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Numbers
Numbers are an idea, not a thing: an abstraction we would 
call them. 

That is because there is no three that you can point to, only 
three somethings, such as three sheep, three trees, three 
balls. The idea of three is what those sheep, trees and balls 
have in common.

Because three is an abstraction, we need to have some way 
to make that idea real. We do this by representing a number
in some way. 

One way is by writing the name: three. 

But we have other ways, for instance 3, as we write it, or III
as the Romans wrote it. Or 三 as the Chinese write it. These

are all representing the same number.

Note that all three of these representations look (a bit) like 
three stripes.

That’s probably because originally people started writing 
numbers down as stripes.
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Addition
Addition is easy. You want to add numbers: you write a 
number of stripes for the first number, and then a number 
of stripes for the second, and count up how many stripes 
you have: // plus /// is /////. This is how children learn 
addition, except using fingers for stripes. This is a 
procedural definition: it tells you how to calculate the 
result.

We write addition as a+b. 

There are a number of laws to do with addition. The most 
obvious one is

a+b = b+a

This is called the commutative law, and it says that with 
respect to addition it doesn’t matter which way round the 
operands are, 2+3 will give you the same result as 3+2.

Clearly //+/// is the same as ///+//.

This is a different use of the word law than is usual 
understood in everyday life. Usually laws are things created
by people to help run society. In maths in means something 
that is always true. It might be better to call it a fact.
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Subtraction
The complementary operation to addition is subtraction, 
which we can define as 

(a+b)−b = a. 

This may look like an odd way to define something, but it 
is called a declarative definition: it doesn’t tell you how to 
calculate the result (although we do learn how to do that at 
school), it just tells you how to recognise the right answer. 

In fact we use declarative definitions a lot. Probably the 
first time we are taught such a definition is for square roots.
We are told that 

the square root of a number n, is a number r 
such that r × r = n.

This doesn’t tell us how to calculate it (and we have 
calculators to do that for us), but it does allow us to 
understand what a square root is, and how to recognise one.
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What does this definition for subtraction mean? 

If you have a number that is the result of adding a and b, 

and then subtract b from it, we get a back.

So, if we want to calculate 

9−3,

then (a+b) is 9, and b is 3, so we have to find the value a 

such that 

(a+3) = 9

which is 6. 

So subtraction means “find the value such that adding the 
second operand to it gives us the first operand”.

You might prefer it if I say: imagine that the notation

[a+b]

means “a number that is the result of adding a and b”, for 
instance 9. Then

[a+b]−b = a

is true for all possible values of a and b.

So with 9−3

[9]−3 = a

[a+3]−3 = a

[6+3]−3 = 6
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Since addition is commutative, we also have 

(b+a)−a = b

(or if you prefer

[b+a]−a = b

)

Thanks to the commutative law, this is then the same as 

[a+b]−a = b.

In other words, if you have a number that has been formed 
by addition, you can get either operand of the addition by 
subtracting the other operand.
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Subtraction on the other hand is not commutative: 

2−3 ≠ 3−2. 

This means that although we have 

[a−b]+b = a, 

we don’t have 

[a−b]+a = b. 

To get b we can do a number of things: we can reverse the 

operands, and swap the operator: 

a−[a−b] = b, 

or we can negate the first operand and add: 

−[a−b]+a = b, 

or we can define a new operator, let’s call it co-plus , ⊕, 
whose definition is 

(a b)=(−a)+b, ⊕b)=(−a)+b, 

and then say that 

[a−b] a=b. ⊕b)=(−a)+b, 

Note that both of these latter two require the definition of 
unary −, which we will talk about shortly.
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Now I can understand if you are looking at this wide-eyed, 
wondering what I am going on about. So let me try and 
explain.

If I say that two people’s combined ages are 95, then if I 
tell you one of the ages, you can work out the other without
any more information. If I say one is 50, then you know the
other is 45, and vice versa. In both cases you subtract the 
age from the sum of the ages. This is because addition is 
commutative.

However, if I had said that the difference in age between 
two people is 15 years and one of them is 45, you don’t 

know enough, because you don’t know if 45 is a or b.  The 

other one could be either 60 or 30. So you need two 
complements for subtraction, one to get the left operand 
and the other to get the right operand.
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Mystery Numbers
In the act of defining subtraction there is something 
surprising that has happened, that modern people might not 
even notice, but that must have upset early mathematicians.
Namely, it has generated new sorts of number that we 
didn’t start off with. All of a sudden we can calculate 
results like “0−5” which is “the number that adding five to 
gives zero” (or “the number that you would get if you 
subtracted 5 from 0”).

But the problem is, how do you write such a number down?
You can’t write it with stripes, like we started off with, 
because they are a sort of “anti-number”. It must have upset
early mathematicians, because you now have numbers that 
apparently don’t exist in the real world, but they seem to 
obey all the rules of regular, real-world numbers. 

Well, as is so often seems to be the case with new types of 
numbers, they got given a very derogatory name. They 
could have chosen “mystical numbers” or “magical 
numbers” or “unreal numbers”, but they chose “negative 
numbers”. But they still had no way to write these numbers 
down.
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Through the ages people have written negative numbers in 
different ways. Banks used to write them in red ink (which 
is why we (still) use the phrase “in the red”); annual reports
of companies often use a number in brackets like “(123)” to
mean a negative amount.

In fact, in mathematics we leave negative numbers 
uncalculated: “0−5” means “the number you would get if 
you subtracted 5 from 0”. Since it was always 0 that was 
used, it could be shortened to just “−5”; this is not strictly 
speaking a negative number, even if that is how we think of
it nowadays: it is an operation on a positive number, an 
operation that we leave uncalculated, since it is good 
enough, or at least, the best we have.
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Zero
A question that even now all mathematicians don’t 
completely agree on is whether before defining subtraction 
we already had zero, or did the act of defining subtraction 
introduce zero?

Certainly early mathematicians didn’t think of zero as a 
number (they even had difficulties with 1): if you didn’t 
have any sheep, how could you say that you had a number 
of sheep?

Either way, mathematicians now agree that zero is a 
number, just not whether it was there right from the start.

Zero has a special relationship with addition and 
subtraction. It is called the identity value for addition and 
subtraction. This is shown by the identity law for addition 
and subtraction:

a+0 = a

a−0 = a

In other words a remains the same (it ‘keeps its identity’) if

you add 0 to it, or subtract 0 from it.
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Multiplication
Now we’re going to go a level higher, and do almost 
exactly the same we just did with addition.

You can describe multiplication in terms of repeated 
addition: 

a×3 = a+a+a. 

The complement of multiplication is division, which we 
can define in the same way as we did for subtraction:

[a×b]÷b = a. 

This means “find the value such that multiplying it by the 
second operand gives us the first operand”. Just as with 
addition, multiplication is commutative, and so we can also
derive 

[a×b]÷a = b.

Similarly, just like subtraction, division is not commutative,
since 2÷3 ≠ 3÷2. So again, although we have 

[a÷b]×b = a, 

we do not have 

[a÷b]×a = b. 

Again, we reverse the operands, and swap the operator: 

a÷[a÷b] = b.
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One
Multiplication and division also have an identity value, 1, 

since

a×1 = a

and

a÷1 = a.

We’ve already discussed how −a is a shorthand for 0−a, 

“the number you would get if you subtracted a from 0”, 

and mentioned that 0 is the identity value for addition and 

subtraction.

It is therefore notable that there is no unary operator ÷a to 

represent 1÷a. However, if you introduce it, there are some

rather pleasant symmetries that arise. For instance

a+(−b) = a−b
a×(÷b) = a÷b

and

a−(−b) = a+b
a÷(÷b) = a×b

and

−(−a)  = a
÷(÷a)  = a

Do you see the patterns?
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There is something else interesting too, which you can see 
from this comparison:

−(a−b) = b−a
÷(a÷b) = b÷a

What you can see from this is that unary − and ÷ are both 
“commute” operators. They have the effect of commuting 
the operands of the thing they are applied to (without 
having to know what the values of those operands are).

You could say that while + and × are commutative, − and ÷ 
are commutable.
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Earlier we said that to extract the left-hand operand from 

(a−b) we could use (a−b)+b, but to extract the right-

hand operand we had to either use a−(a−b) or −(a−b)

+a. This shows that from a conceptual point of view, the 

second of these has a certain charm: (a−b)+b extracts the 

left-hand operand a, and −(a−b)+a commutes the 

operands, giving (b−a)+a, and then extracts the left-hand 

operand of the result, giving b, the right-hand operand of 

the original.

