases we conclude that, cf.Theorem 2.2,

P
{
SPS >

x

1− ρ

}
∼ P{B > x}.

(ii) TheM/G/1 LCFS-NP queue. In the LCFS-NP case we focus on the sojourn-time,SLNP(τ), of a
tagged customer entering the system when theremainingservice requirement of the customer in service
equalsτ. Because of the service discipline, if there are any customers in the queue, these are overtaken
by the new customer and they will have no influence onSLNP(τ), which we may write as

SLNP(τ) = τ +
N(τ)∑
n=1

Pn + B,

where, by convention, we set the empty sum equal to 0.N(τ) denotes the number of customers that enter
the system during the remaining service requirementτ of the customer in service.Pn, n = 1,2, . . . , is an
i.i.d. sequence having the distribution of the busy-period in theM/G/1 queue. Indeed, all customers that
enter during the timeτ overtake the tagged customer, and the same holds for the customers that arrive
during their service time, and so on. Finally,B denotes the tagged customer’s own service requirement. If
there is no customer in service upon arrival, the sojourn-time is just equal to the customer’s own service
requirementB. Note that the probability of arriving to a non-empty system isρ. We thus have forSLNP,
the unconditional sojourn-time of the tagged customer,

P{SLNP ≤ t} = (1− ρ)P{B ≤ t} + ρP{SLNP(B
r) ≤ t}, t ≥ 0. (28)

HereBr denotes the (unconditional) residual service requirement of the customer in service, i.e.,Br has
distributionBr(·), and, hence,

P{SLNP(B
r) ≤ t} =

∫ ∞
τ=0

P{SLNP(τ) ≤ t}dBr(τ), t ≥ 0.
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We now proveTheorem 2.4for non-integerν > 2 (seeRemark 4.2), by showing that ifB(·) ∈ R−ν and,
hence,Br(·) ∈ R−α with α := ν − 1, thenSLNP(τ) satisfiesAssumption 4.2and, byTheorem 4.1,

P
{
SLNP(B

r) >
x

1− ρ

}
∼ P{Br > x}.

Since 1− B(x) = o(1− Br(x)), x→∞, we have, from(28),

P
{
SLNP >

x

1− ρ

}
∼ ρP{Br > x},

in accordance withTheorem 2.4.

Remark 4.2. The case 1< ν < 2 needs special treatment. As we will see below, the approach aims
at verification of Condition (b) ofAssumption 4.2, taking κ equal to the nearest integer larger than
ν − 1, which in this case would beκ = 1. However, forκ < 2 we cannot use(24). It is possi-
ble to verify Condition (b) using different probabilistic arguments which, however, we will not pursue
here.

A different problem occurs whenν is integer-valued. The approach would aim at choosingκ = ν. This
requires thatE{Bν} <∞, which may not be the case. (Recall that in the analysis of theM/G/1 PS queue
we could chooseκ equal to any integer larger thanν.)

In order to verify the conditions inAssumption 4.2, we first derive differential equations for the moments
of SLNP(τ). The random variableP will have the distribution of the busy-period in theM/G/1 queue. We
assume thatm < ν < m+ 1, for some integerm ≥ 2, and thereforeE{Bm} <∞ andE{Pm} <∞.

Remark 4.3. The fact thatE{Pm} < ∞ if and only if E{Bm} < ∞ is a consequence ofTheorem 2.3
(sinceSLPR=dP). Note that this result was proven in[43] using Laplace-Transform techniques (cf.(14)).
The same can be achieved using (probabilistic) sample-path arguments[61].

Conditioning on whether or not an arrival occurs during a time interval of length∆ > 0, we obtain,
for k = 1,2, . . . , m,

E{[SLNP(τ +∆)k]}
= (1− λ∆)E{[(∆+ SLNP(τ))

k]} + λ∆E{[(∆+ SLNP(τ)+ P)k]} + o(∆), ∆→ 0.

Re-arranging terms, dividing by∆, passing∆→ 0 and usingE{P} = β/(1− ρ), we obtain

d

dτ
E{SLNP(τ)

k} = k

1− ρ
E{SLNP(τ)

k−1} + λ

k−2∑
j=0

(
k

j

)
E{SLNP(τ)

j}E{Pk−j}, (29)

with initial conditionE{SLNP(0)k} = E{Bk}. By solving(29) for k = 1 (setting the empty sum equal to
0), it can readily be verified that

E{SLNP(τ)} = β + τ

1− ρ
,
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which shows Condition (a) ofAssumption 4.2is satisfied. Recursively solving(29) for k = 2,3, . . . , m,
leads to the general form

E{SLNP(τ)
k} =

(
τ

1− ρ

)k

+ pk−1(τ), (30)

wherepk−1(τ) denotes a polynomial inτ of degreek − 1. The coefficients of this polynomial can be
obtained recursively by substitution into(29); in particular,pk−1(0) = E{Bk}. Takingκ = m we may
use(24) and (30)to show that Condition (b) ofAssumption 4.2is satisfied (for any 0< δ < 1). Finally,
Condition (c) can again be verified by a sample-path argument similar to that in the analysis of theM/G/1
PS queue.

