Heavy Tails: Performance Models
and Scheduling Disciplines

Part II — Workload Asymptotics
for Generalized Processor Sharing Systems

Sem Borst
Bell Labs - CWI - TU/e

ITC-18, Berlin, August 31, 2003

Based on joint work with Onno Boxma, Predrag
Jelenkovi€¢, Michel Mandjes & Miranda van Uitert



Organization

1. Background & motivation

2. Generalized Processor Sharing (GPS)

3. Performance evaluation

4. Model description

5. Workload asymptotics in various scenarios

6. Discussion & conclusion

7. References



Background & motivation

Future Internet expected to support variety of services

Voice and video commmunications induce far more stringent
QoS requirements than typical data applications

Integration of heterogeneous services raises need for dif-
ferentiated QoS

Packet scheduling provides natural mechanism to achieve
differentiated QoS

Scheduling mechanisms should be able to cope with adver-

sarial or erratic traffic characteristics 5



Packet scheduling may be implemented at various levels

e Individual traffic flows (e.g. IntServ)

e Adggregate traffic flows / service classes (e.g. DiffServ:
Expedited Forw. (EF), Assured Forw. (AF), BE)



Packet scheduling may be implemented at various levels

e Individual traffic flows (e.g. IntServ)

e Adggregate traffic flows / service classes (e.g. DiffServ:
Expedited Forw. (EF), Assured Forw. (AF), BE)

Involves trade-off between implementation complexity and
degree of service differentiation

e For scalability reasons, packet scheduling at granularity
level of individual flows in core is viewed as impractical

e Packet scheduling at aggregate level does not provide
strict guarantees to individual flows
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Possible intermediate scenario

e Fine-grained scheduling at network edge
(in particular wireless access and application servers)

e Coarse-level or no scheduling in network core



Generalized Processor Sharing (GPS)

In GPS, each traffic class is assigned some positive weight

Bandwidth is shared among backlogged classes in propor-
tion to respective weight factors

Two crucial properties

e Minimum-rate guarantees, providing flow isolation and
preventing starvation effects

e \Work conservation, achieving statistical multiplexing
gains and thus ensuring efficient bandwidth utilization
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GPS includes strict-priority scheduling as special case

Weights offer greater flexibility in service differentiation

However, weights play ‘“double role’”, fixing absolute mini-
mum rate as well as relative rate share

These two rate attributes thus appear intertwined



GPS is idealized mechanism, assuming bandwidth is in-
finitely divisible and can be shared in infinitesimal quanta

In practice, traffic consists of cells or packets, and band-
width can only be provided in discrete quanta

Various packet-based emulations of GPS proposed, most
notably Weighted Fair Queueing (WFQ) and numerous
variants (WFQT, virtual-clock FQ, self-clocked FQ, ..., ...)

Use time-stamping of packets based on ‘background sim-
ulation’ of idealized GPS mechanism

Involve trade-off between implementation complexity and
accuracy



WFQ variants also proposed for use in wireless networks

Raises various additional issues related to idiosyncrasies of
wireless propagation characteristics

e Heterogeneity in rate among spatially distributed users
(rate shares differ from time shares)

e Rate variations (over time)

e Transmission errors



Performance evaluation

Focus on evaluation of performance for given weights

Inverse problem: how to set weights to meet given perfor-
mance target
[Elwalid & Mitra (1999), Kumaran & Miitra (2000)]



Performance evaluation

Focus on evaluation of performance for given weights

Inverse problem: how to set weights to meet given perfor-
mance target
[Elwalid & Mitra (1999), Kumaran & Miitra (2000)]

In GPS system, service rate of each class depends on work-
load of other classes

Interdependence between classes complicates analysis

Exact analysis extremely difficult, motivating derivation of

bounds and asymptotics
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GPS system is equivalent to coupled-processors model

In coupled-processors model, service rate of each queue
depends on whether other queues are empty or not

Latter model has been studied for two-queue case

e Fayolle & Iasnogorodski (1979) consider exponential
service times and reduce analysis of joint queue length
distribution to Riemann-Hilbert problem

e Cohen & Boxma (1983) extend analysis to general ser-
vice times and obtain joint workload distribution as so-
lution to boundary-value problem
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Delay bounds

e Det. delay bounds for leaky-bucket controlled traffic
[Parekh & Gallager (1993, 1994)]

e Statist. delay bounds for exponentially-bounded traffic
[Yaron & Sidi (1994), Yu et al. (2003)]
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Workload asymptotics