So just as we defined the extraction of b from a−b as −

(a−b)+a, we could also define the extraction of b from 

(a÷b) as ÷(a÷b)×a. 

Or we could define a new operator co-times⊗ defined as 

(a b)=(÷a)×b⊗b)=(÷a)×b , which commutes and extracts the left-

hand operand, and use (a÷b) a=b⊗b)=(÷a)×b .

The ÷ unary operator will be used some more shortly.
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More Mystery Numbers
Just as with subtraction, division introduces a new sort of 
number that we didn’t start with. 

We started with just positive numbers; thanks to 
subtraction, we got zero and negative numbers, but now 
thanks to division we have yet another sort of number. We 
can get numbers such as 2÷3, “the number that if you 
multiply by 3 gives you two”. Although this is often written
as ⅔, we should recognise it as another example of an 
incompletely calculated number. 

At least this branch of numbers got a friendlier name: the 
rational numbers. It is also worth pointing out that even 
though we didn’t start out with these numbers, they still 
follow the rules of arithmetic for addition and subtraction.
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The true definition of 
multiplication

To be honest, when I defined multiplication, I did a bit of 
hand waving, by just giving an example. I said

a×3 = a+a+a

But this is not a true definition, just an example of what 
multiplication is. So let me now give the true (declarative) 
definition:

a×(b+c) = a×b + a×c
a×1 = a

What does this say? It says that you can split a 
multiplication up into a series of additions. (Again you 

might prefer the notation a×[b+c].)

For instance 3×4:

3×4 = 3×(2+2) = 3×2 + 3×2

3×2 = 3×(1+1) = 3×1 + 3×1

So therefore 

3×4 = (3×1 + 3+1) + (3×1 + 3+1)

And since 

3×1 = 3

we have 

3×4  = 3 + 3 + 3 + 3.
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You could do the same by starting out with

3×4 = 3×(3+1)

and you would still end up with 

3×4  = 3 + 3 + 3 + 3.

But how about

3×0

though? 

Well, we know that

3×1 = 3

And we also know that

1+0 = 1

So therefore we can work out that

3×(1+0) = 3×1 + 3×0

and since 1+0 = 1, we can also work out that

3×1 = 3×1 + 3×0

and so we have to conclude that

3×0 = 0.
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Power
Now to go up yet one more level, using exactly the same 
patterns.

We can describe the operation of taking something to a 
power in terms of repeated multiplication: 

a³ = a×a×a.

Unfortunately, mathematics notation becomes odd at this 
level, and rather than using operator-style, like +, −, ×, and 
÷, it starts using strange layout-style notations, as if there 
were something different going on. 

Let’s try and fix this. Here we will use a notation that is 
already used in some computer circles to represent taking 
the power, the ↑ operator, so that a↑3 means what 
classically is meant by a³. 

Of course, I’ve waved my hands above again, but this time 
I hope you can work out for yourself what the true 
declarative definition of power is: it uses the same pattern 
as multiplication.

If you do it, you will see that we can work out that just as

a×0 = 0

(which is the identity value for addition) we get

a↑0 = 1

(the identity value for multiplication).
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The complement of power
Without thinking (yet) about what it means, we can also 

invent a complementary operation for ↑, which we will 

write as ↓; if ↑ is a higher-level form of multiplication, then
↓ is a higher-level form of division. Just as in the other 
cases, we define 

(a↑b)↓b = a.
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Unfortunately there is a difference at this level, since unlike
+ and ×, ↑ is not commutative: 2↑3 is 8 and 3↑2 is 9, which 
are clearly not equal, so we cannot just juggle operands as 
we did with addition and multiplication. 

Instead we will invent another complementary operator to 

get b. Let’s call it , so that we have ⇓, so that we have 

(a↑b) a = b⇓a = b .
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Well, let’s now explain what these two operators mean: ↓ 
means “find the value that when taken to the power of the 
second operand gives us the first operand”. For instance 

8↓3 = 2,

since 

2↑3 = 8. 

In other words, it takes a root, so that a↓b means what is 

classically expressed with the, frankly bizarre, notation b√a.

Similarly,  means “find the value that when the second ⇓, so that we have 
operand is raised to that power, gives the first operand”, for
instance 

8 2 = 3. ⇓a = b

In other words, it takes the logarithm, so that a b means ⇓, so that we have 
what is classically, and equally bizarrely, written logba. 

(It can help, while learning to get used to these operators to 
note a slight visual similarity between √ and ↓, and to 
regard  as looking a bit like a log, while not forgetting ⇓, so that we have 
that the operands are the other way round to how they are 
normally written.)
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So now to properly deal with the two new operators: how 
do you extract the operands from them?

For ↓ we have 

[a↓b]↑b = a, 

and 

a [a↓b] = b.⇓a = b

For  we have ⇓, so that we have 

b↑[a b] = a ⇓a = b

and 

a↓[a b] = b.⇓a = b
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The nice thing about the new notation is that it far more 
visually obviously expresses the relationships between 
power, root and log. So let us summarise the relationships, 
to more clearly show the patterns involved:

Operator a b

a+b
a−b

(a+b)−b
(a−b)+b

(a+b)−a
a−(a−b) or −(a−b)+a or (a−b) a⊕, 

a×b
a÷b

(a×b)÷b
(a÷b)×b

(a×b)÷a
a÷(a÷b) or ÷(a÷b)×a or (a÷b) a⊗a

a↑b
a↓b
a b⇓, so that we have 

(a↑b)↓b
(a↓b)↑b
b↑(a b)⇓, so that we have 

(a↑b) a⇓, so that we have 
a (a↓b)⇓, so that we have 
a↓(a b)⇓, so that we have 
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Just as when we defined the unary version of ÷, and we got 
some new laws that had the same patterns as with unary −, 
with these three new operators, we can observe some 
pleasant similarities with laws that we already know from 
arithmetic with the addition and multiplication operators. 
For instance, the basic operations:

Addition Multiplication Power

a+0 = a
a−0 = a 

a×1 = a
a÷1 = a

a↑1 = a
a↓1 = a

a−a = 0 a÷a = 1
a↓a = 1
a a = 1⇓, so that we have 

a×0 = 0
0÷a = 0

a↑0 = 1
0↓a = 0
1 a = 0⇓, so that we have 

a÷0 = undefined
a↓0 = undefined
a 0 = undefined⇓, so that we have 
a 1 = undefined⇓, so that we have 
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Similarly, there are several patterns with the unary 
operators:

Addition Multiplication Power

a×(−b) = −(a×b)
a÷(−b) = −(a÷b)

a↑(−b) = ÷(a↑b)
a↓(−b) = ÷(a↓b)

a+(−b) = a−b
a−(−b) = a+b

a×(÷b) = a÷b
a÷(÷b) = a×b

a↑(÷b) = a↓b
a↓(÷b) = a↑b

a+(0−a) = 0 a×(1÷a) = 1 a↑(1↓a) = 1
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And finally, there are lots of patterns over the binary 
operators:

Addition Multiplication Power

a×(b+c) = a×b+a×c
a×(b−c) = a×b−a×c

a↑(b+c) = a↑b×a↑c
a↑(b−c) = a↑b÷a↑c 

(a+b)×c = a×c+b×c
(a−b)×c = a×c−b×c
(a+b)÷c = a÷c+b÷c

(a−b)÷c = a÷c−b÷c

(a×b)↑c = a↑c×b↑c
(a÷b)↑c = a↑c÷b↑c
(a×b)↓c = a↓c×b↓c
(a×b) c = a c+b c⇓, so that we have ⇓, so that we have ⇓, so that we have 
(a÷b)↓c = a↓c÷b↓c
(a÷b) c = a c−b c ⇓, so that we have ⇓, so that we have ⇓, so that we have 

(a×b)×c = a×(b×c)
(a÷b)÷c = a÷(b×c)

(a↑b)↑c = a↑(b×c)
(a↓b)↓c = a↓(b×c)