(iii) TheM/G/1 FBPS queue. With the FBPS discipline, the customers which so far have received the
least amount of service share equally in the total capacity. UsingTheorem 4.1, we will prove that the
sojourn-time tail is just as heavy as the service requirement tail ifB(·) ∈ R−ν with 1 < ν < 2. (Forν ≥ 2
we need to study higher moments of the conditional sojourn-time.)SFB(τ) denotes the sojourn-time of a
customer with service requirementτ. With a straightforward sample-path argument it can be shown that
SFB(τ) is stochastically non-decreasing inτ.

AssumingB(·) is absolutely continuous, the mean and variance of the sojourn-time are given by

E{SFB(τ)} = τ

1− λh1(τ)
+ λh2(τ)

2(1− λh1(τ))2
,

Var{SFB(τ)} = λh3(τ)

3(1− λh1(τ))3
+ λτh2(τ)

(1− λh1(τ))3
+ 3(λh2(τ))

2

4(1− λh1(τ))4
,

cf. [58, Form. (6.2) and (6.3)]. The functionshj(τ), j = 1,2,3, are given by

hj(τ) = j

∫ τ

x=0
xj−1(1− B(x))dx.

These expressions can again be used[47] to prove that, for allε > 0,

E{SFB(τ)} ∼ τ

1− ρ
, Var{SFB(τ)} = o(τ3−ν+ε), τ →∞.

Consequently,Assumption 4.2is implied byAssumption 4.1(choosingκ = 2 and 0< δ < ν − 1) and
we may again applyTheorem 4.1to show thatP{SFB > x/(1− ρ)} ∼ P{B > x}, cf. Theorem 2.5.

(iv) TheM/G/1 SRPTF queue. Now we consider anM/G/1 queue in which the total service capacity
is always allocated to the customer with the shortest remaining processing time (Shortest-Remaining-
Processing-Time-First). The service of a customer is preempted when a new customer arrives with a
service requirement smaller than the remaining service requirement of the customer being served. The
service of the customer that is preempted is resumed as soon as there are no other customers with a smaller
amount of work in the system.

As in theM/G/1 FBPS queue, we restrict ourselves to the caseB(·) ∈ R−ν with 1 < ν < 2. We
further assume thatB(·) is a continuous function, hence, with probability 1, no two customers in the
system have the same remaining service requirement, see[54]. The sojourn-time can be decomposed into
two different periods: the waiting-time (the time until the customer is first taken into service) and the
residence time (the remainder of the sojourn-time). The residence time may contain service preemption
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periods caused by customers with a smaller service requirement. For a customer with service requirement
τ, we denote the waiting-time byW(τ) and the residence time byR(τ). Thus, the sojourn-time is given
by SSR(τ) = W(τ) + R(τ). We defineρ(τ) as the traffic load of customers with an amount of work less
than or equal toτ,

ρ(τ) := λ

∫ τ

t=0
t dB(t).

The first two moments ofW(τ) are given by

E{W(τ)} = λ

∫ τ

t=0 t2 dB(t)+ τ2(1− B(τ))

2(1− ρ(τ))2
,

E{W(τ)2} = λ

∫ τ

t=0 t3 dB(t)+ τ3(1− B(τ))

3(1− ρ(τ))3
+ λ2

∫ τ

t=0
t2 dB(t)

∫ τ

t=0 t2 dB(t)+ τ2(1− B(τ))

(1− ρ(τ))4
,

and the mean and variance ofR(τ) by

E{R(τ)} =
∫ τ

t=0

1

1− ρ(t)
dt, Var{R(τ)} = λ

∫ τ

t=0

∫ t

u=0 u2 dB(u)

(1− ρ(t))3
dt,

cf. [54]. These expressions may again be used[47] to verify that, when 1< ν < 2, Assumption 4.1
impliesAssumption 4.2and, hence,P{SSR > x/(1− ρ)} ∼ P{B > x}, cf. Theorem 2.6.

5. Sample-path techniques

In the present section we describe how sample-path techniques may be used to determine the tail
asymptotics of the delay distribution in theM/G/1 queue for various disciplines. By definition, the tail
distribution of a random variable reflects the occurrence of rare events. Large-deviations theory suggests
that, given that a rare event occurs, it happens with overwhelming probability in the most likely way.
In case light-tailed processes are involved, the most likely path typically consists of an extremely long
sequence of slightly unusual events, which conspire to make the rare event under consideration occur, see
for instance Anantharam[3]. In contrast, for heavy-tailed characteristics, the most likely scenario usually
involves just a single catastrophic event (or generally, a ‘minimal combination’ of disastrous events that
is required to cause the event under consideration to happen). Typically, the scenario entails the arrival
of a customer with an exceedingly large service requirement.

The fact that the most likely scenario usually involves just a single exceptional event, provides a heuristic
method for obtaining the tail asymptotics by simply computing the probability of that scenario occurring.
By way of illustration, we now sketch a heuristic derivation of the tail asymptotics of the workloadV in
theM/G/1 queue as described inSection 2.

