
THE ABC NEWSLETTER
ISSN 0922-8055

THEABC NEWSLETTER

CWI, Amsterdam

CONTENTS

2 About this Issue
2 Publications
3 How to Get and Install Your Copy of ABC
4 How to Install ABC on Unix Machines
8 ABC Manual

11 A Short Introduction to the ABC Language
14 ABC Quick Reference
18 An Adventure Program
26 A Histogram Program
30 How to Order ABC

7
Issue 7 (Revised version) Aug 1995

Detailing the ABC release for:
Atari ST
Apple Macintosh
MS-DOS
Unix

This newsletter is available by ftp from:

ftp.cwi.nl

in directory

/pub/abc/newsletter/

The ABCNewsletter

2

About This Issue

The Newsletter exists to provide information about
ABC and to provide a forum for discussions.

This special issue is mainly devoted to the release of
ABC. It contains various documents concerning and
accompanying this release.

Write to us if you want to be added to our mailing list.

You are encouraged to submit any articles you see fit.
Articles don’t have to contain fully thought-out ideas,
but may be yet undeveloped thoughts intended to stim-
ulate discussion. The kinds of articles we have in mind
are: interesting programs, either written or sugges-
tions; unusual applications; letters, discussions on
points of the language, proposed improvements, expe-
rience with the language, and so on.

You can submit articles and send mail to:

abc@cwi.nl

or to:

The ABC Newsletter
CWI/AA
POB 4079
1009 AB Amsterdam
The Netherlands

© The authors and CWI, Amsterdam, 1990, 1995.
All rights reserved

Publications

The ABC Programmer’s Handbook is available.

The ABC Programmer’s Handbook.
Leo Geurts, Lambert Meertens and Steven Pemberton,
164 pages.

The book is an introduction to ABC and its im-
plementations, for people who have already
programmed.
It consists of first a quick introduction, giving
a brief and informal overview of the whole lan-
guage. This is followed by a chapter of exam-
ple programs. These examples demonstrate
ABC style, and how you program some com-
mon data structures in the language. After that
is a user’s guide to using the ABC implementa-
tions, explaining how to use the ABC system,
how to manage ABC programs, and so on. Fi-
nally, there is the Description of ABC, a semi-
formal definition of the language, giving the
syntax and semantics of the language, and the
definition of the built-in commands and func-
tions. Appendices give a Quick Reference, and
details of the implementations.

Published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1989, ISBN 0-13-000027-2.

The ABCNewsletter

3

How To Get and Install
Your Copy of ABC

There are four versions of ABC: for Atari ST ma-
chines, for Apple Macintoshes, for IBM PC’s and com-
patibles running MS-DOS, and for Unix machines.
ABC programs and workspaces can be transported be-
tween all these machines without any change.

Getting Your Copy

You can get ABC by WWW from http://www.cwi.nl/
~steven/abc.html, or by ftp from “ftp.cwi.nl”. You will
find all versions of ABC in the directory “/pub/abc”:

$ ftp ftp.cwi.nl
Connected to ...
Name:ftp
Password: (your email address)
ftp> cd /pub/abc
ftp> get README -

The last command shows you the contents of the file
“README”, which will tell you which filenames to
use to get the different versions of ABC. Since all ver-
sions have also been posted to the applicable news-
groups on USENET (i.e. comp.sources.unix, comp.
binaries.ibm.pc, comp.binaries.mac and comp.bina-
ries.atari.st), there will be various other archive ma-
chines and bulletin boards that carry ABC.

Finally, as a last resort, fill in the Order Form at the end
of this newsletter. Send a message to “abc@cwi.nl”, if
you encounter any problems in getting your copy of
ABC.

What follows is information relating to the different
ABC versions; it relates only to the files you receive by
ftp. If you get the release on floppy, you won’t have to
extract the files from an archive yourself but will find
them directly on the floppy.

The Unix Version

The Unix version is distributed in source form as a
compressed tar file. About 1.4 megabytes are needed
for the source. You need 2.5 megabytes in total to com-
pile and install the system.

The ftp version is in the file “abc.unix.tar.Z”. Put this
in the parent-directory where you want the ABC
source to reside, (e.g. /usr/local/src), and type:

zcat abc.tar.Z | tar xf -

(sometimes you need to type “xof ” instead of “xf ” to
make yourself the owner of the files extracted from the
tar-file; see “man 1 tar”). All files will then be un-
packed in the subdirectory abc (e.g. /usr/local/src/abc).

If you have ABC on a tape, mount it and type some-
thing like:

cd /usr/src/local
tar x # or tar xo

which will extract all files into the directory “/usr/src/
local/abc”, where you can start the installation.

Consult “How To Install ABC on Unix Machines”, lat-
er in this newsletter about installing ABC on Unix ma-
chines. You can find this documentation on-line in the
files “abc/README”, “abc/README2” and “abc/
Problems”.

The Atari ST Version

The version for Atari ST machines is in the binary im-
age archive file “abcst.arc”. To extract the six files
“abc.tos”, “abckeys.tos”, “abc.hlp”, “abc.msg”,
“abcintro.doc” and “readme.st” type:

arc x abcst.arc

The extracted files total about 250 K disk space.

The Apple Macintosh Version

The ftp version for the Apple Macintosh is in the ascii
file “abc.mac.sit.hqx”. It is a binhexed StuffIt archive.
First choose “Decode Binhex File ...” from StuffIt’s
Other menu. (Or BinHex itself if you have an old ver-
sion of StuffIt). Then “Open Archive ...” “abc.mac.sit”
from the File menu to extract the four files “MacABC”,
“MacABC.help”, “MacABC.doc” and “ABCin-
tro.doc”. The extracted files comprise about 333 K.

The MS-DOS Version

The version for MS-DOS machines is distributed as a
an arc file “abcpc.arc”. To extract the five files
“abc.exe”, “abckeys.exe”, “abc.hlp”, “abc.msg” and
“abcintro.doc”, type

arc x abcpc

You can extract the files one by one by typing e.g.:

arc x abcpc filename

All extracted files together use about 230 K diskspace.

The ABCNewsletter

4

Problems with Unpacking

If when unpacking the files you get a message like
“checksum error”, you probably forgot to ftp the file in
binary mode. Check that the size of the file that you
have is what it should be (do an “ls -l” or see the index
file mentioned above), and retransfer if not.

Files Needed to Run ABC

The minimum needed to run ABC is the executable,
(e.g. abc.exe) and the messages file (abc.msg). On an
MS-DOS machine these take up about 170K, leaving
plenty of room for ABC programs on the disk.

To run ABC reasonably you need at least 512K of
RAM free.

MS-DOS and Atart ST on one disk

If you have both an MS-DOS machine and an Atari ST
(with the same sort of floppies) you can put abc.tos,
abc.exe, and abc.msg on one disk, and that disk will
work on both machines without further change.

Error Messages

The error messages that ABC displays are all gathered
in a file and only read when necessary. This diminishes
the store used by ABC and enhances the adaptability of
ABC to other natural languages.

If you want the error messages in another language, for
example French, you only have to replace the file
abc.msg by a French version. (If you do translate the
messages into another language, please let us know so
we can make them available to everyone).

How To Install ABC on
Unix Machines

You will need 2.5 megabytes in total to compile and
load the ABC system. To start type:

./Setup

which will ask you some questions to set the ABC sys-
tem up on your installation. You can call “Setup” any
number of times without spoiling files. So run it once
to see what questions you will be asked, and run it
again when you’ve worked out the answers.

make makefiles
make depend

constructs simple makefiles with dependencies in the
relevant subdirectories.

make all

compiles and loads the ABC system, producing the
“abc” executable and other files it needs. You can test
ABC with:

make examples

This runs some examples in ./ex. It does not test the
ABC editor: consult the section HOW TO TRY THE
ABC EDITOR below (also online in abc/README2).
If all is well and you want to make ABC public

make install

will do some editing to get the right pathnames in, and
install the “abc” and “abckeys” binary files, the
“abc.1” manual file, and the auxiliary files in the direc-
tories you indicated during setup. Finally

make clean

deletes all intermediate files from the directories, and

make clobber

deletes the automatically created makefiles.