(a+b)−c = (a−c)+b

(a−b)−c = (a−c)−b

(a×b)÷c = (a÷c)×b

(a÷b)÷c = (a÷c)÷b

(a↑b)↓c = (a↓c)↑b
(a↑b) c = (a c)×b⇓, so that we have ⇓, so that we have 
(a↓b)↓c = (a↓c)↓b
(a↓b) c = (a c)÷b⇓, so that we have ⇓, so that we have 

a−b = (a−k)−(b−k) a÷b = (a÷k)÷(b÷k) a b = (a k)÷(b k)⇓, so that we have ⇓, so that we have ⇓, so that we have 
a+(b−c) = a−(c−b) a×(b÷c) = a÷(c÷b) a↑(b c) = a↓(c b)⇓, so that we have ⇓, so that we have 
a−b = −(b−a) a÷b = ÷(b÷a) a b = ÷(b a)⇓, so that we have ⇓, so that we have 
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Analysis
Looking at these similarities, there is one group that 
particularly sticks out: 

a+(−b) = a−b a×(÷b) = a÷b a↑(÷b) = a↓b

a−(−b) = a+b a÷(÷b) = a×b a↓(÷b) = a↑b
This seems to suggest there should be a unary ↓ operator:

a+(−b) = a−b a×(÷b) = a÷b a↑(↓b) = a↓b

a−(−b) = a+b a÷(÷b) = a×b a↓(↓b) = a↑b
Although ↓b means the same as ÷b, the other unary 
operators are expressed in terms of their own level of 
operators, and so you can say that ↓b means b↑−1, which 
you can prove is the same as b↓−1. This also has the nice 
property that a↑(↓a) = 1, just as a×(÷a)=1 and a+(−a)=0. 

It can also be applied to the last set of equations above:

a−b = −(b−a) a÷b = ÷(b÷a) a b = ↓(b a)⇓, so that we have ⇓, so that we have 
Note its pleasant effect as a commuting operator for .⇓, so that we have 
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Yet More Mystery Numbers
Of course, I hope by now you are expecting us to come out 
of this level with more types of numbers than we began 
with, because you won’t be disappointed: we get two new 
types. 

For several centuries it has been known that a simple 
expression such as 2↓2 (the square root of 2) cannot be 
represented by a rational number. 

This class of numbers got the derogatory name “irrational” 
(although the 9th century mathematician al-Khwārizmī 
called them inaudible, which is why we still call any 
unresolved irrational root a surd, Latin for deaf.) 

These numbers also still work at the lower levels of 
multiplication, division, addition and subtraction.

The other new type of number introduced by the 
complement of power is the horribly misnamed complex 
numbers, which historically emerged as solutions of 
expressions such as (−2)↓2. These will be the topic of a 
later section.
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Representations
How you represent numbers can have a great effect on what
you can do with them.

For instance, the Romans may well have been able to add 
CCCLXI and CCXXI together, but few would have been 
able to multiply them together.

And yet nowadays, ask a schoolchild to add 361 and 221, 
or even multiply them together, and they will be able to do 
it for you.

In fact even in the middle ages, multiplication was still 
something you learned at university. It wasn’t until the 
1600’s that modern numbers started to be introduced and 
used.

Our modern numbers come from Arab mathematicians, 
around the year 1000, who in turn got them from Indian 
mathematicians, from around the year 600.
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Look at this piece of Arabic text, taken from the Wikipedia 
article in Arabic about the Second World War. Does 
anything about it strike you?

         : سبتمبر   من سبتمبر الأول من سبتمبر في الأول من سبتمبر بدأ في الأول من سبتمبر مدمر دولي الأول من سبتمبر نزاع دولي مدمر بدأ في الأول من سبتمبر هي الأول من سبتمبر الثانية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر العالمية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر الحرب العالمية الثانية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر
سبتمبر        1939 من سبتمبر الثاني الأول من سبتمبر في الأول من سبتمبر وانتهى في الثاني من سبتمبر  أ في الأول من سبتمبروروبا فيه  1945في الأول من سبتمبر شاركت فيه ، شاركت فيه

  : الحلفاء         قوات الحلفاء هما حلفين سبتمبررئيسيين سبتمبر في الأول من سبتمبر العالم، شاركت فيه دول من سبتمبر من سبتمبر العظمى في الثاني من سبتمبر  الغالبية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر
       . العسكرية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر  قدراتها كافة: هي نزاع دولي مدمر بدأ في الأول من سبتمبر الرئيسية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر الدول من سبتمبر وضعت فيه وقد المحور ودول من سبتمبر

الحرب العالمية الثانية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر         وتعد الحربي الأول من سبتمبر، شاركت فيه المجهود خدمة: هي نزاع دولي مدمر بدأ في الأول من سبتمبر في الأول من سبتمبر والعلمية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر والصناعية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر والاقتصادية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر
البشرية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر          تاريخ البشرية في الأول من سبتمبر كلفة: هي نزاع دولي مدمر بدأ في الأول من سبتمبر وأ في الأول من سبتمبركثرها الشمولية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر، شاركت فيه الحروب العالمية الثانية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر من سبتمبر الثانية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر العالمية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر

شارك          حيث شارك فيها، شاركت فيه والجبهات الحلفاء المعارك مسارح المعارك والجبهات فيها، حيث شارك وتعدد الحرب العالمية الثانية: هي نزاع دولي مدمر بدأ في الأول من سبتمبر بقعة: هي نزاع دولي مدمر بدأ في الأول من سبتمبر لاتساع دولي مدمر بدأ في الأول من سبتمبر
من سبتمبر    أ في الأول من سبتمبركثر بين سبتمبر       100فيها ما بمقتل ما بين  وتسببت فيه جندي، شاركت فيه 85إلى في الثاني من سبتمبر   50مليون جندي، وتسببت بمقتل ما بين 

يعادل من سبتمبر          ما أ في الأول من سبتمبري وعسكريين سبتمبر، شاركت فيه مدنيين سبتمبر بين سبتمبر ما شخص ما بين مدنيين وعسكريين، أي ما يعادل  سكان جندي، وتسببت بمقتل ما بين %  2.5مليون جندي، وتسببت بمقتل ما بين  من سبتمبر
الفترة    تلك الفترة في الأول من سبتمبر .العالم

Well, of course they use what we call Arabic numerals. But 
the interesting thing is that Arabic is written from right to 
left, and yet the numbers are written in exactly the same 
way as we do, 1939, and not, as you might expect 9391.

How come? Well, when Western mathematicians imported 
our modern numerals from Arabic, they forgot to swap the 
order from right-to-left to left-to right. 

Does this matter? A little.

Try adding two large numbers up in your head: add 1939 
and 1945. 

Do it now.
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The answer if you got it right is 3884. But did you notice? 
You had to do all the addition for the whole number before 
you could start saying what the result is. 

However, if numbers were the other way round, and I asked
you to add the same two numbers, now written 9391 and 
5491, you could speak the answer while doing the 
calculation: 

9+5 is 4 (carry 1)

3+4 is 7, plus the carry 8

9+9 is 8, carry 1

1+1 is 2, plus the carry 3

So the answer would be 4883 if they had swapped the 
direction on importing, and you would be able to do the 
calculation in your head and speak the answer while doing 
it. (Some computer programs on numbers would be simpler
too.)
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In fact for small numbers, we do speak our numbers that 
way round: we say FOURteen, SIXteen, SEVENteen. That 
is we say the second digit first.

Similarly, you probably know this children’s rhyme:

Sing a song of sixpence, a pocketful of rye.
Four and twenty blackbirds baked in a pie.

If you look at Shakespeare’s plays, around two-thirds the 
usage of numbers is of the style “four and twenty”, and the 
other third are of the modern style “twenty-four”. This 
probably indicates that the style of speaking numbers was 
changing around Shakespeare’s time.

So the conclusion is, the style of writing numbers we use 
now are much easier than Roman numerals, but they could 
be (a little bit) easier if they had been imported the right 
way round.
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Representing Numbers
As was said at the beginning, all numbers are abstractions. 
Early mathematicians had problems accepting the concept 
of negative numbers, because they didn’t seem to occur in 
real life. But in fact positive numbers don’t ‘occur’ in real 
life either. As already pointed out, you can’t point to “the 
number three”. 

However, we are not very good with abstractions in 
general. We like to think about them in some solid form, 
and so we represent numbers in some way or another in 
order to be able to talk about them. You can do that with 
three apples, you could do that with weights.