Let us focus on the workload in the system at timet = 0. The assumption is that a large workload
level is most likely due to the prior arrival of a customer with a large service requirementB, let us say
at timet = −y. (Of course, this assumption is nothing but an educated guess at this stage. However, it
turns out that this supposition leads to the correct result, and can actually be strengthened into a rigorous
proof, as will be illustrated below.) Note that from timet = −y onward, the workload decreases in a
roughly linear fashion at rate 1− ρ. So in order for the workload at timet = 0 to exceed the levelx, the
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service requirementB must be larger thanx+ y(1− ρ). Observing that customers arrive according to a
Poisson process of rateλ, integrating w.r.t.y, and making the substitutionz = x+y(1−ρ), we obtain, for
largex,

P{V > x} ≈
∫ ∞
y=0

P{B > x+ y(1− ρ)}λdy = λ

1− ρ

∫ ∞
z=x

P{B > z}dz = ρ

1− ρ
P{Br > x}. (31)

With some additional effort, the heuristic derivation can often be made rigorous. The typical approach
consists of deriving lower and upper bounds which asymptotically coincide. It is often relatively straight-
forward to convert the heuristic arguments into a strict lower bound, by simply calculating the probability
of the most likely scenario occurring. The construction of a suitable upper bound tends to be more chal-
lenging. The upper bound usually contains a dominant term, which corresponds to the probability of the
most likely scenario. The main difficulty lies in showing that this scenario is indeed the only plausible
one, in the sense that all other possible sample paths do not significantly contribute. This is done by
grouping all other sample paths into a few events which must then all be shown to have an asymptotically
negligible probability.

Although the above approach is fairly typical, it is hard to describe a universal method that can be
mechanically executed. The identification of the most likely scenario requires some sort of an educated
guess. Besides, categorizing the ‘irrelevant’ sample paths is problem-specific and far from automatic.
The next lemma however characterizes the structure that typically emerges.

Lemma 5.1. Suppose that for anyδ > 0, ε > 0,M > 0,

P{X > x} ≥ F(−δ)P{Y > G(ε)x}
K∏
i=1

P{D−δ,ε
i (x)}, (32)

P{X > x} ≤ F(δ)P{Y > G(−ε)x} +
L∑

j=1

P{Eδ,−ε
j (M, x)}, (33)

P{Y > x} is regularly varying of index−ν, limδ→0F(δ) = F , limε→0G(ε) = G, P{D−δ,ε
i (x)} → 1 as

x→∞, and

lim
M→∞

lim sup
x→∞

P{Eδ,−ε
j (M, x)}

P{Y > Gx} = 0. (34)

Then

P{X > x} ∼ FP{Y > Gx}.

Proof. The proof is straightforward. Relying on the lower bound(32)and the fact thatP{D−δ,ε
i (x)} → 1

asx→∞, we obtain

lim inf
x→∞

P{X > x}
FP{Y > Gx} ≥

F(−δ)

F
lim inf
x→∞

P{Y > G(ε)x}
P{Y > Gx} .

Letting δ, ε ↓ 0, and recalling thatP{Y > x} is regularly varying, we find

lim inf
x→∞

P{X > x}
FP{Y > Gx} ≥ 1.
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Similarly, using the upper bound(33) and (34), and observing thatP{Y > x} is regularly varying of index
−ν, we deduce

lim sup
x→∞

P{X > x}
FP{Y > Gx} ≤

F(δ)

F
lim sup
x→∞

P{Y > G(−ε)x}
P{Y > Gx} .

Letting δ, ε ↓ 0, we conclude

lim sup
x→∞

P{X > x}
FP{Y > Gx} ≤ 1. �

It is worth observing that, like inSection 4, the above proof technique in fact allows for intermediately
regularly varying distributions.

The eventsEδ,−ε
j (M, x) may be interpreted as events leading to{X > x}, other than the ‘typical’ event.

Often,Eδ,−ε
j (M, x) is independent ofM and has the simpler propertyP{Eδ,−ε

j } = o(P{Y > Gx}) as
x→∞. Sometimes,M is required as an additional auxiliary parameter.

As a ‘toy example’, we now sketch how the above lemma may be used to strengthen the heuristic
derivation of(31) into a rigorous proof. The approach is similar as outlined in Chapter 2 of Zwart[60].
We use the time-reversed sample-path representation

V
d= sup

t≥0
{A(0, t)− t} (35)

with A(0, t) denoting the amount of work arriving in the time interval(0, t).
Our ‘educated guess’ is that(31)provides, indeed, the correct asymptotics.
We first construct a lower bound of the form(32). For anyc < ρ, defineUc := supt≥0{ct− A(0, t)}.

For anyδ > 0, ε > 0,

P{V > x} ≥
∫ ∞
y=0

P{A(0, y)+ B − y > x}λdy

≥ λ

∫ ∞
y=0

P{A(0, y)− y(ρ − δ) ≥ −εx}P{B > x(1+ ε)+ y(1− ρ + δ)}dy

≥ P
{

inf
u≥0
{A(0, u)− u(ρ − δ)} ≥ −εx

}
λ

∫ ∞
y=0

P{B > x(1+ ε)+ y(1− ρ + δ)}dy

= ρ

1− ρ + δ
P{Br > x(1+ ε)}P{Uρ−δ ≤ εx}.