If you have made ABC public, all necessary files have
been copied to the public places, and you can get rid of
the entire ABC file system hierarchy you extracted
from the tape, if you want.

If there are any problems, don’t panic. See ./Problems
for advice. Also edit the example Bug Report form in
./doc to communicate the problem to us. We can then
send out diffs for fixed problems in the future.

The ABCNewsletter

5

Above all, we would be very grateful for any com-
ments you have about the setup procedure, or the ABC
system in general, in order to make it easier to use.
Good luck!

Trying the ABC Editor

The directory ./ex/try is for trying the ABC editor in-
teractively.

After a successful “make all” or “make examples” say:

make try_editor

to enter the ABC system. (If you are cross-compiling,
copy ./ex recursively to the target machine and say:

cd ex
TryEditor

you should make sure that the “abc” command in your
PATH.)

After the ABC system has started up it will prompt for
a command with

>>> ?

Slowly type ‘s’, then ‘t’, (no capitals needed) and you
should see the ABC editor suggest theSELECT and
START commands, respectively. Now press [TAB] to
accept this last suggestion, and [RETURN] to enter the
START command to the ABC interpreter. This com-
mand will prompt you for input, with

?

Just enter a few lines of text, (which will be echoed),
ending with an empty one (press [RETURN] immedi-
ately). A short “poem” should be generated by the
ABC interpreter.

If you are already familiar with the ABC language, you
might try to edit theSTART how-to by answering

>>> ?

with

:START

For example, try to remove theSET RANDOM com-
mand, to get random results on the same input. Or
make the unit delay the echoing of the text, entered by
the user, until after the reading of the empty line. For
testing purposes you should at least try the arrow keys
to move the focus around.

TACKLING PROBLEMS DURING ABC
INSTALLATION

This section contains some detailed advice in case you
run into problems while installing the ABC system.

The Setup Procedure

Your best bet if the “Setup” script fails is to read it, lo-
cate the problem, change it and run it again. You can
always shorten its runtime by changing long pieces
into the simple setting of a shell variable. For instance,
once you are sure your floating point is alright, you
might replace the whole section titled “Floating point
arithmetic ok?” by a simple “fflag= ”.

Normally you should not edit the files that Setup cre-
ates (./Makefile, ./uhdrs/os.h ./unix/abc.sh and ./
scripts/mkdep) directly, but their ancestors (./Makefi-
le.unix, ./uhdrs/os.h.gen, ./unix/abc.sh.gen and ./
scripts/mkdep.gen, respectively) and run Setup to in-
corporate your changes. If you really want to change
them directly, also change Setup to work on them or re-
move Setup completely.

When “make makefiles” or “make
depend” fail

When “make makefiles” fails to create the */Mf make-
files in the relevant subdirectories, first try to edit the
shell commands in Makefile.unix (and run Setup
again; see above).

Likewise, if “make depend” fails to create the */Dep
files in the subdirectories, try to fix ./scripts/mkdep
(and incorporate the changes in ./scripts/mkdep.gen
before running Setup again).

However, if either of these is not successful, you can
use the already constructed makefiles */MF and */
DEP. To do this, redefine “MF=Mf” to “MF=MF” and
“DEP=Dep” to “DEP=DEP” in Makefile.unix. You
can then call “make all” immediately, without “make
makefiles” and “make depend”.

The makefiles */MF and */DEP were created on a ma-
chine running 4.3 BSD UNIX. The dependencies in the */
DEP files on system include files (embedded in <>) were
stripped to make them more portable. On a different sys-
tem the real dependencies may differ in some details,
however. This may cause a second “make” after some ed-
iting to not see all dependencies on include files properly.
You can always use “make cleanall” to force all objects to
be recompiled if you suspect you ran into this.

The ABCNewsletter

6

Machine Configuration

The file ./uhdrs/config.h is created by compiling “mk-
config.c” and running “mkconfig” on your target ma-
chine, since it tries to establish some facts about the
hardware configuration. (If you are cross-compiling
you should do that before “make depend” since that
would run mkconfig on the local (compiling) machine.
If Setup went right, DESTROOT will be set in the
Makefile and you will be warned accordingly.)

If you really have to edit uhdrs/config.h, you should
edit the Makefile (or Makefile.unix) so that it will not
overwrite it any more.

The problem most encountered with mkconfig is “un-
expected over/underflow”. This is usually caused by a
bug in “printf”, where it can’t print very large or very
small numbers. Look at the last line produced by mk-
config before it failed, and then locate the printfafter
the one that printed that line. If it is trying to print a
comment (rather than a#define), you can safely
comment out the printf and try again. (You might also
want to report the bug to your UNIX supplier.)

Other Unix’s

The installation of the ABC system has been tested on
many different Unix systems. The Setup script tries to
find out which version of Unix yours is, and then cre-
ates ./uhdrs/os.h from ./uhdrs/os.h.gen accordingly.
We expect you will have no problems compiling ABC.

If your Unix is different, the Setup script will create a
file ./uhdrs/os.h with most defaults setup for a Version
7 Unix system, since that makes a minimum number of
assumptions. Examine the resulting file, and change
the names of system include files if they are different
on your system. Also check the definitions and Unix
specific flags in this file. See the comments, and use
your systems manual to find out how to set them. Don’t
forget that this file is created by running Setup; change
Setup if you want to edit uhdrs/os.h directly, or edit uh-
drs/os.h.gen and run Setup again.

We have tried to gather the operating system depend-
ent parts in ./unix/*.c and ./uhdrs/*.h. Examine these if
any problems in compilation remain.

Editor Problems

Once the ABC system is compiled, you may encounter
problems when you use the ABC editor. Our experi-
ence is that most of these problems are caused by erro-
neous or insufficiently detailed termcap entries, which
describe your terminal’s capabilities; so first check the
“termcap(5)” manual entry (or “terminfo(4)” for ter-
minfo systems). Ask your system’s guru to give you a
hand if you are not familiar with these.

The entries we use from the termcap database (if they
are defined for your terminal) are given at the end of
this article. Of these your termcap entry should at least
define the following:

le OR bc OR bs
up
cm OR CM OR (ho AND do AND nd)
(al AND dl) OR (cs AND sr)
ce
(so AND se AND sg = 0 [or sg not defined])

OR (us AND ue)

If any of these requirements is not fulfilled, the ABC
editor will complain that your terminal is too dumb.

One common problem on terminals with resizeable
windows is that the ABC prompt shows up like this:

>>>
 ?

on two lines instead of one. This means that the “li#”
entry in your TERMCAP does not accurately reflect
the number of lines actually in the window. This can be
remedied by changing the setting of your TERMCAP
environment variable, using the output of “stty size”
(see stty(1)). (On systems that have the TIOCGWINSZ
ioctl, we use it to get the proper window size; see tty(4)
on BSD UNIX systems).

The Help file

Note that the ABC help file abc.hlp is created automat-
ically using the manual in unix/abc.1.