3+2=5 using weights
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But since we are primarily visual, we typically represent 
numbers with lengths, drawing a line, and marking 
particular numbers on it. In mathematics, there is even the 
concept of “the real number line”.

3+2 = 5 using lengths

However, there is nothing essential to this representation of
numbers, and in fact a problem with concretisation of 
abstractions is that there is a risk of mixing up the two and 
thinking that the concretisation is the abstraction. A line is 
just one of many possible representations of numbers.
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Sometimes we switch between representations too, often 
without realising it. 

For instance, when explaining multiplication, we often 
draw a rectangle whose sides are of the length of the two 
numbers being multiplied, and explain that the area of the 
rectangle is the product of the two sides. 

In so doing, we switch from a linear representation of 
numbers to a area-based representation.
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Rational numbers, such as ¾, can be represented by a pair 
of integers (3, 4). One way of representing rational 
numbers is to create a two-dimensional field of dots, where 
in one dimension the integers are marked for the numerator,
and in the other dimension for the denominator.

So drawing a line from the origin (0,0), through the point 
(1,2), represents the number ½. 

It’s the line that represents the number, and if you extend it,
it passes through the points (2,4) and (3, 6) as well, 
demonstrating that these are equivalent rational numbers.
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Furthermore, it passes in the other direction through (−1, 
−2) and (−2, −4) and so on, also in the process 
demonstrating that two minuses make a plus.
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Similarly, a line from the origin to (−1, 2) represents the 
rational number −½, which likewise also passes through 
(−2, 4) as well as (1, −2) and (2, −4) , and so on.
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This representation has some other advantages. For 
instance, it also shows you that all points (0, x) represent 
zero, all points (x, 0) represent infinity (and actually allows 
you to represent infinity), and finally that (0,0) is 
indeterminate, since it represents all numbers, all lines 
passing through it.

It also has some other nice properties: the representation of 
the number −n is just the representation of n reflected by 
either the x or y axis. 
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Similarly, the inverse of n, ÷n, is n rotated 90 degrees (it 
doesn’t matter in which direction), and negated (i.e. 
reflected on either axis).

So: if the angle of the line for the number n is a, then 

−n = 180° − a

and 

÷n = 90° − a.
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This representation can also be used to describe how the 
line representing a non-rational, such as 2↓2 (the square 
root of 2), does not pass through any integral point at all, no
matter how far you extend it, because it is not a rational 
number.
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Why 2↓2 isn’t a rational number
If  2↓2 is a rational number then it can be represented as

a÷b

for some a and b, reduced to their lowest form.

Note that when you have a rational number like that, that 
while a and b can both be odd numbers, they can’t both be 
even, because if they are both even, you can divide them 
both by 2 to get a yet lower form. For instance

4÷6

can be reduced further to

2÷3

Reduced to their lowest form, they can both be odd, or one 
can be even, but they can’t both be even.
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So, if it is true that the square root of 2 can be represented 
by a÷b, then we have this:

2↓2 = a÷b

Square both sides:

2 = (a÷b)↑2

Expand the brackets:

2 = a↑2 ÷ b↑2

Multiply both sides by  b↑2:

2×b↑2 = a↑2

This means that a squared is an even number, and therefore

a must be even too (an odd number squared is always odd).

Since a is even, b must be odd. Let’s try and find b.

45



Since a is even, then it is a multiple of some other number 

c:

a = 2×c

So since we had

2×b↑2 = a↑2

Substituting for a gives us

2×b↑2 = (2×c)↑2

Expand the brackets:

2×b↑2 = 4×c↑2

Divide both sides by 2:

b↑2 = 2×c↑2

So b↑2 is even, which means using the same arguments as 
above, that b has to be even. So that means it is impossible 
to find an odd number that is the second operand of a÷b. 

Since we can’t do it, it can’t exist. Therefore there are no 
integers a and b such that 

(a÷b)↑2 = 2.

The square root of two is not a rational number.
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In fact, it really shouldn’t be so surprising.

If we go down one level, there are rational numbers

a÷b

that are not integers, just as there are roots

a↓b

that are not rationals.
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Why is there no  operator?⇑ operator?
Since there is a  operator, why don’t define the opposite ⇓, so that we have 
of it as

(a b) b = a⇓a = b ⇑b = a

just like

(a↓b)↑b

?

The answer is that we could do that, but it doesn’t give us 
any extra functionality, since to get a from (a b) we can ⇓, so that we have 
use 

b↑(a b)⇓a = b

just as we don’t need a new operator

(a−b) a = b⊕b)=(−a)+b, 

to get b, since we can just use

a-(a-b) = b.

That is to say, that if we defined  like that we would have⇑ like that we would have

a b = b↑a⇑b = a

i.e., just the same operator, but with its operands the other 
way round.
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Naming
How should we name the new operators? Again, it would 
be good to look to see if we can use consistency as a guide. 
So how are the existing operators named:

Operation Written Spoken

Addition a+b a plus b

Subtraction a−b a minus b

Multiplication a×b a times b, or a multiplied by b

Division a÷b a over b, or a divided by b

Raising to the power ab a to the power (of) b

Taking the root b√a b-th root of a

Finding the logarithm logb a log to the base b of a

For addition and subtraction, the phrase just uses the names
of the operators, neither left nor right operand playing any 
special role; for multiplication, a sort of adjectival form is 
used (“How many times have I told you?” “Four times”) to 
describe the process of multiplication, with the right hand 
side being the subject, or a form where the left hand side is 
the subject being acted upon by the right hand side; for 
division either a description of the layout is used (‘over’), 
or again the left hand side is the subject, which is acted 
upon by the right hand side; and for power, the left hand 
side is again the subject having something done to it. 
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So, from a consistency point of view, it’s a mess, with little 
to draw from. I am inclined to use ‘up’ and ‘down’ for ↑ 
and ↓, modelled on plus and minus, although I sometimes 
pronounce something like “2↓3” as “two rooted three”, 
when I want to emphasise the relationship to the traditional 
naming, using the “left hand side acted upon by the right 
hand side” model. That leaves us with , which I am ⇓, so that we have 
inclined to pronounce as “logged” or “based”, again using 
the left hand side as subject.
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Examples
The purpose of this exercise was to develop, through 
consistency, a notation that is easier and more obvious to 
use than the classical notations. So let’s put it to the test it 
with a few examples.

But first a word about solving equations.

If I say I bought two apples for 30 cents, almost without 
thinking you will know that each apple cost 15 cents. How?

Well, calling the price of one apple a, we have

a×2 = 30

and we want to isolate a, which means we want to move 
everything to one side of the equals sign, except the a.

How do we do that? By applying the same operation to 
each side (so that the equality remains true), and then 
simplifying one or both sides.

In this case we divide both sides by 2:

(a×2)÷2 = 30÷2.

Simplify, and we’re done:

a = 15.
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But you should realise that there are some steps we have 
missed out, because they are ‘obvious’.  Let me show you 
them, plus at each step the rule that is used:

a×2 = 30

(a×2)÷2 = 30÷2   {divide both by 2}

a×(2÷2) = 30÷2  {(a×b)÷c = a×(b÷c)}

a×(1) = 30÷2     {a÷a = 1}

a = 30÷2         {a×1 = a}

a = 15           {calculate}

As you can see, doing all the steps, although 
straightforward, is also tedious. So in the following, when 
we are isolating a value, we will often leave out the obvious
steps with the word ‘simplify’.
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Interest
If you save an amount of money, m, at an interest rate of 
3%, then it means that at the end of the year 

m×(3÷100) 

gets added to your account, so you then have 

m+m×0.03. 

Factoring out m, this is the same as 

m×(1+0.03), 

which is 

m×1.03. 

In other words, each year your money gets multiplied by 
1.03. So at the end of one year, you will have 

m×1.03, 

at the end of two years 

m×1.03×1.03, 

at the end of three years 

m×1.03×1.03×1.03, 

and at the end of n years, 

m×1.03↑n. 
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So the general formula is:

result = m×(1 + rate÷100)↑years.

Let’s simplify this slightly and give the expression 1 + 
rate÷100 the name ‘r’, so that for 3% interest, r is 1.03. So 
our formula is 

result = m×r↑years.
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How much would you have to put in the bank at 3% to 
ensure that in five years you have 1000?