Note thatP{Uρ−δ ≤ εx} → 1 asx→∞ because of the law of large numbers.
We now proceed to derive an upper bound of the form(33). For any intervalI ⊆ R

+, defineV(I) :=
supt∈I{A(0, t)− t}. For anyy ≥ 0, letNy(I) be the number of customers arriving during the time interval
I whose service requirement exceeds the valuey. Then, for allM ≥ 0,

P{V > x} ≤ P{V([0,Mx]) > x} + P{V((Mx,∞)) > x}
= P{V([0,Mx]) > x;Nεx([0,Mx]) = 0} + P{V([0,Mx]) > x;Nεx([0,Mx]) = 1}
+P{V([0,Mx]) > x;Nεx([0,Mx]) ≥ 2} + P{V((Mx,∞)) > x}.
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The second term corresponds to the only plausible scenario and is dominant. Letτ(ε, x) be the arrival
time of the large customer. As indicated in Section 2.4 of[60] (see also[62]), it may be shown that for
anyδ > 0, ε > 0, asx→∞,

P{V([0,Mx]) > x;Nεx([0,Mx]) = 1}
≤ P{A(0, τ(ε, x)−) ≤ (ρ + δ)τ(ε, x);A(0, τ(ε, x))− τ(ε, x) ≥ (1− δ)x} + o(P{Br > x})
≤

∫ ∞
y=0

P{B > x(1− ε)+ y(1− ρ − 2δ)}λdy + o(P{Br > x})

= ρ

1− ρ − 2δ
P{Br > x(1− ε)} + o(P{Br > x}).

Applying Lemma 5.1completes the proof, once we have shown that each of the other three terms can
asymptotically be neglected.

For the first term, one may exploit a powerful lemma of Resnick and Samorodnitsky[52] to show that
for anyµ > 0 there exists anε > 0 such that

P{V([0,Mx]) > x;Nεx([0,Mx]) = 0} = o(x−µ)

asx→∞. The idea is that when there are no large service requirements, the process{A(0, t)− t} cannot
significantly deviate from its normal drift over long intervals of the orderx, so that the workload cannot
reach a large level.

In order to control the third term, using the Poisson structure of the arrival process, it can be shown
thatP{Nεx([0,Mx]) ≥ 2} = o(P{Br > x}) asx→∞. In words, this means that the probability of two
large service requirements occurring in a time interval of orderx is asymptotically negligible compared
to that of just one large service requirement.

Finally, for the fourth term, we use the upper bound (for someδ > 0)

P{V((Mx,∞)) > x} ≤ 2P{V 1−2δ > δMx}, (36)

with V 1−2δ the steady-state workload in anM/G/1 queue with a server working at speed 1− 2δ, see
p. 197 of[60] for a similar statement. The right-hand side in(36)can be upper bounded by using a result
(obtained from first principles) of Mikosch[44]:

P{V 1−2δ > x} ≤ (Cδ + o(1))P{Br > x}. (37)

This implies, using the previously derived lower bound and the upper bounds(36) and (37),

lim
M→∞

lim sup
x→∞

P{V((Mx,∞)) > x}
P{V > x} = 0.

This result indicates that overflow of a level of orderx must occur ‘in linear time’, since otherwise the
process{A(0, t)− t} must deviate from its normal drift for a prohibitively long period of time.

The above proof exploits and confirms the large deviations notion that a large workload level is typically
due to a single large service requirement by implicitly characterizing the most likely sample path. In the
literature, similar statements have been proven by Asmussen and Klüppelberg[6], and Baccelli and Foss
[9]. We note that the results in these papers rely on the fact that the workload asymptotics were already
available, unlike the proof given here which provides both the asymptotics and the ‘single big jump’
result together.
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Nevertheless, we emphasize that we used the above proof technique for illustration purposes only.
The machinery is unnecessarily heavy for determining the workload asymptotics in the ordinaryM/G/1
queue, for which simpler methods are available (seeSections 3 and 6). The true merits of the methodology
become manifest in more complicated systems, such as fluid queues or GPS models, where typically no
useful expression for the LST is available[14,19,62].

5.1. The single-class case

We now turn the attention to the tail asymptotics of the delay distribution in theM/G/1 queue. In
contrast to the workload distribution, the delay distributiondoesstrongly depend on the service discipline
that is used.

(i) TheM/G/1 FCFS queue. For FCFS, the waiting-time is simply equal to the workload at the time
of arrival. Because of the PASTA property, it then follows from(31) that:

P{WFCFS> x} ∼ ρ

1− ρ
P{Br > x},

which agrees withTheorem 2.1.
(ii) TheM/G/1 LCFS-NP queue. For LCFS Non-Preemptive priority, the waiting-time is equal to 0

with probability 1− ρ, and with probabilityρ it is equal to a busy-period starting with a residual service
requirement, which gives

P{WLNP > x} ∼ ρP{Br > x(1− ρ)}, (38)

as asserted inTheorem 2.4.
A heuristic derivation of the above formula proceeds as follows. Consider a tagged customer arriving

at timet = 0. The assumption is that a long waiting-time is most likely due to a large service requirement
B of the customer in service, if any. The waiting-timeW of the tagged customer then consists of the
remaining service requirement,B − y, plus the amount of work arriving during its own waiting-time,
which is approximatelyρW , so thatW ≈ B−y+ρW , or equivalently,W ≈ (B−y)/(1−ρ). So in order
for the waiting-time to exceed the valuex, the service requirementB must be larger thany + x(1− ρ).
Thus, observing that arrivals occur as a Poisson process of rateλ, and integrating w.r.t.y, we find, for
largex,

P{WLNP > x} ≈
∫ ∞
y=0

P{B > x(1− ρ)+ y}λdy = ρP{Br > x(1− ρ)},

which is in agreement with(38). The above heuristic derivation may be translated into a rigorous proof
in a similar fashion as indicated for the workload asymptotics.