7

The ABCNewsletter

TERMCAP entries used by Unix ABC
Name Type Description
AL str addn new blank lines
CM str screen-relative cursor motion
DL str deleten lines
al str add new blank line
am bool has automatic margins
bc str backspace character
bs bool terminal can backspace
cd str clear to end of display
ce str clear to end of line
cl str cursor home and clear screen
cm str cursor motion
co num number of columns in a line
cp str cursor position sense reply
cr str carriage return
cs str change scrolling region
da bool display may be retained above screen
db bool display may be retained below screen
dc str delete character
dl str delete line
dm str enter delete mode
do str cursor down one line
ed str end delete mode
ei str end insert mode
hc bool hardcopy terminal
ho str cursor home
ic str insert character (if necessary; may pad)
im str enter insert mode
in bool not save to have null chars on the screen
ke str keypad mode end
ks str keypad mode start
le str cursor left
li num number of lines on screen
mi bool move safely in insert (and delete?) mode
ms bool move safely in standout mode
nd str cursor right (non-destructive space)
nl str newline
pc str pad character
se str end standout mode
sf str scroll text up (from bottom of region)
sg num number of garbage characters left by so or se (default 0)
so str begin standout mode
sp str sense cursor position
sr str scroll text down (from top of region)
te str end termcap
ti str start termcap
ue str end underscore mode
up str cursor up
us str start underscore mode
vb str visible bell
ve str make cursor visible again
vi str make cursor invisible
xn bool newline ignored after 80 cols (VT100 / Concept glitch)
xs bool standout not erased by overwriting

The ABCNewsletter

8

NAME

abc – ABC interpreter & environment
abckeys – change key bindings for ‘abc’

SYNOPSIS

abc [workspace and editor options] [file ...]
abc [workspace and task options]
abckeys

DESCRIPTION
Without options or files, the ABC interpreter is started,
using the ABC editor, in the last workspace used or in
workspace ‘first’ if this is your first abc session. A
workspace is kept as a group of files in a directory, with
separate files for each how-to and location. The work-
space directories themselves are kept by default in the
directory $HOME/abc. On non-Unix machines,
$HOME is the disk you are working on.

Workspace Options:

-W dir Use group of workspaces in ‘dir’ instead
of $HOME/abc.

-w name Start in workspace ‘name’ instead of last
workspace used.

-w path Use ‘path’ as workspace (no -W option
allowed).

Editor option:

-e Use $EDITOR as editor to edit definitions,
instead of ABC editor (Unix only).

file ... Read commands from file(s) instead of
from standard input; input forREAD
commands is taken from standard input. If
a file is called ‘-’ and standard input is the
keyboard, the ABC system is started up
interactively for that entry.

Special tasks:

-i tab Fill table ‘tab’ with text lines from
standard input

-o tab Write text lines from table ‘tab’ to
standard output

-l List the how-to’s in workspace on
standard output

-r Recover a workspace when its index is
lost: useful after a machine crash if the
ABC internal administration files didn’t
get written out.

-R Recover the index of a group of workspaces

USAGE
(This is necessarily a very brief description; see ‘The
ABC Programmer’s Handbook’ for full details.)

Use ‘QUIT’ to finish an ABC session.

When ABC starts up interactively, it displays a prompt
and awaits input.

Typing and suggestions: as you type, the system tries
to suggest a possible continuation for what you have
typed; to accept the suggestion, press [accept] (by de-
fault this is bound to the [TAB] key; type ‘?’ to find out
the bindings for the keyboard you are using). If you
don’t want to accept the suggestion, just carry on typ-
ing (you can always type character for character, ignor-
ing the suggestions). Usually the system knows where
a letter must be capital and where not, and you usually
don’t have to use the shift key; however, in the few
places where both a lower-case and an upper-case let-
ter would be legal (for instance forAND), you have to
type the letter upper-case.

When you type a control command, likeWHILE, the
system provides indentation automatically for the
body of the command; to reduce the indentation one
level, type [return].

Correcting and editing: the [undo] key (by default
bound to backspace) undoes the last key you typed.
Repeatedly typing it undoes more and more, up to a
certain maximum number of keypresses.

To correct other parts, you must put the ‘focus’ onto
the part you want to change. The focus is displayed by
underlining or reverse video. [Widen] and [extend]
make the focus larger, [first] and [last] make it smaller.

[Delete] deletes the contents of the focus. [Copy] cop-
ies the contents of the focus to a buffer, or if the focus
is not focussed on anything, copies the contents of the
buffer back to where you are positioned. If there is
nothing in the copy buffer, typing [copy] brings back
the last typed immediate command.

Moving the focus: [Upline] and [downline] focus on
one line above or below. [Previous] and [next] move
the focus left and right. [Up], [down], [left], and [right]
move an empty focus around. [Goto] widens the focus
to the largest thing at the current position.

Other operations: [Look] redraws the screen; [record]
records all keystrokes until the next time you press
[record]; [play] replays them. [Redo] redoes the last
key(s) undone; [interrupt] interrupts a running command.

The ABCNewsletter

9

Workspaces: To create a new workspace, or go to an
existing workspace, type ‘>name’. To go to the last
workspace you were in, type a single ‘>’. To get a list
of workspace names, type ‘>>’. To delete a workspace,
delete all the how-to’s and locations in it.

How-to’s: To create a new how-to, just type the first
line of the how-to. This creates the new how-to, and al-
lows you to type the body. Use [exit] to finish it (by de-
fault [ESC][ESC]).

To visit a how-to, type a colon, followed by the name
of the how-to. Again, use [exit] to exit. To visit the last
how-to again, or the last how-to you got an error mes-
sage for, type a single ‘: ’. To get a list of the how-to’s
in this workspace, type ‘:: ’. To delete a how-to, visit
it and delete its contents.

Locations: To edit a location, type a ‘=’ followed by
the name of the location. To re-edit it, type a single ‘=’.
To get a list of the locations in the workspace, type
‘==’. To delete a location, use theDELETE command.

KEY BINDINGS
The binding of editing operations like [accept] to keys
may be different for your keyboard; type a ‘?’ at the
prompt to find out what the bindings are for your key-
board.

To redefine the keys used for editor operations, run
‘abckeys’. This produces a private key definitions file.
You will be given instructions on how to use it.

Keys labelledf1...f8 are function keys. On Unix, the
way to type these is terminal-dependent. The codes
they send must be defined by the termcap entry for
your terminal.

If a terminal has arrow keys↑, ←, →, ↓ which trans-
mit codes to the computer, these should be used for Up,
Down, Left and Right. Again, the termcap entry must
define the codes.

The Goto operation is of most use if the cursor can be
moved locally at the terminal, or if the terminal has a
mouse; the Goto operation will sense the terminal for
the cursor or mouse position. On Unix, we use two ex-
tra non-standard termcap capabilities for this: ‘sp’
which gives the string that must be sent to the terminal
to sense the cursor position, and ‘cp’ which defines the
format of the reply (in the same format as other cursor-
addressing strings in termcap). If your terminal’s
mouse-click sends the position of the click automati-
cally, just set ‘sp’ to the empty string. Seetermcap(5)
for more details.

FILES
$HOME/copybuf.abc

copy buffer between sessions
$HOME/abc/wsgroup.abc

table mapping workspace names to directory
names

$HOME/abc/abckeys_$TERM
private key definserveritions file (Unix only)

$HOME/abc/abc.key
private key definitions file (non-Unix)

position.abc
focus position of edited how-to’s in workspace

perm.abc
table mapping object names to file names

suggest.abc
suggestion list for user-defined commands

types.abc
table for type-checking between how-to’s

*.cmd
command how-to’s in this workspace

*.zfd, *.mfd, *.dfd
function how-to’s in this workspace

*.zpd, *.mpd, *.dpd
predicate how-to’s in this workspace

*.cts
permanent locations in this workspace

abc.msg
messages file, used for errors (not on Macintosh)

abc.hlp
helpfile (MacABC.help on Macintosh)

The latter two are searched for first in your start-up di-
rectory, then in $HOME/abc, and finally, on Unix, in a
directory determined by the installer of ABC. For MS-
DOS and the Atari ST the directories in your $PATH
are used in the last stage (if you have a hard disk place
these files in the workspaces directoryabc).