We have to isolate m. Take the equation, 

result = m×r↑years

and divide both sides by r↑years:

result÷(r↑years) = 
m×r↑years÷(r↑years)

Simplify the right-hand side:

result÷(r↑years) = m

So fill in values and calculate, and we get

1000÷1.03↑5 = 862.61
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What interest rate would you have to have in order to 
double your money in ten years? 

We have to isolate r. Take the initial equation

result = m×r↑years

and divide both sides by m:

result÷m = m÷m×r↑years

Eliminate the m÷m×:

result÷m = r↑years

We want to isolate r, so take a root of both sides:

(result÷m)↓years = 
(r↑years)↓years

replace (r↑years)↓years by r:

(result÷m)↓years = r

Since we want result to be twice m, and over ten years, we 
have to calculate:

2↓10=r

which is approximately 1.07177 or in other words 7.177%.
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How many years do you have to save at 3% to double your 
money? 

We want to isolate years. Take the initial equation:

result = m×r↑years.

Divide both sides by m and simplify:

result÷m = r↑years

We want to isolate ‘years’, so take the log of both sides:

(result÷m) r ⇓r = (r↑years) r⇓r 

Simplify the right-hand side:

(result÷m) r = ⇓a = b years

m=1, result=2, r=1.03, which gives us:

2 1.03 = years⇓a = b

which gives us 23.45 years.
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Computer Speeds
In 1965, Gordon Moore predicted that the density of 
components on integrated circuits was going to double 
every year at constant price, for at least ten years. Ten years
later, he re-analysed the data, and increased the time to 18 
months per doubling. Since then, his prophecy has held up 
fairly well, under the name “Moore’s Law” (even though it 
isn’t really a law, in any meaning of the word).

While he didn’t actually predict that computers would get 
twice as fast per 18 months, that has been pretty much the 
result.

If computers get twice as fast every 18 months, then we can
represent the relative speeds by:

speed = 2↑(months÷18)

What is the annual growth?

2↑(12÷18)

which is 1.59, in other words a 59% annual growth. The 
monthly growth is 2↑(1÷18), which is 1.04, or in other 
words, 4%. 

If only banks offered that sort of interest...
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How many months before you can buy a computer that is 
10 times faster? 

We want to isolate months. Again, start with the speed 
equation: 

speed = 2↑(months÷18)

Take the log of both sides

speed 2 ⇓r = (2↑(months÷18)) 2⇓r 

Simplify the right-hand side:

speed 2 = ⇓a = b months÷18

Multiply both sides by 18:

speed 2⇓a = b ×18 = months

For speed=10 we have:

10 2×18 = months⇓a = b

which is just under 60 months, or 5 years. 

59



For a speed gain of 100, we calculate

100 2×18 = months⇓a = b

which is just under 120 months, or 10 years. 

But really, we didn’t need to calculate that because we 
already knew from the table of equivalences above that 

(a↑b) c = (a c)×b⇓a = b ⇓a = b

and since 100=10↑2, were were calculating

(10↑2) 2⇓a = b

which is the same as

(10 2)×2⇓a = b

Since we had just calculated 10 2, the answer had to be ⇓, so that we have 
twice that answer.

Put another way: we knew that it takes 5 years to get a 
speed increase of 10; after another 5 years we would have 
got another speed increase of 10, and 10×10=100 times 
speed increase, and 5+5= 10 years.
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Networks
Where I work was the first internet connection in Europe 
on the open (non-military) internet. In 1988 the first 
connection from Europe to the United States was in the 
office next to mine, and all of Europe was connected to all 
of the USA at the blisteringly fast speed of 64k bits/second.
(Nowadays a mobile phone is typically 1000 times faster 
than that). A year later the speed doubled to 128 k 
bits/second, and we rejoiced.

But in fact, even better than the speed increase of 
computers, network bandwidth doubles per year. As of this 
writing, where I work is the second fastest internet node in 
the world, and peaks at 4.5T bits/second: it has more or less
doubled per year ever since 1988.

And the same is true for home connections. They also 
average out at doubling per year at constant cost.

So, if you now have a 20Mbps connection, how long before
you could expect 1Gbps? Well, 1G is 1024M:

20×2↑y = 1024

We want to isolate y. Divide both sides by 20

2↑y = 51.2

Take the log of both sides

(2↑y) 2 = 51.2 2⇓a = b ⇓a = b
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Simplify the left-hand side:

y = 51.2 2⇓a = b

Which is about 5.68 years.

I said that it has “more or less doubled per year”. But what 
was the yearly growth really? Let’s call it g. As I write, it 
has been increasing for 28 years; 1 Kb is 1024 bits, and 1 
Tb is 1024↑4 bits.

64×1024×g↑28 = 4.5×1024↑4

We want to isolate g: divide by 64×1024:

g↑28 = (4.5×1024↑4)÷(64×1024)

Simplifying

g↑28 = (4.5×1024↑3)÷64

g↑28 = 4.5×16×1024↑2

g↑28 = 72×1024↑2

Take the root

(g↑28)↓28 = (72×1024↑2)↓28

Simplify and calculate:

g = 1.91

So it hasn’t grown at 100% per year, but 91%.
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Population Growth
Let’s assume that world population growth is exponential, 
which means that over some fixed period of y years it 
doubles. Let’s call the yearly growth g; then what this 
means is that 

g↑y = 2

So, if we want to know what the yearly growth g is, we 
take the root of both sides:

(g↑y)↓y = 2↓y

and simplify:

g = 2↓y

which we can also write as 2↑÷y.

So, if each year the growth is 2↑÷y, then over a period of n 
years the growth is 2↑(n÷y). The world grew from 6 billion 
to 7 billion in the 13 years up to 2012, so we have

6×2↑(13÷y) = 7

What then is y, the doubling period? Divide both sides by 
6:

2↑(13÷y) = 7÷6

Take the log of both sides:

(2↑(13÷y)) 2 = (7÷6) 2⇓a = b ⇓a = b

Simplify:
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13÷y = (7÷6) 2⇓a = b

Divide both sides by 13:

÷y = ((7÷6) 2)÷13⇓a = b

Invert both sides:

÷÷y = ÷(((7÷6) 2)÷13)⇓a = b

Simplify

y = 13÷(7÷6) 2⇓a = b

Which you may also transform to this if you wish:

y = 13×2 (7÷6)⇓a = b

Which gives a doubling time of 58.45 years. So all other 
things being equal, we could expect a population of 14 
billion in around 2070.

When might the population enter double figures?

7×2↑(x÷y) = 10

Divide by 7

2↑(x÷y) = 10÷7

Take the log:

x÷y = (10÷7) 2⇓a = b

Multiply by y

x = y×((10÷7) 2)⇓a = b

Which is about 30 years after 2012.
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Why there is no perfection
Imagine you want to buy a folding bike. What do you want 
from such a bike? Well, for instance, that it is light, strong, 
cheap – or at least reasonably priced, easy to fold, quick to 
fold, small when it is folded, comfortable to ride... there are
probably a dozen such properties that you want a folding 
bike to fulfil.

Well, let’s just take three of them for now: light, strong, and
cheap. Unfortunately, search as you may, you won’t be able
to find a folding bike that matches all three: you can find 
strong and light, but not cheap; you can find cheap and 
strong, but not light; you can find cheap and light, but not 
strong. Just those three constraints are not satisfiable. You 
could find strong, cheap and light, but then it wouldn’t be a 
bike: being a bike and being able to fold it are two 
constraints that are non-negotiable – it must be a bike, and 
it must be foldable. 

So in other words, you will have to relax at least one of 
your negotiable constraints. You could decide not to go on 
holiday next year and use that extra money to buy a non-
cheap bike. Or you could decide to put up with a heavy 
bike, or you could decide to be careful, and go with a not-
strong bike. In any case, you have to put up with non-
perfection.
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And this is why you shouldn’t expect to find a perfect 
partner either. What might you look for in a partner? Good 
looking, healthy, fit, financially secure, amusing, good 
conversationalist, good natured, good at cooking, musical, 
good in bed, ... There are lots of constraints, and they will 
be different for different people. 

Then there are probably a few that you wouldn’t think of 
mentioning, maybe because they are non-negotiable, like: 
of the opposite sex/same sex depending on your preference,
in an age group not too different from your own, speaks a 
language that you also speak, interested in you, and so on, 
and so on. 