(iii) TheM/G/1 LCFS-PR queue. For LCFS Preemptive-Resume, the sojourn-time is simply equal to
the busy-period, yielding

P{SLPR > x} ∼ 1

1− ρ
P{B > x(1− ρ)},

as stated inTheorem 2.3. A sample-path proof of the tail asymptotics of the busy-period distribution may
be found in[61].
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(iv) TheM/G/1 PS queue. We now turn to the tail asymptotics of the sojourn-time for the Processor-
Sharing discipline. Consider a tagged customer arriving at timet = 0. The sojourn-timeS of the tagged
customer consists of its own service requirementB plus the amount of service provided to other customers
during its sojourn-time. In case of a long sojourn-time, the amount of service received by other customers
will be approximatelyρS, so thatS ≈ B + ρS, or equivalently,S ≈ B/(1− ρ). The assumption is thus
that a long sojourn-time is most likely due to a large service requirement of the tagged customer itself,
suggesting that, for largex,

P{SPS > x} ∼ P{B > x(1− ρ)}, (39)

which corroborates withTheorem 2.2.
We now show how the above rough derivation may be used as the basis for a rigorous proof of(39)

using lower and upper bounds along the lines ofLemma 5.1. The proof is similar to that in[34]. Let B0

andS0 be the service requirement and the sojourn-time, respectively, of a tagged customer arriving at
time t = 0. LetBi andTi denote the service requirement and the arrival time of theith customer arriving
after timet = 0. LetL(0) be the number of customers in the system just before timet = 0, and letBr

l

denote the remaining service requirement of thelth customer. We use the sample-path representation

S0 = B0+
L(0)∑
l=1

min{Br
l , B0} +

N((0,S0))∑
i=1

min{Bi, R0(Ti)}, (40)

with N((0, t)) denoting the number of customers arriving during the time interval(0, t), and withR0(t)

representing the remaining service requirement of the tagged customer at timet.
The next lemma presents a lower bound for the sojourn-time of the tagged customer. DenoteZ(t) :=∑N((0,t))
i=1 max{Bi − R0(Ti),0}.

Lemma 5.2. For anyδ > 0,

S0(1− ρ + δ) ≥ B0− Uρ−δ − Z(S0).

Proof. Using the representation(40), we have

S0(1− ρ + δ) = B0+
L(0)∑
l=1

min{Br
l , B0} +

N((0,S0))∑
i=1

min{Bi, R0(Ti)} − (ρ − δ)S0

≥ B0+
N((0,S0))∑

i=1

Bi − (ρ − δ)S0+
N((0,S0))∑

i=1

min{Bi, R0(Ti)} −
N((0,S0))∑

i=1

Bi

= B0+ A(0, S0)− (ρ − δ)S0+
N((0,S0))∑

i=1

min{R0(Ti)− Bi,0}

≥ B0+ inf
t≥0
{A(0, t)− (ρ − δ)t} −

N((0,S0))∑
i=1

max{Bi − R0(Ti),0}

= B0− Uρ−δ − Z(S0). �
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The next lemma provides an upper bound for the sojourn-time of the tagged customer. For anyy > 0,
let Ay(0, t) be a version of the processA(0, t) where all service requirements of arriving customers are
truncated at the levely. For anyc > ρ, defineVc

y := supt≥0{Ay(0, t)− ct}.

Lemma 5.3. For anyδ > 0,

(1− ρ − δ)S0 ≤ B̂0+ V
ρ+δ
B0

,

with B̂0 := B0+
∑L(0)

l=1 min{Br
l , B0}.

Proof. Using the representation(40),

S0(1− ρ − δ) = B0+
L(0)∑
l=1

min{Br
l , B0} +

N((0,S0))∑
i=1

min{Bi, R0(Ti)} − (ρ + δ)S0

≤ B̂0+
N((0,S0))∑

i=1

min{Bi, B0} − (ρ + δ)S0

= B̂0+ AB0(0, S0)− (ρ + δ)S0 ≤ B̂0+ sup
t≥0
{AB0(0, t)− (ρ + δ)t}

= B̂0+ V
ρ+δ
B0

. �

The above two lemmas provide the necessary ingredients for the proof of(39) along the lines of
Lemma 5.1.