ATARI ST IMPLEMENTATION
There are four files supplied: the programabc.tos
itself, abckeys.tos for changing your key bind-
ings, the help fileabc.hlp , and the error messages
file abc.msg . (See FILES above.)

If you start ABC up from the desktop, and you want to
use the options given above, like-w, you should re-
nameabc.tos to abc.ttp . There is an additional
facility for redirecting input and output: the parameter
>outfile redirects all output from ABC to the file
calledoutfile , and similarly<infile takes its
input from the file calledinfile .

The ABCNewsletter

10

MS-DOS IMPLEMENTATION

There are four files for running ABC, the program
abc.exe itself, abckeys.exe for changing your
key bindings, the help fileabc.hlp , and the error
messages fileabc.msg . (See FILES above.)

If your screen size is non-standard, or your machine is
not 100% BIOS compatible (which is unusual these
days), you can specify the screen-size, and whether to
use the BIOS or ANSI.SYS for output, by typing after
theA> prompt, before you start ABC up, one of the fol-
lowing:

SET SCREEN=ANSI lines cols
SET SCREEN=BIOS lines cols

If you are going to useANSI.SYS , be sure you have
the line

DEVICE=ANSI.SYS

in yourCONFIG.SYS file. Consult the MS-DOS man-
ual for further details.

APPLE MACINTOSH IMPLEMENTATION

There are three files supplied:MacABC, the applica-
tion itself, MacABC.help , the help file, and
MacABC.doc , a MacWrite document containing a
variant of this text. The help file should be in the same
folder as MacABC, or in your System Folder.

MacABC runs in a single window. You’ll notice that
most operations are menu entries, as well as being pos-
sible from the keyboard. You can start ABC up by dou-
ble-clicking the MacABC icon in which case you start
up in the last workspace used, or by double-clicking on
any icon in a workspace, in which case you start in that
workspace. In this latter case, if the filename of the
icon you clicked on ends in.cmd , that how-to is exe-
cuted, but the how-to may not have any parameters.

Instead of the special option flags mentioned above,
most of the tasks, like recovering a workspace, can be
done from the File menu.

Notes for Macintosh guru’s:

The messages areSTR# resources in MacABC; you must use a re-
source editor to change them.

MacABC uses Monaco 9 for the screen, and Courier 10 for printing.
You can change them with ResEdit, by editing the resource with type
Conf and ID 0. The horizontal and vertical window-size and the win-
dow-title can also be adapted there. To facilitate this, first Paste the
TMPL resource with ID 5189 named Conf from MacABC to (a copy
of) ResEdit. But beware, MacABC only works properly with Fixed-
width Fonts like Monaco and Courier.

SEE ALSO
Leo Geurts, Lambert Meertens and Steven Pemberton,
The ABC Programmer’s Handbook, Prentice-Hall, En-
glewood Cliffs, New Jersey, 1989, ISBN 0-13-
000027-2.

Steven Pemberton,An Alternative Simple Language
and Environment for PCs, IEEE Software, Vol. 4, No.
1, January 1987, pp. 56-64.

The ABC Newsletter. Available free from CWI, and by
ftp from ftp.cwi.nl, in directory /pub/abc/newsletter.

The ABC mailing list. Send your name and email ad-
dress to abc-list-request@cwi.nl.

AUTHORS
Frank van Dijk, Leo Geurts, Timo Krijnen, Lambert
Meertens, Steven Pemberton, Guido van Rossum.

ADDRESS
ABC Distribution, CWI/AA, Postbox 94079, 1090 GB
Amsterdam, The Netherlands.

E-mail: ‘abc@cwi.nl’.

Fax: +31-20-592 4199

The ABCNewsletter

11

A Short Introduction to ABC
Steven Pemberton

While the full documentation about ABC is in the
ABC Programmer’s Handbook, this article should give
you just enough information to get going.

THE LANGUAGE
ABC is an imperative language originally designed as
a replacement for BASIC: interactive, very easy to
learn, but structured, high-level, and easy to use. ABC
has been designed iteratively, and the present version
is the 4th iteration.

It is suitable for general everyday programming, the
sort of programming that you would use BASIC, Pas-
cal, or AWK for. It is not a systems-programming lan-
guage. It is an excellent teaching language, and
because it is interactive, excellent for prototyping. It is
much faster than ‘bc’ for doing quick calculations.

ABC programs are typically very compact, around a
quarter to a fifth the size of the equivalent Pascal or C
program. However, this is not at the cost of readability,
on the contrary in fact (see the examples below).

ABC is simple to learn due to the small number of
types in the language (five). If you already know Pas-
cal or something similar you can learn the whole lan-
guage in an hour or so. It is easy to use because the
data-types are very high-level.

The five types are:

numbers: unbounded length, using exact arithmetic

texts (strings): also unbounded length

compounds: records without field names

lists: sorted collections of any one type of items
(bags or multi-sets)

tables: generalised arrays with any one type of
keys, any one type of items (finite mappings).

THE ENVIRONMENT
The implementation includes a programming environ-
ment that makes producing programs very much easier,
since it knows a lot about the language, and so can do
much of the work for you. For instance, if you type a W,
the system suggests a command completion for you:

W?RITE ?

If that is what you want, you press [tab], and carry on

typing the expression; if you wantedWHILE, you type
anH, and the system changes the suggestion to match:

WH?ILE ?:

This mechanism works for commands you define
yourself too. Similarly, if you type an open bracket or
quote, you get the closing bracket or quote for free.
You can ignore the suggestions if you want, and just
type the commands full out.

There is support for workspaces for developing differ-
ent programs. Within each workspace variables are
persistent, so that if you stop using ABC and come
back later, your variables are still there as you left
them. This obviates the need for file-handling facili-
ties: there is no conceptual difference between a varia-
ble and a file in ABC.

The language is strongly-typed, but without declara-
tions. Types are determined from context.

EXAMPLES

The (second) best way to appreciate the power of ABC
is to see some examples (the first is to use it). In what
follows, >>> is the prompt from ABC.

Numbers

>>> WRITE 2**1000
107150860718626732094842504906000181
056140481170553360744375038837035105
112493612249319837881569585812759467
291755314682518714528569231404359845
775746985748039345677748242309854210
746050623711418779541821530464749835
819412673987675591655439460770629145
711964776865421676604298316526243868
37205668069376

>>> PUT 1/(2**1000) IN x

>>> WRITE 1 + 1/x
107150860718626732094842504906000181
056140481170553360744375038837035105
112493612249319837881569585812759467
291755314682518714528569231404359845
775746985748039345677748242309854210
746050623711418779541821530464749835
819412673987675591655439460770629145
711964776865421676604298316526243868
37205668069377

The ABCNewsletter

12

Texts

>>> PUT ("ha "^^3)^("ho "^^3) IN laugh
>>> WRITE laugh
ha ha ha ho ho ho
>>> WRITE #laugh
18

>>> PUT "Hello! "^^1000 IN greeting
>>> WRITE #greeting
7000

Lists

>>> WRITE {1..7}
{1; 2; 3; 4; 5; 6; 7}
>>> PUT {1..7} IN l
>>> REMOVE 5 FROM l
>>> INSERT pi IN l
>>> WRITE l
{1; 2; 3; 3.141592653589793; 4; 6; 7}
>>> PUT {} IN ll
>>> FOR i IN {1..3}:
 INSERT {1..i} IN ll
>>> WRITE ll
{{1}; {1; 2}; {1; 2; 3}}
>>> FOR l IN ll:
 WRITE l /
{1}
{1; 2}
{1; 2; 3}
>>> WRITE #ll
3