The problem is, as you add each constraint, the pool of 
potential perfect partners gets smaller and smaller, and then
you have to add the constraint that it is someone you will 
somehow actually get to meet in a social context... This is 
why you should prepare yourself for not meeting the 
perfect partner: you will need to relax some of your 
constraints to find someone who is at least satisfactory.
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Which brings us, funnily enough, to musical tuning.

You probably know that a note in music is caused by air 
vibrating, at a different frequency for different notes. For 
instance, internationally it has been agreed that the note A 
above middle C has a frequency of 440Hz. Not for any 
particularly good reason (and a slightly better choice would
be 430.5Hz, but not so much better to make it worth 
retuning all the instruments in the world) but 440Hz is good
enough.

It turns out that our ears like combinations of frequencies 
that are related in certain simple ways, as small ratios of 
frequencies. For instance, a note played an octave higher is 
just twice the frequency, that is to say they have a ratio of 
2:1. So the A one octave higher would be 880Hz. We hear a
note an octave higher as almost the same note, only higher 
(and incidentally, it is also just by convention that we call it
‘higher’, a longer organ pipe plays a deeper note, so we 
could have called them the other way round).
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The next-most simple ratio of frequencies is 3:2. This is 
classically the relationship between the notes called a 
“perfect fifth”, between the first note on the major scale, 
and the fifth (which are seven semitones apart). So for 
instance, a fifth from A is the note E, so E would have a 
frequency of 440 × 3÷2, which is 660Hz. And the 
combination of an A and an E sounds nice to the human ear.

Of course, we want to be able to play a perfect fifth from 
any note, not just A, so the perfect 5th from E, which is B, 
would have a frequency of 660 × 3÷2, which is 990 Hz. 
And so we can build up a whole octave based on the 
premise that from every note we can also play the perfect 
fifth. 

Since 990 is above 880, we can halve the number to take it 
down into the octave we are building up, between 440Hz 
and 880Hz. So the B is at 495Hz. The fifth above that is F# 
which will have a frequency of 742.5, and so we can step 
through C#, G#, D#, A#, F, C, G, up to D, which has a 
frequency of 594.67Hz. The fifth above that takes us back 
to A, which will have a frequency of 594.67 × 3÷2, which 
is ... 892 Hz? But didn’t we say that A would be 880Hz? 

Yes we did.

In other words, it is impossible to make an octave of notes 
where you can play a perfect 5th from every other note. We
have to relax one of our constraints.
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Well, how about if we take the next most simple ratio, the 
perfect fourth, which has a ration of 4:3? Can we build an 
octave out of that, starting with A=440, and its perfect 
fourth D being 440×4÷3 = 586.7 and so on? I’m afraid that 
the answer to that is also no: you end up with an octave A 
that has a frequency of 868.1Hz, instead of the required 
880Hz.

So what is to be done? 

It is clear hopefully from the above that the octaves are 
non-negotiable. Any solution has to have the octave of any 
note as twice the frequency, otherwise you would get awful
dissonance.
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So what we can try to do is divide the octave up into 12 
equal steps, equal in the sense that each semitone has the 
same frequency ratio with its neighbour. But what is that 
ratio? 

Let’s call the ratio r. 

Starting from A, the calculation 440×r should give us A#. 
Then 440×r×r should give us B, and 440×r×r×r should give
us C, and so on all the way up to the next A:

440×r×r×r×r×r×r×r×r×r×r×r×r = 880

(that’s twelve r’s). Writing this another way:

440×r↑12 = 880

or

r↑12 = 880÷440

or

r↑12 = 2

or in other words

r = 2↓12 

Well, we know how to calculate that: r is just under 1.06. 

So if we calculate the resultant octave, it looks like this:

A A# B C C# D D# E F F# G G# A

440 466.2 493.9 523.3 554.4 587.3 622.3 659.3 698.5 740 784 830.6 880

586.7 660
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Underneath E I have shown what we would ideally have for
a perfect fifth from A, and under D, a perfect fourth. What 
you can see is that the difference is very small, less than 
1Hz in both cases. So small in fact that since we want to 
hear the right tuning, we think it is properly tuned (a lack of
dissonance due to cognitive dissonance).

So, the conclusion is, don’t expect perfection, but if you 
relax some of your requirements you might just find 
something that so nearly matches that you can’t tell the 
difference.
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Notes
So, the note A above middle C has a frequency of 440Hz, 
and each of the 12 semitones in an octave are separated by 
a factor of 2↑÷12. So what is the frequency of middle C? C 
is 9 semitones lower, so the frequency is

c=440×2↑(−9÷12)

which we know we can also represent as

c=440÷2↑(9÷12)

If we want, we can reduce it further to

c=440÷2↑(3÷4)

but either way, it calculates to 261.626Hz
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Which note is closest to 512Hz?

512=440×2↑(n÷12)

Divide by 440

512÷440=2↑(n÷12)

Take the log

(512÷440) 2=(2↑(n÷12)) 2⇓a = b ⇓a = b

Simplify

(512÷440) 2=n÷12⇓a = b

Multiply by 12

((512÷440) 2)×12=n⇓a = b

Which is 2.62 (semitones higher than A). That means that 
the nearest note to 512Hz is C, which has a frequency of

440×2↑(3÷12)

which is 523.25Hz (not surprisingly twice that of middle 
C).
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If C were set at 512Hz, what frequency would A be?

512÷2↑(3÷12)

which can also be written:

512÷2↓(12÷3)

which is

512÷2↓4

or

512×2↓−4

any of which give 430.54Hz.

A frequency of 512 is 2↑9, and since octaves are constant 
doublings, you can now see why 430.54Hz could be seen as
a good frequency for A rather than 440. It is said that 
Mozart used to tune his piano to A430.
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Earthquakes
The Richter scale of magnitudes of earthquakes represents 
the amplitude (height) of the seismic waves. For a 
magnitude of m:

amplitude = 10↑m

The energy released on the other hand is the 1.5th power of
the amplitude:

energy = (10↑m)↑1.5

which, because of the rule

(a↑b)↑c = a↑(b×c)

can also be written

energy = 10↑(m×1.5).

This grows really fast: an earthquake of magnitude 4 
releases 1 million units of energy; magnitude 6 releases 
1000 times that.

(Actually, the Richter scale itself is no longer used, but a 
new scale measured in a different way is used, but has been
tuned to match the Richter scale as closely as possible.)
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So what is the difference in magnitude between two 
earthquakes, where the second releases twice as much 
energy as the first?

e1 = 10↑(m1 × 1.5)

e2 = 10↑(m2 × 1.5)

e2 ÷ e1 = 2

Substitute in:

10↑(m2 × 1.5) ÷ 10↑(m1 × 1.5) = 

2

Use the rule a↑b ÷ a↑c = a↑(b−c):

10↑(m2 × 1.5 − m1 × 1.5) = 2

Take the 10 log of both sides:

(10↑(m2 × 1.5 − m1 × 1.5)) 10 = ⇓a = b
2 10⇓a = b

Simplify:

m2 × 1.5 − m1 × 1.5 = 2 10⇓a = b

Factor out the 1.5:

(m2 − m1)× 1.5 = 2 10⇓a = b

Divide both sides by 1.5:

m2 − m1 = 2 10 ÷ 1.5⇓a = b
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Which is marginally above 0.2. In other words, an 
earthquake of magnitude 7.4 is about twice as powerful as 
an earthquake of magnitude 7.2.

Personally I was amazed by this. Until I worked it out, I 
assumed, as I am sure many people do, that magnitude 7.2 
and 7.4 earthquakes were quite similar, when in fact they 
aren’t at all. The 7.4 is twice as destructive!

How could we fix this?

Well, a simple fix would be to introduce a new scale by just
multiplying the magnitudes by 5. Then a magnitude 7.2 
earthquake would become a scale 36 earthquake and a 
magnitude 7.4 earthquake would become a scale 37 
earthquake. People could then understand better that the 
next number in the scale is twice as powerful, while still 
having a close enough relationship to the magnitude that it 
would be easy to convert from one to the other.

However, as I said above, twice as powerful is “marginally 
above 0.2”, not exactly 0.2, and within a few points on the 
new scale the rule would diverge. For instance, the 
difference between a scale 36 earthquake and a scale 41 
earthquake would actually not be 32 times as powerful as 
you might expect, but only 31.6. This is because the 
magnitude scale is based on powers of ten, and 31.6 is 
1000↓2.
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So what other possibilities are there?