Proof of Theorem 2.2. Lower bound. UsingLemma 5.2, noting thatS0 ≥ B0, we obtain

P{SPS > x} ≥ P{B0− Uρ−δ − Z(S0) > (1− ρ + δ)x}
≥ P{B0 > (1− ρ + δ+ 2ε)x}P{Uρ−δ ≤ εx} inf

y≥(1−ρ+δ+2ε)x
P{Z(y) > εx}.

Because of the law of large numbers,P{Uρ−δ ≤ εx} → 1 asx→∞. As observed in[34], inf y≥(1−ρ+δ+2ε)x

P{Z(y) > εx} → 1 asx→∞.
Upper bound. UsingLemma 5.3, we find

P{SPS > x} ≤ P{B̂0+ V
ρ+δ
B0

> (1− ρ − δ)x} ≤ P{B̂0 > (1− ρ − δ− ε)x} + P{Vρ+δ
B0

> εx}.

As demonstrated in[34], P{Vρ+δ
B0

> εx} = o(P{B > x}) asx→∞, andP{B̂0 > x} ∼ P{B > x}.
InvokingLemma 5.1then completes the proof. �

5.2. The multi-class case

We now consider the tail asymptotics of the waiting-time in the multi-classM/G/1 queue with priorities
as described inSection 3.2. We focus on the case of a Non-Preemptive priority discipline. As mentioned
in Section 3.2, the tail asymptotics in the case of a Preemptive-Resume policy immediately follow from
the results for a high-priority class in isolation and a low-priority class in the Non-Preemptive priority
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scenario. We assume that the service requirement distribution of at least one of the classes has a regularly
varying tail. LetM be the index set of the classes with the ‘heaviest’ tail.

Consider a tagged class-k customer arriving at timet = 0. The assumption is that a long waiting-time
is typically due to the prior arrival of a customer with a large service requirementB, let us say at time
t = −y, which may belong to any of the classesm ∈ M. Of course, how likely it is for the culprit
customer to belong to a given classm ∈M depends on the arrival rates and mean service requirements
of the various classes. Due to the Non-Preemptive priority policy, the identity of the culprit customer is
not of any relevance for the impact on the tagged customer. However, the effect does strongly depend on
the identity of the tagged customer itself. For compactness, denoteσk =

∑k
l=1 ρl. Note that from time

t = −y onward, the amount of work in the system that has precedence over the service of the tagged
customer decreases in a roughly linear fashion at rate 1− σk. In addition, the tagged customer must wait
for the amount of work arriving during its own waiting-timeWk from higher-priority classes at rateσk−1.
Thus,Wk ≈ B− y(1− σk)+Wkσk−1. So in order for the waiting-time of the tagged customer to exceed
the valuex, the service requirementB must be larger thanx(1 − σk−1) + y(1 − σk). Observing that
class-m customers arrive as a Poisson process of rateλm, integrating w.r.t.y, and making the substitution
z = x(1− σk−1)+ y(1− σk), we obtain, for largex,

P{Wk > x} ≈
∑
m∈M

∫ ∞
y=0

P{Bm > x(1− σk−1)+ y(1− σk)}λm dy

=
∑
m∈M

ρm

1− σk

P{Br
m > x(1− σk−1)}. (41)

6. Subexponential asymptotics and random sums

In this section, we relax the assumption of a regularly varying distribution function, and focus on the
more general case of theM/G/1 queue with asubexponentialservice requirement distribution. The class
of subexponential distributions is defined as follows.

Definition 6.1. A distribution functionF(x) = P{X ≤ x} is subexponential (F(·) ∈ S) if

P{X1+ · · · +Xn > x} ∼ nP{X1 > x},
for anyn ≥ 2, withX1, . . . , Xn i.i.d. copies ofX.

Sometimes, the random variableX (rather than its distribution functionF(·)) is called subexponential.
Subexponential distributions have been introduced by Chistyakov[28]. Note that subexponentiality is
equivalent to

P{X1+ · · · +Xn > x} ∼ P{maxi=1,...,nXi > x}.
Thus, large values of sums of subexponential random variables have the appealing property that they are
dominated by their largest term.

As mentioned earlier, the class of subexponential distributions is larger than the class of regularly
varying distributions. Examples of subexponential distributions which are not regularly varying, are the
lognormal distribution and Weibull distributions with tails of the form e−xβ

, 0 < β < 1.
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In extending results from the regularly varying case to the subexponential case, one faces several
difficulties. First of all, there is no characterization of subexponential distribution functions in terms of their
LST, which rules out the techniques ofSection 3. A further complication is that, sometimes, the class seems
too large to work with. Often, one has to invoke additional regularity conditions; see the examples below.

An exception though, is when an explicit expression for the distribution function is available, in particu-
lar when the random variable of interest can be expressed as arandom sum. If a random-sum representation
is not available, one has to resort to refinements of the method given inSection 5; specific references are
given below.

6.1. The single-class case

(i) TheM/G/1 FCFS queue. The geometric structure of the LST given by(7) allows for an explicit
inversion, leading to

P{W > x} = (1− ρ)

∞∑
n=0

ρnP{Br
1+ · · · + Br

n > x}, (42)

which can equivalently be phrased as

W
d=Br

1+ · · · + Br
N, (43)

with N a geometrically distributed random variable with parameterρ. Therefore,(42) is called a (geo-
metric) random-sum representation.