Compounds

>>> PUT ("Root of 2", root 2) IN c

>>> WRITE c
("Root of 2", 1.414213562373095)

>>> PUT c IN name, value

>>> WRITE name
Root of 2

>>> WRITE value
1.414213562373095

Tables: A Telephone List
In use, tables resemble arrays:

>>> PUT {} IN tel

>>> PUT 4054 IN tel["Jennifer"]

>>> PUT 4098 IN tel["Timo"]

>>> PUT 4134 IN tel["Guido"]

>>> WRITE tel["Jennifer"]
4054

You can write all ABC values out. Tables are kept sort-
ed on the keys:

>>> WRITE tel
{["Guido"]: 4134; ["Jennifer"]:
4054; ["Timo"]: 4098}

The “keys ” function returns a list:

>>> WRITE keys tel
{"Guido"; "Jennifer"; "Timo"}

>>> FOR name IN keys tel:
 WRITE name, ":", tel[name] /
Guido: 4134
Jennifer: 4054
Timo: 4098

You can define your own commands:

HOW TO DISPLAY t:
 FOR name IN keys tel:
 WRITE name<<10, tel[name] /

>>> DISPLAY tel
Guido 4134
Jennifer 4054
Timo 4098

To find the user of a given number, you can use a quan-
tifier:

>>> IF SOME name IN keys tel HAS
tel[name] = 4054:

 WRITE name
Jennifer

Or create the inverse table:

>>> PUT {} IN user

>>> FOR name IN keys tel:
 PUT name IN user[tel[name]]

>>> WRITE user[4054]
Jennifer

>>> WRITE user
{[4054]: "Jennifer"; [4098]:
"Timo"; [4134]: "Guido"}

Commands and functions are polymorphic:

The ABCNewsletter

13

>>> DISPLAY user
4054 Jennifer
4098 Timo
4134 Guido

Functions may return any type. Note that indentation is
significant - there are noBEGIN-END’s or { } ’s:

HOW TO RETURN inverse t:
 PUT {} IN inv
 FOR k IN keys t:
 PUT k IN inv[t[k]]
 RETURN inv

>>> WRITE inverse tel
{[4054]: "Jennifer"; [4098]:
"Timo"; [4134]: "Guido"}

>>> DISPLAY inverse inverse tel
Guido 4134
Jennifer 4054
Timo 4098

A Cross-reference Generator

‘Text files’ are represented as tables of numbers to
strings:

>>> DISPLAY poem
1 I’ve never seen a purple cow
2 I hope I never see one
3 But I can tell you anyhow
4 I’d rather see than be one

The following function takes such a document, and re-
turns the cross-reference index of the document: a ta-
ble from words to lists of line-numbers:

HOW TO RETURN index doc:
 PUT {} IN where
 FOR line.no IN keys doc:
 TREAT LINE
 RETURN where

TREAT LINE:
 FOR word IN split doc[line.no]:
 IF word not.in keys where:

PUT {} IN where[word]
 INSERT line.no IN where[word]

TREAT LINE here is a refinement, directly supporting
stepwise-refinement. “split ” is a function that splits
a string into its space-separated words:

>>> WRITE split "Hello world"
{[1]: "Hello"; [2]: "world"}

>>> DISPLAY index poem
But {3}
I {2; 2; 3}
I’d {4}
I’ve {1}
a {1}
anyhow {3}
be {4}
can {3}
cow {1}
hope {2}
never {1; 2}
one {2; 4}
purple {1}
rather {4}
see {2; 4}
seen {1}
tell {3}
than {4}
you {3}

14

The ABCNewsletter

ABC QUICK REFERENCE

COMMANDS

WRITEexpr Write to screen; / before or after expr gives new line

READ addressEG expr Read expression from terminal to address; expr is example

READaddressRAW Read line of text

PUTexprIN address Put value of expr in address

SET RANDOMexpr Start random sequence for random and choice

REMOVEexprFROMlist Remove one element from list

INSERT exprIN list Insert in right place

DELETEaddress Delete permanent location or table entry

PASS Do nothing

KEYWORDexprKEYWORD . . . Execute user-defined command

KEYWORD Execute refined command

CHECKtest Check test and stop if it fails

IF test: If test succeeds, executecommands;
commands no ELSE allowed

SELECT: Select one alternative:
test: commands try eachtest in order
 . . . (one must succeed;
test: commands the lasttest may be ELSE)

WHILEtest: As long astest succeeds
commands executecommands

FORname, . . .IN train: Take each element oftrain in turn
commands

HOW-TO’s

HOW TOKEYWORD...: Define new commandKEYWORD...
commands

HOW TO RETURNf: Define new functionf with no arguments
commands (returns a value)

HOW TO RETURNf x: Define new functionf with one argument
commands

HOW TO RETURNx f y: Define new functionf with two arguments
commands

HOW TO REPORTpr: Define new predicatepr with no arguments
commands (succeeds/fails)

HOW TO REPORTpr x: Define new predicatepr with one argument
commands

HOW TO REPORTx pr y: Define new predicatepr with two arguments
commands

SHAREname,. . . Share permanent locations (before commands of how-to)

Refinements (after the commands of a how-to)

KEYWORD: commands Define command refinement

15

The ABCNewsletter

name: commands Define expression- or test-refinement

Terminating commands

QUIT Leave command how-to or command refinement, or leave ABC

RETURNexpr Leave function how-to or expression refinement, return value ofexpr

REPORTtest Leave predicate how-to or test-refinement, report outcome oftest

SUCCEED Leave predicate how-to or test-refinement, report success

FAIL Leave predicate how-to or test-refinement, report failure

EXPRESSIONS AND ADDRESSES

666,3.14,3.14e-9 Exact constants
expr, expr, . . . Compound
name, name, . . . Naming (may also be used as address)
text@p "ABCD"@2 = "BCD" (also address)
text| q "ABCD"|3 = "ABC" (also address)
text@p| q "ABCD"@2|1 = "BCD"|1 = "B"
table[expr] Table selection (also address)
"Jan",’Feb’,’Won’’t!’ Textual displays (empty:"" or ’’)
"value = ‘ expr‘;" Conversion ofexpr to text
{1; 2; 2; . . .} List display (empty: {})
{1..9; . . .} , {"a".."z"; . . .} List of consecutive values
{["Jan"]: 1; ["Feb"]: 2; . . .} Table display (empty: {})
f, f x, x f y Result of functionf (no permanent effects)
name Result of refinement (no permanent effects)

TESTS

x < y, x<= y, x>= y, x> y Order tests
x = y , x<> y (<> means ‘not equals’)
0 <= d < 10

pr, pr x, x pr y Outcome of predicatepr (no permanent effects)
name Outcome of refinement (no permanent effects)
testANDtestAND . . . Fails as soon as one of the tests fails
testORtestOR . . . Succeeds as soon as one of the tests succeeds
NOTtest

SOMEname, . . . IN train HAS test Setsname, . . . on success
EACH name, . . .IN train HAS test Setsname, . . . on failure
NO name, . .. IN train HAS test Setsname, . . . on failure

PREDEFINED FUNCTIONS AND PREDICATES

Functions and predicates on numbers

~x Approximate value ofx
exactly x Exact value ofx
exact x Test ifx is exact
+x, x+y, x- y,- x, x* y, x/ y Plain arithmetic
x** y x raised to the powery
root x, n root x Square root,n-th root
abs x, sign x Absolute value, sign (=−1, 0, or +1)