Main distinctions

e Light-tailed versus heavy-tailed traffic characteristics

e Large-buffer versus many-sources regime

e EXxact versus logarithmic asymptotics

e Sample path techniques or large-deviations principles
versus Tauberian theorems
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Tutorial focuses on exact large-buffer asymptotics for com-
bination of heavy-tailed and light-tailed traffic

e Logarithmic large-buffer asymp. for light-tailed traffic:
Bertsimas, Paschalidis & Tsitsiklis (1999), Massoulié
(1999), Zhang et al. (1995, 1996, 1997, 1998)

e Logarithmic many-sources asymp. for various models:
Kotopoulos & Mazumdar (2002)

e Logarithmic many-sources asymp. for Gaussian traffic:
Mannersalo & Norros (2002), Mandjes & Van Uitert
(2003)
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‘Workload’ need not be limited to buffer content, but may
also include backlog at end-users device

Main commonalities/caveats

e Infinite-buffer model (no loss)

[Jelenkovi¢ & Momcilovi¢ (2001, 2002) consider finite-
buffer model]

e Exogenous traffic (no feedback at ‘workload’ level)

[Arvidsson & Karlsson (1999) examine buffer content
for TCP/IP]
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Main commonalities/caveats (cont’d)

e Single-node models
[networks analyzed in Van Uitert & B (2001), (2002)]

e Packet-level performance (static population of classes)
[dynamic population of users (flow-level performance)
gives rise to Discriminatory Processor-Sharing models
(B, Van Ooteghem & Zwart (2003))]
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Model description

Two classes sharing link of unit rate

) ¢
~
~ 1
~
~
~

Class-1 traffic

Class-2 traffic

Class : is assignhed weight ¢, > 0, with ¢1 +¢> =1

16



If both classes are backlogged, then class : receives service
at rate ¢,

If one class is not backlogged, then its (excess) capacity is
re-allocated to the other class, which then receives service
at full link rate

17



If both classes are backlogged, then class : receives service
at rate ¢;

If one class is not backlogged, then its (excess) capacity is
re-allocated to the other class, which then receives service
at full link rate

Let p;, be traffic intensity of class

Let V&S be stationary workload of class i
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Traffic assumptions

Class 1 has ‘light-tailed’ characteristics, e.g.,

e G/G/1 input with ‘exponentially-bounded’ service times

e Markov-modulated fluid input
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Traffic assumptions

Class 1 has ‘light-tailed’ characteristics, e.g.,

e G/G/1 input with ‘exponentially-bounded’ service times

e Markov-modulated fluid input

Class 2 has ‘heavy-tailed’ characteristics, e.dg.,

e INnstantaneous ‘heavy-tailed’ bursts B>

e ON-Off process with ‘heavy-tailed’ On-periods A, with
fraction On-time p,, peak rate r»
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Theorem [Cohen (1973), Pakes (1975)]

If B! is subexponential, and p; < ¢, then

P{V¢ > 2} ~ L P(B] > «} as z — oo

1

Workload

___________________________________

time

Catastrophe scenario:

Due to SINGLE extremely large burst
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Theorem [Jelenkovi¢ & Lazar (1999)]

If A is subexponential, and p; < c <r;, then

P{VE> 2} ~ (1 — p) 2 P{AT > z/(r; — ¢)} as = — oo

c— p;

Workload

time

Due to SINGLE extremely long On-period

20



In contrast, class-1 builds up large workload level in gradual
manner

Workload

N

time

Conspiracy scenario:

Combination of MANY relatively large bursts and MANY
relatively short interarrival times
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Workload

time

Combination of MANY relatively long On-periods and MANY
relatively short Off-periods
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Workload asymptotics in various scenarios

Class-2 workload behavior

Case I: p1 < ¢1, p2 < 92

Catastrophe scenario:

e Class 2 generates large burst (or long On-period)

e Class 1 generates traffic at rate p; < ¢4

e Class 2 is effectively served at rate 1 — p;

23



Class-2
workload

time
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T heorem

If A% or BY is regularly varying, p; < ¢1 and ps < ¢o, then

P{VSPS > 2} ~ P{V5 " > 1} as = — oo

Reduced-load equivalence (RLE):
Class-2 workload roughly behaves as in isolated system with
rate 1 — p;

Similar behavior has been shown for total workload in queues
fed by mixture of heavy-tailed and light-tailed input
[Agrawal, Nain & Makowski (1999), Zwart, B & Mandjes
(2001)]

Note: here independent of class-1 traffic characteristics
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Sample path lower bound

L =6 -
VOPS () > vt — U0 () — Y V(1)
J7F=i

“small correction terms’’

\ .
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Proof

Sample path wise,

O =

Min—rate guarantee

>

Work—co&servation

>

Then take 6 =p_; — 0

VGPS(t) . z ‘/jGPS(t)

JF1
VEPS(t) — Y v ()
J7F=i
Pj
osg‘i'%t{A(S’t) —(t—s)} — ];Vj (t)

sup {A;(s,1) — (1—0)(t — )}
0<s<t

(s ) — ;
osgtggr%t{e(t—s)—A_fL( )} ];V] (1)

Vi) — Ul - S V@)
J7F=
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Sample path upper bound

V,OPS(t) < min{vei), vy + v )

"~

“correction term/!