Well, we could define a scale purely based on powers of 2. 
We could start at the same point, so that magnitude 0 was 
scale 0, and then define the new scale so that each point 
higher was exactly twice as powerful. What would that look
like?

Well, as I said earlier, the magnitudes are the measure of 
amplitude, and the energy released is

e = 10↑(m×1.5)

The new scale would start at the same value for 0, which 
would be energy

10↑(0×1.5) = 1

and then double at each step:

e = 2↑s

So putting these together, we have

10↑(m×1.5) = 2↑s

Solving for m, we get:

m×1.5 = (2↑s) 10⇓a = b

m = ((2↑s) 10)÷1.5⇓a = b

and solving for s we get

10↑(m×1.5) = 2↑s

(10↑(m×1.5)) 2 = s⇓a = b
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Now tabulating these, we would get the following:

Magnitude Scale

1 4.98

2 9.97

3 14.95

4 19.93

5 24.91

6 29.90

7 34.88

8 39.86

9 44.85

10 49.82

(The largest recorded earthquake ever was magnitude 9.5, 
scale 47.34.)

Scale Magnitude

5 1.00

10 2.01

15 3.01

20 4.01

25 5.02

30 6.02

35 7.02

40 8.03

45 9.03
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As you can see, the difference between this and the rule 
“multiply the old scale by 5” is very small, so maybe it’s 
better to just stick with that.

You might actually like to compare the two equations for m
and s, and admire their symmetry:

m = ((2↑s) 10)÷1.5⇓a = b

s = (10↑(m×1.5)) 2⇓a = b

80



Arithmetic
For hundreds of years schoolchildren have been tortured 
with the mathematics of powers, roots and logarithms as if 
they were a completely different branch of thinking. 
However, if we change the notation to match that of simple 
arithmetic, we can do no more than conclude that they are 
actually just one more part of simple arithmetic, with 
similar rules and productions.

To illustrate this point, the Wikipedia article on logarithms 
ends the section on bases with the statement

“Given a number x and its logarithm logb(x) to 

an unknown base b, the base is given by:

b = x1/log
b

(x)”

Translating this into our notation we have:

b=x↑÷(x b)⇓a = b

which we know to transform to

b=x↓(x b)⇓a = b

To which we reply “Ha! That’s the very definition of !”.⇓, so that we have 

As another example, the Wikipedia article on roots says 

“Simplifying radical expressions involving 
nested radicals can be quite difficult. It is not 
immediately obvious for instance that 
√(3+2√2) = 1 + 2√2”
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So let’s prove it, and show how simple it now is! Convert 
to our notation:

(3+2×2↓2)↓2 = 1 + 2↓2

Square the right-hand side:

= (1 + 2↓2)↑2

Expand (a+b)↑2 to a↑2 + 2×a×b + b↑2:

= 1↑2 + 2×2↓2+ (2↓2)↑2

Replace 1↑2 with 1, and (2↓2)↑2 with 2:

= 1 + 2×2↓2+ 2

Reorder:

= 3+2×2↓2

Take the square root:

= (3+2×2↓2)↓2

QED.
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Do you really accept negative 
numbers as first-class citizens?
I’ll say it again: all numbers are abstractions. (There, I’ve 
said it three time, it must be true.)

However, it has taken humans a long time to realise this. 
For instance, for hundreds of years even mathematicians 
didn’t accept negative numbers, because they didn’t seem 
to correspond to anything in “the real world”. They were 
‘fictitious’ or ‘false’ values, and solutions that gave 
negative numbers were ignored. You could count three 
sheep, but what could minus three sheep possibly mean? 
And addition was about making the result larger, ‘plus’ 
means ‘increase’, so how could a+b possibly be smaller 
than a, which would be the case with negative b? 
Pythagoras had no negative numbers for instance. Only 
recently has my bank been reporting debits as negative 
numbers, rather than positive amounts of debit.

Of course, we moderns accept negative numbers as full 
partners of the positive numbers, don’t we? We accept that 
a car travelling backwards can be regarded as travelling at a
negative velocity. We accept that you can have a negative 
balance in your bank account. We know how to deal with 
the idea of negative temperatures.
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So, now that that is out of the way, let me ask you a 
question. 

A farmer has a square field, of area 25. How long are the 
sides of the field?

Well, I expect you answered 5, which is the right answer. 

Well, at least, one of the right answers, because −5 would 
be a correct answer too. 

“But how can a field have a side of length −5?” I hear you 
ask. Now you know how early mathematicians felt about 
negative numbers. 

So let me explain how a field can have a negative side.
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Algebra and geometry often go hand in hand. We defined 
multiplication using

a×(b+c) = a×b + a×c

and there is a really good way to illustrate this equality, that
shows the area of the whole rectangle is made up of the 
sum of the two small rectangles:

a×(b+c) = a×b + a×c
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Another well-known equality (which can be derived from 
the one above) is

(a+b)↑2 = a↑2 + 2×a×b + b↑2

Let’s derive it:

(a+b)×(a+b) 

= a×(a+b) + b×(a+b)

= a×a + a×b + b×a + b×b 

= a↑2 + a×b + a×b + b↑2

= a↑2 + 2×a×b + b↑2

which likewise can be illustrated geometrically:

(a+b)↑2 = a↑2 + 2×a×b + b↑2
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But an important aspect of such an equality is that a, b, and 
c can be any number. So while you can have a=3 and b=2:

(3+2)↑2

= 3↑2 + 2×3×2 + 2↑2

= 9 + 12 + 4

= 25

you can also have a=3 and b=−2:

(3+(−2))↑2 

= 3↑2 + 2×3×(−2) + (−2)↑2 

= 9 + (−12) + 4

= 1

and the equality still holds.
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But how does this version look in our geometric 
equivalent?

So the little square at the bottom right has sides of negative 
length −b, but a positive area (can you see why?) Even 
more interesting is that the two (overlapping) rectangles 
have negative area (a × −b)

So you can not only have shapes that have sides of negative
length, but also shapes of negative area.
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So let me ask another question to mirror the question asked 
at the beginning of this section.

Since we have now shown that it is possible to have shapes 
with negative area: what is the length of the sides of a 
square with area −25?

This is a question that we will come back to later.
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Complete numbers
So even though society has for hundreds of years has 
problems with the concept of negative numbers, nowadays, 
we are happy to talk about negative temperatures, about 
negative growth, negative bank balances, and we accept 
that a negative speed indicates that the thing is travelling 
backwards.

One way of visualising addition of two numbers it to draw 
from zero a line of length the value of the first number, and 
then a line from the head of that line, of the length of the 
second number. The result is the length of the line from 
zero to the head of the second number:

a+b=c

If any number is negative, then the arrow goes in the other 
direction:

a+b=c with b negative.
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An observable application of this is someone swimming in 
a river. If someone is swimming at a fast 4 m/s in the same 
direction as the current of 3 m/s, then from the viewpoint of
someone standing on the bank, they will be travelling at 7 
m/s. Similarly, if they are swimming against the current, 
then from the viewpoint of the person on the bank, they 
will be travelling at 1 m/s.

Swimming against the current
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Generalising Numbers
But now we are going to free these numbers from the 
bounds of the number line, and let them point in any 
direction. A number is now its length and its direction. For 
reasons I will later explain, I will call these new, 
unrestricted, numbers complete numbers.

Addition is done in exactly the same way. You draw from 
zero a line of the length of the first number, pointing in the 
direction of the first number; from the head of that line you 
draw another line of the length of the second number, in the
direction of the second number. Then the result is a line 
from zero to the head of the second number, and its 
direction is the resulting direction:

a+b=c with complete numbers.
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An immediate application of complete numbers is that you 
may now swim across the river, as well as up and down it.

So if you swim straight across the river at the speed of 4 m/
s, and the river is flowing at 3 m/s, from the viewpoint of 
the person on the bank, you will end up swimming 
diagonally at a speed of 5 m/s:

     

It’s the same addition rule, just more general. (4@90° + 
3@0° = 5@53.1°).

Similarly, if you want to swim across the river so that from 
the bank it looks like you are swimming straight across, 
you have to swim slightly into the current:

 

4@138.6°+3@0°=2.65@90°
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Roof
But there are other applications of Complete addition.