16

The ABCNewsletter

round x, floor x, ceiling x Rounded to whole number
n round x x rounded ton digits after decimal point
a modn Remainder ofa on division byn
*/ x Numerator of exact numberx
/* x Denominator
random Random approximate numberr, 0 <=r < 1
e, exp x Base of natural logarithm, exponential function
log x, b log x Natural logarithm, logarithm to the baseb
pi , sin x, cos x, tan x, arctan x Trigonometric functions, withx in radians
angle (x, y), radius (x, y) Angle of and radius to point(x, y)
c sin x, c cos x, c tan x Similar, with the circle divided intoc parts
c arctan x, cangle (x, y) (e.g. 360 for degrees)
now Date and time. E.g. (1999, 12, 31, 23, 59, 59.999)

Functions on texts

t^u t andu joined into one text
t^^ n t repeatedn times
lower t lower "aBc" = "abc"
upper t upper "aBc" = "ABC"
stripped t Strip leading and trailing spaces fromt
split t Split textt into words

Function on tables

keys table List of all keys intable

Functions and predicates on trains

#train Number of elements intrain
e#train Number of elements equal toe
e in train, enot.in train Test for presence or absence
min train Smallest element oftrain
emin train Smallest element larger thane
max train, emax train Largest element
train item n n-th element
choice train Random element

Functions on all types

x<<n x converted to text, aligned left in widthn
x><n The same, centred
x>>n The same, aligned right

THE CHARACTERS

!"#$%&’()*+,-./ This is the order of all characters that may occur in a text.
0123456789:;<=>? (The first is a space.)
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_
‘abcdefghijklmno
pqrstuvwxyz{|}~

The ABCNewsletter

17

SUMMARY OF EDITING OPERATIONS
Name Default Key*Short description
Accept [TAB] Accept suggestion, focus to

hole or end of line

Return [RETURN] Add line or decrease inden-
tation

Widen f1, [ESC] w Widen focus

Extend f2, [ESC] e Extend focus (usually to
the right)

First f3, [ESC] f Move focus to first con-
tained item

Last f4, [ESC] l Move focus to last con-
tained item

Previous f5, [ESC] p Move focus to previous
item

Next f6, [ESC] n Move focus to next item

Upline f7, [ESC] u Move focus to whole line
above

Downline f8, [ESC] d Move focus to whole line
below

Up ↑, [ESC] U Make new hole, move up

Down ↓, [ESC] D Make new hole, move down

Left ←, [ESC] , Make new hole, move left

Right →, [ESC] . Make new hole, move right

Goto [ctrl-G],
mouseclick

New focus at cursor posi-
tion

Undo [BACK-
SPACE]

Undo effect of last key
pressed (may be repeated)

To repeat the last immediate command, use [copy]
(only works if the copy buffer is empty).
To change the default keys, use the programabckeys.
* Notes:
[Ctrl-D] means: hold the [CTRL] (or [CONTROL])
key down while pressing d.
[ESC] w means: press the [ESC] key first, then w.

Redo [ctrl-U] Redo last UNDOne key
(may be repeated)

Copy f9, [ctrl-C],
[ESC]c

Copy buffer to hole, or
focus to buffer

Delete [ctrl-D] Delete contents of focus (to
buffer if empty)

Record [ctrl-R] Start/stop recording key-
strokes

Play [ctrl-P] Play back recorded key-
strokes

Look [ctrl-L] Redisplay screen

Help f10, [ESC]? Print summary of editing
operations

Exit [ctrl-X] Finish changes or execute
command

Interrupt (as set by
‘stty’)

Interrupt command execu-
tion

Suspend (as set by
‘stty’)

Suspend ABC (only for
shell with job control)

SUMMARY OF SPECIAL ACTIONS
: name Visit how-to called ‘name’

: Visit last how-to referred to

:: Display headings of how-to’s in workspace

To delete a how-to, visit it and delete its contents.

=name Visit contents of location

= Visit last location visited

== Display names of permanent locations in
workspace

To delete a location, use theDELETE command.

>name Visit workspace ‘name’

> Visit last workspace visited

>> Display list of workspace names

To delete a workspace, delete all how-tos and locations.

QUIT Leave ABC

SUMMARY OF OPTIONS
-W dir Use group of workspaces in ‘dir’ instead of

$HOME/abc.

-w name Start in workspace ‘name’ instead of last
workspace used.

-w path Use ‘path’ as workspace (no -W allowed).

-e Use $EDITOR as editor to edit definitions,
instead of ABC editor (Unix only).

file ... Read commands from file(s) instead of from
standard input.

-i tab Fill table ‘tab’ with text lines from standard
input

-o tab Write text lines from table ‘tab’ to standard
output

-l List the how-to’s in workspace on standard
output

-r Recover a workspace when its index is lost.

-R Recover the index of a group of workspaces

18

The ABCNewsletter

An Adventure Program

Steven Pemberton
CWI, Amsterdam

Adventure style games are very popular in computing circles, and I’m going to develop a small one here. Because
of space I will have to leave out many of the advanced features of most adventure games, but it will give you an
idea of how it looks in ABC. And of course it will be obvious how the bells and whistles can quickly be added on.

As I’m sure you know, a (textual) adventure program works by describing a scene. You then give instructions on
where to go, or what to do, and it responds by telling you what happened as a result. For instance, if it says

You are standing by a building at the end of a road.
A spring flows from the building.

and you reply

enter building

it might reply

You are inside a building, a well house for a spring.
There is a bottle here.
There are some keys here.

after which the dialogue might proceed as follows:

> take keys
> leave the building
Please use 1 or 2 word sentences.
> leave
You are outside the building.
> go west
You are standing by a stream.
> go south
You are at a small slit that the stream runs down.
A dry river bed carries on ahead.
> go down
You don’t seem to be able to go that way.
> south
You have found a metal grate fixed into the ground.
> down
Sorry, you can’t do that.
> open grate
The grate is open.
You are at a hole in the ground.
There is a metal grate lying on the ground.
> down
You are in a dim chamber.
A hole in the ceiling shows the sky above.

and so on.

The main program making up this adventure looks like this:

19

The ABCNewsletter

HOW TO ADVENTURE:
 START
 GET command
 WHILE command <> "quit":
 OBEY command
 GET command
 FINISH

START will initialise some variables, like the place where the player is, and what the player is holding.FINISH
will print out the score and so on.GET prints the prompt, reads a line, strips off spaces, and reduces it to lower-case:

HOW TO GET command:
 GET LINE
 WHILE command = "": GET LINE
GET LINE:
 WRITE "> "
 READ command RAW
 PUT lower stripped command IN command

OBEY has to split a command into its constituent words, and then decide what action needs to be taken for that
command:

HOW TO OBEY command:
 SPLIT command INTO verb AND object
 SELECT:
 verb = "": PASS
 special command: TRY TO MOVE command
 verb = "move": TRY TO MOVE object
 verb = "take": TRY TO TAKE object
 verb = "drop": TRY TO DROP object
 verb = "kill": TRY TO KILL object
 verb = "what": INVENTORY
 ELSE: CAN’T DO verb, object

SPLIT does what its name suggests: splits the command into its constituent words, and makes sure it only consists
of one or two words:

HOW TO SPLIT command INTO verb AND object:
 PUT split command IN words
 SELECT:
 #words = 1: PUT words item 1, "" IN verb, object
 #words = 2: PUT words item 1, words item 2 IN verb, object
 ELSE:
 WRITE "Please use 1 or 2 word sentences." /
 PUT "", "" IN verb, object

A nice feature is to allow synonyms for commands, to allow ‘‘go west ’’ and ‘‘ proceed west ’’ and ‘‘ move
west ’’ all to mean the same thing. We can do that by having a table of synonyms:

>>> WRITE synonyms["move"]
{"go"; "proceed"}

and then adding inSPLIT :

20

The ABCNewsletter

SHARE synonyms
...
IF SOME word IN keys synonyms HAS verb in synonyms[word]:
 PUT word IN verb

Moving places
In this adventure, each place has a name, which is a short description you get each time you visit it after the first
time (‘‘You are x’’, such as ‘‘outside the building’’ above). Then, each place has a long description used for de-
scribing it the first time you go there. Such a description is stored as a table of lines, for instance

>>> WRITE description["inside large hall"]
{[1]: "This is a large hall."; [2]: "There is an exit to the west."}

To display such a message neatly, we can define the following command:

HOW TO DISPLAY message:
 FOR line IN message:
 WRITE line /

>>> DISPLAY description["inside large hall"]
This is a large hall.
There is an exit to the west.