From the definition, it is clear that subexponential random variables are well-suited to analyze random
sums. If one assumes thatBr is subexponential, one obtains

P{W > x} = (1− ρ)

∞∑
n=0

ρnP{Br
1+ · · · + Br

n > x} ∼ (1− ρ)

∞∑
n=0

ρnnP{Br > x}

= ρ

1− ρ
P{Br > x}.

This derivation assumes that interchanging limit and summation is allowed, which is guaranteed by the
following upper bound, due to Kesten (see[7]): if Br is subexponential andε > 0, then there exists a
constantK = Kε such that

P{Br
1+ · · · + Br

n > x} ≤ K(1+ ε)nP{Br
1 > x}.

Now, use this bound withε sufficiently small thatρ(1+ ε) < 1. The validity of the above procedure then
follows from the dominated convergence theorem.

Note that this derivation assumes thatBr (rather thanB itself) is subexponential. The question whether
subexponentiality ofB implies that ofBr is an open problem, but the implication can be shown to hold in
all cases of practical interest. For example, ifB is regularly varying with index−ν, thenBr is regularly
varying with index 1− ν, as shown inSection 3.

The above resultP{W > x} ∼ ρ/(1− ρ)P{Br > x} was first obtained by Pakes[49] for the more
generalGI/G/1 queue (in this more general case, one still has a random-sum representation forW). In
addition, Korshunov[41] established a converse result

Br ∈ S⇔ W ∈ S⇔ P{W > x} ∼ ρ

1− ρ
P{Br > x}. (44)
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This result (valid for theGI/G/1 queue) reveals a deep connection between subexponentiality and random
sums.

(ii) TheM/G/1 LCFS-PR queue. As mentioned inSection 3, the sojourn-time distribution in the case
of LCFS Preemptive-Resume is exactly equal to the busy-period distribution. Unfortunately, no suitable
random-sum representation is available in this case.

Nevertheless, asymptotics for the busy-period under subexponentiality have recently been obtained by
Jelenkovíc and Mom̌cilović [35], and by Baltrunas et al.[8]. In both studies, the asymptotics

P{P > x} ∼ 1

1− ρ
P{B > (1− ρ)x}

are shown to hold under some additional smoothness conditions on the service requirement distribution
(besides subexponentiality). Notably, this asymptotic formfails to holdwhen the distribution ofB has
a Weibull tail of the form e−xβ

, with 1/2 ≤ β < 1. In particular, a necessary condition is that the tail
distribution ofB is square-root insensitive[36]:

P{B > x} ∼ P{B > x−√x}. (45)

An explanation of this phenomenon is given below. The proof in[35] is based on an extension of the
method inSection 5. The approach in[8] exploits a Spitzer identity for first-passage times of random
walks.

(iii) TheM/G/1 PS queue. An extension ofTheorem 2.2to the class of subexponential service re-
quirements has recently been established by Jelenković and Mom̌cilović [34]. Their proof can be viewed
as an extension of the methods ofSection 5. Again,(45) is shown to be a necessary condition for the tail
equivalence

P{SPS > x} ∼ P{B > (1− ρ)x}.
The general idea behind the necessity of(45)is the following: the probability of the rare event to happen

should be such that its asymptotic behavior is invariant for random fluctuations governed by the Central
Limit Theorem (CLT). In the particular case of Processor Sharing, this can be illustrated as follows: the
typical rare event{SPS > x} is determined by the event{B > x(1−ρ)}. Define the inverse processS←PS(x)

of SPS(x) by

S←PS(x) = inf {t : SPS(t) ≥ x}.
It can be shown that, due to the CLT, one hasS←PS(x) = (1− ρ)x+O(

√
x). Hence,

P{SPS > x} = P{B > S←PS(x)} ≈ P{B > (1− ρ)x+O(
√

x)}, (46)

which explains Condition (45). Note that this condition is always satisfied ifB is regularly varying. On the
other hand, this example shows that the heuristics described inSection 5require caution when considering
the full class of subexponential distributions.

6.2. The multi-class case

In this section, we analyze the tail behavior of the low-priority waiting-time distributionP{W2 > x}
for the priority queue with two classes.W2 is defined to be the time from arrival until the start of the
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(later possibly interrupted) service. Note thatW2 has the same distribution for both the Preemptive and
Non-Preemptive case.

Abate and Whitt[2] derive the following random-sum representation for the low-priority waiting-time
distribution:

W2
d=Y1+ · · · + YN, (47)

with N a geometric random variable with parameterρ, independent of the i.i.d. sequenceYi, i ≥ 1, whose
distribution function can be expressed as

P{Y1 ≤ x} = ρ1

ρ
H1(x)+ ρ2

ρ
H2(x).

As shown, in[2], the functionH1(x) is determined by the residual busy-period distribution of the
high-priority class. For our purposes, the following random-sum characterization is convenient:

P{Pr
1 ≤ x} = (1− ρ1)

∞∑
n=0

ρn
1H

(n+1)∗
1 (x). (48)

The functionH2(x) is the distribution function of a busy-period of class-1 customers, with anexceptional
first serviceBr

2, which we denote byP1(B
r
2). Such a busy-period has the following representation:

P1(B
r
2)

d=Br
2+

N1(B
r
2)∑

i=1

P1,i. (49)

In this expression,N1(·) is a Poisson process of rateλ1, andP1,i, i ≥ 1 are i.i.d. copies of a high-priority
busy-period.