Proof

Sample path wise,

VeI () <

Work—co&sefrvation

<

_I_

Also,

Ve @)

Then take 0 =p_; 4+ 9

‘/(?I%S(t)

sup {A(s,t) — (t—s)}
0<s<t

sup {A;(s,t) — (1 —0)(t —s)}
0<s<t

sup {A_;(s,t) —0(t —s)}
0<s<t

vi=lw) + v2%@)

Min—rate guarantee

< V;fbi(t)
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Want to show

If AL or BY is regularly varying, p; < ¢1 and ps < ¢o, then

P{VSTS > 2} ~ P{V5 " > x} as z — oo
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Want to show

If AL or BY is regularly varying, p; < ¢1 and ps < ¢o, then

P{VSTS > 2} ~ P{V5 " > x} as z — oo

Proof (sketch)

From sample path lower bound, for any 6 > 0 and v,

P{VSTS > 2} > P{V,o 7110 > o 4 dP{ULL° 4 VI < )
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Want to show

If AL or BY is regularly varying, p; < ¢1 and ps < ¢o, then
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Proof (sketch)

From sample path lower bound, for any 6 > 0 and v,
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Want to show

If AL or BY is regularly varying, p; < ¢1 and ps < ¢o, then

P{VSTS > 2} ~ P{V5 " > x} as z — oo

Proof (sketch)

From sample path lower bound, for any 6 > 0 and v,

P{VSTS > 2} > P{V,o 7110 > o 4 dP{ULL° 4 VI < )

From sample path upper bound, for any 6 > 0 and v,

P{VSPS > 2} < P{VLI1 170 5 5 — g} 4 P{VE2 > m}P{VIIT0 5 o

Show that, for y — oo, 6 | 0O, both bounds behave as
P{V5 "t > z}

Requires that A’ or B is regularly varying
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Class-2 workload behavior (cont’d)

Case II: p1 > ¢1, po < ¢>

Catastrophe scenario:

e Class 2 generates large burst (or long On-period)

e Class 1 generates traffic at rate p; > ¢1, but only re-
ceives service at rate ¢4

e Class 2 is effectively served at rate ¢o =1 — ¢4

31



Class-2
workload

time

01

P
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T heorem

If AL or BJ is regularly varying, p1 > ¢1, and ps < ¢2, then

IP’{VQGPS>:E}NIP’{V§2 > x} as r — oo

Reduced-weight equivalence (RWE):
Class-2 workload roughly behaves as in isolated system with
rate ¢-

Qualitatively similar to reduced-/oad equivalence in previ-
Oous case

Note: independent of class-1 traffic characteristics
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Class-2 workload behavior (cont’d)

Case III: p1 < 1, po > Po

Catastrophe scenario:

e Class 2 generates large burst (or long On-period)

e Class 1 generates traffic at rate p; < ¢4

e Class 2 is effectively served at rate 1 — p;
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T heorem

If AL or BJ is regularly varying, p1 < ¢1, and py > ¢2, then

P{VSPS > 2} ~ P{V5 "1 > 1} as r — oo

Reduced-load equivalence (RLE):
Class-2 workload roughly behaves as in isolated system with
rate 1 — pg

Qualitatively similar as in previous two cases

However, in contrast to previous two cases, now /t is crucial
that class-1 traffic is ‘lighter’-tailed than class-2 traffic

35



Class-1 workload

Case I p1 > @1, p2 < ¢2

Catastrophe scenario:

e Class 2 generates large burst (or long On-period)

e Enters long busy period, and claims service rate ¢, for
duration of busy period

e Leaves only service rate ¢1 =1 — ¢, for class 1

e Class 1 generates traffic at rate p; > ¢4

e Class-1 workload builds up at rate p;—¢1 > 0 for duration
of class-2 busy period
36



Class-1
workload
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T heorem

If B is regularly varying, p; > ¢1 and p> < ¢o, then

P{V?P5>x}N¢2—02 P2 ]P{P5>L},
¢ 1—p1—po P1 — ¢1

with P residual class-2 busy period when served at rate ¢,

Induced burstiness (IB):