Then there is a map of all locations, which gives for each location a table of directions that the player can go in,
and where that direction leads to.

>>> WRITE map["inside the building"]
{["out"]: "outside the building"}
>>> WRITE map["outside the building"]
{["in"]: "inside the building"; ["south"]: "standing by the stream";
["west"]: "in the forest"}

We can play a nasty trick on the player:

>>> WRITE map["in the forest"]
{["east"]: "in the forest"; ["north"]: "in the forest";
["south"]: "in the forest"; ["west"]: "standing by the stream"}

Moving is attempted by means of the commandTRY TO MOVE. All commands beginningTRY TO first check
that the conditions for the action are acceptable, and only then do the action. The current location is held inplace :
TRY TO MOVE checks that the direction asked for is in the map for the current place:

HOW TO TRY TO MOVE direction:
 SHARE map, place
 SELECT:
 direction = "":
 WRITE "Where to?" /
 direction in keys map[place]:
 MOVE TO map[place][direction]
 ELSE:
 WRITE "You don’t seem to be able to go that way" /

MOVE TO does the actual moving. For now here is a simple version, but it will get more involved later.

21

The ABCNewsletter

HOW TO MOVE TO there:
 SHARE place
 PUT there IN place
 DESCRIBE place

(DESCRIBE describes a place and the objects to be found there; you’ll see it shortly.)

In OBEY, you will have noticed the lines

 SELECT:
 special command: TRY TO MOVE command

This is to allow the player to saysouth instead ofgo south , by seeing if the command is already in the map
for the current place:

HOW TO REPORT special command:
 SHARE map, place
 REPORT command in keys map[place]

Notice that it also allows you to use commands instead of directions in the map. For instance, when at the grate,
you can open the grate by having two places, an open grate and a closed grate:

>>> WRITE map["at closed grate"]
{["north"]: "at slit"; ["open grate"]: "at open grate"}

Taking and dropping objects

Different objects are left lying about at various places. These are recorded in a tableobjects . Just as with places,
each object has a simple name, to be used when the player wants to know what is being carried, and a longer de-
scription when an object is first found.

>>> WRITE objects["inside the building"]
{"bottle"; "keys"}
>>> WRITE description["keys"]
There are some keys here.

Now I can show youDESCRIBE. It remembers which places have already been described (and therefore visited),
and only gives the long description the first time:

HOW TO DESCRIBE place:
 SHARE description, objects, visited
 SELECT:
 place in visited:
 WRITE "You are ", place /
 ELSE:
 DISPLAY description[place]
 INSERT place IN visited
 FOR object IN objects for place:
 DISPLAY description[object]

Notice here the line ‘‘FOR object IN objects for place: ’’. Not every place may be recorded in the
objects table, so it is a shorthand to save repeated checks to see if it is:

22

The ABCNewsletter

HOW TO RETURN property for thing:
 SELECT:
 thing in keys property: RETURN property[thing]
 ELSE: RETURN {}

You’ll find it used again later on.

Then there is a list of what the player is carrying, calledholding , which is initially empty. To find out what is
being carried, the player can ask for an inventory:

HOW TO INVENTORY:
 SHARE holding
 SELECT:
 holding = {}:
 WRITE "You aren’t carrying anything" /
 ELSE:
 WRITE "You are carrying: "
 LIST holding

This uses a useful command to neatly print a list of objects:

HOW TO LIST things:
 PUT "" IN separator
 FOR object IN things:
 WRITE separator, object
 PUT ", " IN separator
 WRITE /

>>> LIST objects["inside the building"]
bottle, keys

Another useful tool is a test to see if an object is currently being carried:

HOW TO REPORT carrying object:
 SHARE holding
 REPORT object in holding

and another to test if an object is present:

HOW TO REPORT present object:
 SHARE objects, place
 REPORT object in objects for place

TRY TO TAKE can now check that the object is present, that it’s not already being carried and so on, before ac-
tually taking it:

23

The ABCNewsletter

HOW TO TRY TO TAKE object:
 SHARE holding
 SELECT:
 object = "":
 WRITE "Which object?" /
 carrying object:
 WRITE "You’re already carrying it!" /
 NOT present object:
 WRITE "I see no ‘object‘." /
 #holding > 6:
 WRITE "You can’t carry any more." /
 ELSE:
 TAKE object

TAKE looks like this, again a simple version for now:

HOW TO TAKE object:
 SHARE holding, objects, place
 REMOVE object FROM objects[place]
 INSERT object IN holding

TRY TO DROP is similar:

HOW TO TRY TO DROP object:
 SELECT:
 object = "": WRITE "Which object?" /
 NOT carrying object: WRITE "You’re not holding it!" /
 ELSE: DROP object

HOW TO DROP object:
 SHARE holding, objects, place
 REMOVE object FROM holding
 INCLUDE object IN objects FOR place

The commandINCLUDE adds an item to a table:

HOW TO INCLUDE object IN property FOR thing:
 IF thing not.in keys property:
 PUT {} IN property[thing]
 INSERT object IN property[thing]

Conditions and side effects

One of the tricks of adventure games is that certain actions are not possible unless you are at a certain place, or
you are carrying a certain thing, and some actions have unexpected side-effects.

For instance, you shouldn’t be able to open the grate if you aren’t carrying the keys. So we can alterMOVE TO to
check for this:

24

The ABCNewsletter

HOW TO MOVE TO there:
 SHARE place
 SELECT:
 opening.grate AND NOT carrying "keys":
 WRITE "I don’t seem able to open the grate" /
 ELSE:
 PUT there IN place
 DESCRIBE place
opening.grate:
 REPORT (place, there) = ("at closed grate", "at open grate")

Similarly, somewhere in the cave there is a bird, but you can only catch it if you’re carrying the cage. Furthermore,
the jangling of the keys frightens it. So we can alterTAKE to do this:

HOW TO TAKE object:
 SHARE holding, objects, place
 SELECT:
 object = "bird" AND carrying "keys":
 WRITE "The bird flutters off in fright." /
 object = "bird" AND NOT carrying "cage":
 WRITE "You don’t seem able to catch the bird." /
 ELSE:
 REMOVE object FROM objects[place]
 INSERT object IN holding

An example of a side-effect is that dropping the bird is the only way to scare off the snake (should you meet it):

HOW TO DROP object:
 SHARE holding, objects, place
 IF object = "bird" AND present "snake":
 WRITE "With a great flurry the bird attacks the snake." /
 WRITE "The snake flees into the darkness." /
 REMOVE "snake" FROM objects[place]
 REMOVE object FROM holding
 INCLUDE object IN objects FOR place

(Obviously,TAKE should also be changed to prevent you from trying to take the snake.)

Removing objects with extreme prejudice

Now you’ve seen that there are living creatures in the cave. Certain of them are undesirable to the player’s well-
being and score, and in the brutal tradition of adventure games must be eliminated. Of course some are harmless,
but computers only do what they are told...