Based upon the representations(48) and (49), one can derive the tail behavior ofP{Y1 > x}, which
in conjunction with the random-sum representation(47), leads to the tail asymptotics ofP{W2 > x}. To
illustrate this, we focus on the following two special cases: (i) class 1 subexponential, class 2 light-tailed;
(ii) class 2 subexponential, class 1 light-tailed. In both cases, we assume that the condition (45), as well
as some technical conditions stated in[34], are satisfied.

First, assume thatB1, Br
1 are subexponential andB2 is light-tailed. It can be shown using[35], that the

residual busy-periodPr
1 is then subexponential as well. In particular,

P{Pr
1 > x} ∼ 1

1− ρ1
P{Br

1 > (1− ρ1)x}. (50)

This implies thatPr
1 is subexponential, since subexponentiality is closed under tail-equivalence, see, e.g.

[49]. But then, using the reverse implication of Pakes’ theorem(44) and the random-sum representation
(48), we must also haveH1(·) ∈ S, and

P{Pr
1 > x} ∼ 1

1− ρ1
H̄1(x), (51)

with H̄1(x) = 1−H1(x). Combining(50) and (51)yields

H̄1(x) ∼ P{Br
1 > (1− ρ1)x}. (52)
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The tail H̄2(x) can be derived from the random-sum representation(49). Even though this is not a
geometric random sum, the conclusion regarding its asymptotic behavior remains the same, noting that
Br

2 andN1(B
r
2) are light-tailed. We conclude that

H̄2(x) ∼ E{N1(B
r
2)}P{P1,1 > x}. (53)

From this expression, it can be shown thatH̄2(x) = o(H̄1(x)). We conclude that

P{Y1 > x} ∼ ρ1

ρ
H̄1(x) ∼ ρ1

ρ
P{Br

1 > (1− ρ1)x}.

Combining this with the random-sum representation forW2, we conclude that, ifB1,Br
1 are subexponential

andB2 light-tailed, then

P{W2 > x} ∼ ρ1

1− ρ
P{Br

1 > (1− ρ1)x}. (54)

Next, we consider the opposite case where class 1 has light-tailed characteristics andBr
2 ∈ S. In this case,

H̄1(x) can be shown to have exponential decay; the dominant term isH̄2(x) = P{P1(B
r
2) > x}. In turn,

this tail is completely determined by the tail behavior ofBr
2: sinceN1(·) andP1,i are both light-tailed, it

can be shown that they only contribute toP1(B
r
2) through their means. This can be rigorously justified

by using results in[36]. These considerations imply

H̄2(x) = P{P1(B
r
2) > x} ∼ P{(1+ λ1E{P1,1})Br

2 > x} = P{Br
2 > (1− ρ1)x}.

Hence,

P{Y1 > x} ∼ ρ2

ρ
H̄2(x) ∼ ρ2

ρ
P{Br

2 > (1− ρ1)x}.

Finally, using the random-sum representation forW2, we obtain

P{W2 > x} ∼ ρ2

1− ρ
P{Br

2 > (1− ρ1)x}. (55)

Note that both(54) and (55)agree with the expression(41)given inSection 5, since the latter expression
reduces to a single term when only one of the service requirement distributions is heavy-tailed.

7. Conclusion

In this paper, we have surveyed the tail behavior of the waiting-time and/or sojourn-time distributions
for several service disciplines. It turns out that, if the service time distribution is regularly varying with
index−ν, the waiting-time distribution in FCFS and LCFS-NP is heavier, viz. regularly varying with
index 1− ν. This is in contrast with service disciplines like PS, FBPS, SRPTF, and LCFS-PR: these
disciplines all yield a sojourn-time tail of index−ν. These results are reviewed inSection 2, and proved
in several different ways inSections 3–6, where also multiclass disciplines are treated.

The results in this paper raise several questions. First of all, one wonders whether (given a service time
distribution that is regularly varying of index−ν) the only possible indices of the sojourn-time distribution
in a work-conserving single-server queue are−ν and 1− ν. We believe that this is not the case; this is a
topic for future research.
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Another important question is the validity of the asymptotics for moderate values. Results in[1] for
the FCFS queue show that the asymptotics may behave poorly as approximation. Moreover, asymptotic
estimates tend tounderestimatethe true value of the exceedance probability. An explanation of this
phenomenon is hidden inSection 5of the present paper: the asymptotics are fully driven by the most
likely scenario. However, other scenarios may be relevant as well for moderate values ofx. To speed up
the convergence of the asymptotic approximations to the true value of the sojourn-time tail probability,
one could try to obtain more terms in the expansion. This is a problem which is largely open (an exception
is FCFS, see, e.g.[1]). Another alternative to get sojourn-time tail probabilities is numerical transform
inversion: transforms of the distributions are available for many service disciplines, seeSection 3of the
present paper.
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