If you know the height and width of a roof, you can easily 
calculate the length and angle of the roof covering:

w+h = d

While we are looking at this example, it is worth 
mentioning that mathematicians would call the width a 
‘real’ number, the height an ‘imaginary’ number, and the 
diagonal a ‘complex’ number (complex because it is both 
real and imaginary at the same time). I hope you can see 
why I think this is a misleading naming that should not be 
used, and all of them just be called ‘complete’ numbers. 
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Weights
If a weight hangs on a string from the ceiling, then the 
force in the string is just the same as the weight of the 
object, but in the other direction, so that they balance out:

However, if you attach another string to the middle of the 
first string, and pull on it, the force in the top half of the 
string is just the negative of the Complete sum of the two 
other forces:

c = −(f+w)

(‘Negative’ for complete numbers means ‘a half turn (180°)
in the opposite direction’.)
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Ball on sloping floor
If a ball is on a floor, then the floor offers the ball resistance
exactly opposite to the force of the weight of the ball 
(otherwise the ball would sink, or crash, through the floor).

However, if the floor is sloping, the weight of the ball gets 
split into two forces, one which is at 90° to the floor, and 
one which is a force parallel to the floor, which pushes the 
ball down the slope. The complete sum of these two forces 
equals the force caused by the weight of the ball:

a+b=w
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Billiard balls
If a moving billiard ball hits another, stationary, ball of the 
same weight, then the Complete sum of the velocities of the
two balls after the collision is the velocity of the original 
ball.

Before:

after:

a+b=v

In fact, even if the original ball misses the other ball, it’s 
still true, because a+0 = a is still true with complete 
numbers.
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Multiplication
OK, so all those examples use addition, but what does it 
mean to multiply two complete numbers together?

Well, as was already explained, multiplication has to obey 
the rule:

(a+b)×c = a×c + b×c

and while I shan’t prove it here, the definition of 
multiplication that follows this rule is:

a@b × c@d = (a×c)@(b+d)

in other words, to multiply two complete numbers, you 
multiply the magnitudes, and add the angles.

A corollary of this is:

(a@b)↑2 = (a↑2)@(b×2)

and therefore

(a@b)↓2 = (a↓2)@(b÷2)

and in general:

(a@b)↑c = (a↑c)@(b×c)

and

(a@b)↓c = (a↓c)@(b÷c)
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Angles
In the above examples, the angles of the Complete numbers
have all been expressed in degrees, since that is the method 
of expressing angles that people are most at home with.

Why do we use 360° as the number of degrees in a circle? 
Possibly because it’s close to the number of days in the 
year; in any case it is a nice number to split up into pieces, 
because it is divisible by 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 
and 20. Only 7, 11, 13, 14, 16, 17, and 19 are missing in 
that row.

However, rather than degrees, mathematicians prefer to use
radians for measuring their angles (because it makes some 
laws simpler).

One radian is the angle such that the length of the arc 
drawn out by the angle is the same as the radius doing the 
drawing out; a sort of equilateral triangle, but with one 
curved side.

Since the circumference of a circle is 2×π×r, there are 2×π 
radians in a circle (that is 360° = 2×π radians). Which 
means that one radian is equal to 360 ÷ (2×π) = 57.3° 
(approximately).
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However, for Complete numbers it is actually handier to 
talk in fractions of a turn τ, where 1τ is one turn, which is 
the same as 360° or 2π radians. The advantage is that it is 
easier to take the modulo, and more understandable to talk 
in terms of fractions of a turn. 

For instance the square of 

2@270° 

is 

(2×2)@(270°+270°) 

= 4@540° 

= 4@(540°−360°)

= 4@180°. 

However, doing this in turns, we have 

2@0.75τ × 2@0.75τ 

= (2×2)@(0.75τ+0.75τ) 

= 4@1.5τ 

= 4@0.5τ, 

since one and a half turns has the same effect as a half turn.

There is also the pleasant fact that if your take τ = 2π, you 
can still have your radians.
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What is τ?
Just about everyone know what π (pi) is. If you measure the
diameter of a circle, the circumference of the circle is π 
times longer. This is true whether the circle is the size of an
orange, or the size of a planet.

If a wheel is 1 metre in diameter, then its circumference is  
π metres.

Almost everybody knows the approximate value of π too: 
somewhere near 3.14 (a little bit more, 3.141592...).

How can you use it?

Well, suppose you have a bicycle. A typical bike wheel is 
68cm in diameter. That means that each time it revolves, 
you travel 68×π cm, about 214 cm.

When you turn your pedals, it drives that big cog wheel at 
the front. That cog is connected to the chain that connects 
to a similar,  smaller, cog at the back. If the big cog has 52 
teeth, then each complete turn of the pedals will push 52 
links of the chain forward. If the cog at the back has 26 
teeth, then the 52 links in the chain will drive the back cog 
(and the back wheel with it) 52 ÷ 26 = 2 times round, which
will cause the bike to travel 2×68× π cm, which is 4.18 
metres.
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Presumably the diameter was chosen as the basis for π 
because it is easier to measure the diameter of a cylinder or 
wheel than the radius.

It wasn’t until much later that mathematicians realised that 
it is better to use the radius than the circumference when 
talking about circles.

Unfortunately, when they made the change, they forgot to 
change π to go with it, which means that mathematics is 
now full of formulas that include 2×π in them, such as the 
circumference (2×π×r).

But if we instead of using  π, use τ (tau), with the value 
twice that of pi (in other words 6.283184…), then the 
circumference of a circle becomes τ×r, and the 
circumference of a quarter of a circle (90°) becomes 0.25× 
τ×r, and there are now τ radians in a whole circle, so that 
180°, a half circle, becomes an angle of 0.5×τ.
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What about the square root of 
minus twenty five?

You may know that complex numbers (as complete 
numbers are traditionally called in mathematics) were born 
out a need to take the square root of negative numbers.

So to go back to the question that was asked earlier, what is
the length of the sides of a field of area −25. Or to put it 
another way, what is the square root of −25?

Well, as we have now seen, a number like −25 is just 

another way of writing 25@180°, or rather, 25@0.5τ.

And, we know how to take the root of a Complete number:

(25@0.5τ)↓2 = 25↓2@(0.5τ÷2)

= 5@0.25τ

Nothing particularly special about that.
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A note regarding the traditional 
treatment of imaginary numbers
The traditional way of handling imaginary numbers is to 
reduce them to real numbers multiplied by the unit of 
imaginariness, i, where i = √−1. Thus is i×i=−1, and a 

complex number might look like 3+4i.

If early mathematicians had adopted the same approach to 
their fictitious negative numbers, they would have observed
that the unit of fictitiousness is f, where f=0−1, and noted 
that all fictitious numbers can be written as positive 
numbers times f, such as 5f. All that you would have to 
remember is that f×f = 1 to return us to the realms of the 
real world, so that for instance 5×5f = 25f, but 5f × 5f = 25f²
= 25.

In other words, negative numbers would not have been 
given equal status with positive numbers, but treated as a 
poor sibling of them.

So is it with the traditional treatment of imaginary numbers.
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A Note on Terminology
Although traditionally Complete numbers are called 
‘Complex numbers’, which are made up of a combination 
of ‘Imaginary’ numbers and ‘Real’ numbers, they are 
neither imaginary nor complex, at least, no more imaginary
than negative numbers, and no more complex than rational 
numbers. For that reason I call them something reminiscent
of their old name, while trying to be fairer to them. It could 
be argued that these names have been used for so long now 
we should just accept them as they are, noting that they 
don’t describe what they refer to, and move on. However, 
the names are both off-putting for newcomers, and 
misleading for laypeople, so it is better for mathematics to 
rename them to something more representative. 
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Afterword
This book came from the combination of three different 
thought-streams: the first was while I was looking for good 
examples of mathematical functions that have two different
inverses; the second was trying to understand complex 
numbers properly, and why they are treated so mystically in
most maths books; and the third was while reviewing a 
son’s homework, and thinking “Why do they make 
something so simple so difficult?”

Hopefully, reading the text, it will all seem rather clear and 
straightforward. However, working out the new notations 
consumed reams of paper as I tried different options, and 
compared different patterns of formulas. The result may 
seem obvious, but it went through many variations as I 
experimented with different options.

As a colleague of mine who tries to design straightforward 
user interfaces once remarked: if you make it as easy to use
as a coffee machine, they think of you as a plumber.
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