Class-1 workload behaves as that of heavy-tailed On-Off
process with as On-periods the class-2 busy periods, and
inherits ill-behaved class-2 characteristics
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Class-1 workload behavior (cont’d)

Case II: p1 < 91, po < ¢>

Class 1 remains stable even when class 2 is backlogged, so
previous catastrophe scenario can no longer occur

Class 1 too must show abnormal activity in order for large
workload to build up

Recall class 1 in isolation builds up large workload in gradual
manner by deviating from its normal traffic intensity for
long period
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Conspiracy scenario:

e Class 1 shows similar abnormal activity as in isolation,

raising its traffic intensity to p; > ¢; for period —ﬁlf¢1

e During that period, class 2 remains constantly back-
logged, leaving service rate ¢;1 =1 — ¢, for class 1
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Class-1
workload
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T heorem

If BY is regularly varying, p; < ¢1 and p> < ¢o, then

P{VEPS > 2} ~ P{V{L > 2}P{Ty > ——},
p1 — d1
with T5> ‘drain’ time of class 2 when served at rate ¢, with

initial workload V;

Reduced-weight equivalence (RWE):
but now major contribution from deviant class-2 behavior

Similar behavior has been shown for total workload in queues
fed by mixture of heavy-tailed and light-tailed input

IB & Zwart (2000)] and various related models [Boxma,
Deng & Zwart (2002), Boxma & Kurkova (2000)]

42



P{VGPS > 2} ~ P{VIL > 2}P{T5 > %}
P1 — @1

First term represents upper bound for class 1 based on

minimum-rate guarantee ¢4,
and captures deviant behavior of class 1 itself

Second term reflects that class 2 must remain backlogged
long enough for class-1 workload to build up,

and provides measure for gains from sharing surplus capac-
ity with class 2
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P{VGPS > 2} ~ P{VIL > 2}P{T5 > %}
P1 — @1

First term represents upper bound for class 1 based on
minimum-rate guarantee ¢4,
and captures deviant behavior of class 1 itself

Second term reflects that class 2 must remain backlogged
long enough for class-1 workload to build up,

and provides measure for gains from sharing surplus capac-
ity with class 2

General decompositional form holds irrespective of detailed
traffic characteristics of two classes

Specific form of two terms however does depend on de-
tailed properties, in particular whether class 2 denerates

instantaneous or fluid input P



Instantaneous input

Pl
P{To > at~ — o pQP{BE > (¢2 — p2)w}

Class 2 must remain backlogged for period of length =z
Normally generates traffic at rate p,

Receives service at rate ¢> while class-1 workload builds up
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Instantaneous input (cont’d)
Class 2 needs to make up for ‘deficit’ amount (¢> — po)x
Enjoys service at rate 1 — p; before that

Most likely scenario: initial V%_pl exceeds (¢> — po)x (due
to earlier large burst), which occurs with probability

PLVE " > (62 = p2)a} ~ 1 2 P(B > (92— p2)a)

Fluid input

Similar yet slightly more involved scenario ”



Instantaneous input (cont’d)
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Class-1 workload behavior (cont’d)

Case III: p1 < ¢1, po > P>

Now class 2 remains constantly backlogged with probability
O (1) while class-1 workload builds up

IP’{V?PS > x}t ~ KQIP’{Vfl > x} as r — o0

Constant K5 is difficult to determine

Reduced-weight equivalence (RWE):
but now minor contribution from deviant class-2 behavior
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Discussion & conclusion

Various scenarios for qualitative behavior

e Reduced-load equivalence (RLE):
class receives total rate reduced by load of other class

e Reduced-weight equivalence — no effort (RWE-0):
class gets total rate reduced by weight of other class;
other class shows average behavior (prob. 1)

e Reduced-weight equivalence — minor effort (RWE-1):
class gets total rate reduced by weight of other class;
other class shows minor deviant behavior (prob. O(1))
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e Reduced-weight equivalence — major effort (RWE-2):
class gets total rate reduced by weight of other class;
other class shows major deviant behavior (prob. o(1))

e Induced burstiness (IB): class affected by other class,
and inherits ill-behaved traffic characteristics
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Classification of qualitative behavior

Qualitative p1<¢1 | p1<P1 |p1>P1| P1> 1
behavior (4 P2 < P2 | p2> P | p2 < P | p2 > P2
Q1 HT, Q> LT RLE RWE-0 RLE unstable
T T T
Qi HT, Qo HT RLE |RWE-0| RLE |unstable
@1 ‘heavier’ than 2 T T
Qi HT, Q> HT RLE |RWE-0| IB | unstable
@1 ‘lighter’ than 2 1
Q; LT, Qo HT | RWE-2 | RWE-1| IB [unstable
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