HOW TO TRY TO KILL object:
 SELECT:
 object = "":
 WRITE "Which object?" /
 (NOT present object) AND (NOT carrying object):
 WRITE "I see no ‘object‘" /
 ELSE:
 KILL object

25

The ABCNewsletter

HOW TO KILL object:

 SHARE holding, objects, place

 SELECT:

 object = "bird":

 WRITE "How cruel! The poor bird dies with a mournful peep." /

 ELIMINATE

 INCLUDE "dead bird" IN objects FOR place

 object = "snake":

 WRITE "Attacking the snake is both dangerous and ineffective." /

 ELSE: \ It’s not a living creature

 WRITE "It’s already dead!" /

ELIMINATE:

 SELECT:

 carrying object: REMOVE object FROM holding

 present object: REMOVE object FROM objects[place]

Odds and ends

Well, that’s the body of the adventure. Of course, lots of extra places, objects, beings and commands must be add-
ed, but that’s just a case of more of the same.

In OBEY, if it can’t obey your command, it invokesCAN’T DO. As a nicety this prints funny remarks for certain
commands. For instance, if you’re at the stream, you might try ‘‘swim’’:

>>> DISPLAY funny["swim"]

The water would get into my circuits.

HOW TO CAN’T DO verb:

 SHARE funny

 SELECT:

 verb in keys funny: DISPLAY funny[verb]

 ELSE:

 WRITE "Sorry, you can’t do that" /

As a final touch, you might want to add the commands ‘‘save’’ and ‘‘restore’’ toOBEY, so you can save a game,
and come back later to it (or so you can try something, and if it fails restore it and try something else). This is
remarkably easy. Since the state of the game is reflected by a small number of variables, you can just put them in
another variable:

HOW TO SAVE:

 SHARE saved, holding, objects, place

 PUT holding, objects, place IN saved

HOW TO RESTORE:

 SHARE saved, holding, objects, place

 PUT saved IN holding, objects, place

 DESCRIBE place

26

The ABCNewsletter

A Histogram Program

Jurjen Bos
CWI, Amsterdam

Here is a small example program. It shows a histogram on your screen. A call like

HISTOGRAM {["*"]: {["a"]: 5; ["b"]: 6; ["c"]: 3}; ["+"]: {["b"]: 5; ["c"]: 1}}

will produce a view like:

6| *
5| * * +
4| * * +
3| * * + *
2| * * + *
1	* * + * +
a b c	

The program automatically scales the rows vertically and adjusts column layout.

It uses some interesting datastructures; see for example the technique used to print a line in the refinement
DRAW GRAPH.

HOW TO HISTOGRAM data:
 PUT 24, 79 IN height, width \set to the size of your screen
 ANALYSE DATA
 SCALE
 COMPUTE COLUMN LAYOUT
 INDEX TABLES
 DRAW GRAPH
 BOTTOM LINES
ANALYSE DATA:
 \collect total length of symbols, column names, and graph data
 PUT 0, {}, {} IN symbols, columns, graph
 FOR symbol IN keys data:
 FOR col IN keys data[symbol]:
 IF col not.in columns: INSERT col IN columns
 INSERT data[symbol][col], symbol, col IN graph
 PUT symbols+#symbol IN symbols
SCALE:
 PUT max graph IN level, symbol, col
 PUT level/(height-3.5) IN scale
 PUT 10**max{0; floor(10 log scale)} IN ten.power
 IF (scale/ten.power) not.in round.numbers:
 PUT ((scale/ten.power) min round.numbers)*ten.power IN scale
 IF SOME i IN {0..2} HAS i round scale=scale: PUT i IN digits
round.numbers: RETURN {1; 1.25; 1.5; 2; 2.5; 3; 4; 5; 6; 8; 10}

27

The ABCNewsletter

COMPUTE COLUMN LAYOUT:
 PUT #"‘digits round level‘" IN left

 PUT floor((width-left-1)/#columns) IN col.width
 SELECT:
 col.width>symbols+2*#data:
 PUT 2, min{col.width; symbols+2*#data+7} IN bar.space, col.width
 col.width>symbols+#data:
 PUT 1, min{col.width; symbols+#data+5} IN bar.space, col.width
 col.width>=symbols:
 PUT 0, min{col.width; symbols+3} IN bar.space, col.width
 ELSE:
 WRITE "The columns do not fit on the page. Sorry."
 CHECK 0=1
 PUT 1+floor((col.width-symbols-bar.space*#data+bar.space)/2) IN
right
INDEX TABLES:
 \make table for column positions
 PUT {} IN col.index
 FOR col IN columns:
 PUT #col.index*col.width+right IN col.index[col]
 DELETE columns
 \compute table for bar positions in a column
 PUT 0, {} IN symbols, symbol.index
 FOR symbol IN keys data:
 PUT symbols IN symbol.index[symbol]
 PUT symbols+bar.space+#symbol IN symbols
DRAW GRAPH:
 PUT max graph IN level, symbol, col
 INSERT (0, "", col) IN graph
 PUT " "^^#col.index*col.width IN line
 PUT scale*round(level/scale) IN line.level
 WHILE line.level>0:
 WRITE digits round line.level>>left, "|"
 WHILE level>=line.level-scale/2:
 PUT symbol IN line@col.index[col]+symbol.index[symbol]|#symbol
 PUT (level, symbol, col)max graph IN level, symbol, col
 WRITE line /
 PUT line.level-scale IN line.level
BOTTOM LINES:
 WRITE "-"^^left, "|", "-"^^#line /
 WRITE " "^^left, "|"
 FOR col IN keys col.index: WRITE (col><col.width)|col.width
 WRITE /

I used the program to demonstrate to people how much the sum of a set of dice resembles the normal distribution.
For this I used the following program. It will draw a histogram comparing the normal distribution, the real distri-
bution of the dice, and a sample of 100 throws, all scaled to fit in the same diagram. The program allows you to
throw "dice" with any number of sides: the sides will always have values from one onwards. Thus, a coin is a two-
sided die with sides 1 and 2.

Here is the program:

28

The ABCNewsletter

HOW TO PICTURE n DICE OF sides SIDES:
 \first, compute distrubution of ideal dice
 PUT {[0]: 1} IN die
 FOR counter IN {1..n}:
 PUT {} IN new
 FOR j IN keys die: PUT die[j] IN new[j+1]
 FOR i IN {2..sides}:
 PUT die[max keys die] IN new[(max keys die)+i]
 FOR j IN {min keys die .. (max keys die)-1}:
 PUT new[i+j]+die[j] IN new[i+j]
 PUT new IN die
 DELETE new
 \compute normal approximation
 PUT sides**n IN s
 PUT n*(sides+1)/2, n*(sides**2-1)/12 IN mu, sigma
 PUT {} IN norm
 FOR i IN {n..n*sides}:
 PUT s*normal(mu, sigma, i) IN norm[i]
 \compute sample
 PUT {} IN sample
 FOR i IN {n..n*sides}: PUT 0 IN sample[i]
 FOR i IN {1..100}:
 PUT 0 IN x
 FOR counter IN {1..n}:
 PUT x+choice{1..sides} IN x
 PUT sample[x]+s/100 IN sample[x]
 \off we go
 WRITE "*: real dice +: normal simulation s: sample of 100"/
 HISTOGRAM {["*"]: die; ["+"]: norm; ["s"]: sample}

HOW TO RETURN normal(mu, sigma, x):
 RETURN (exp(-0.5*(x-mu)**2/sigma))/root(2*pi*sigma)

Now, imagine yourself throwing dice for the royal game of goose:

>>> PICTURE 2 DICE OF 6 SIDES
*: real dice +: normal simulation s: sample of 100
6| * +
5| * + s * + s * + s
4| * + s * + s * + s * + s * + s
3| s * + s * + s * + s * + s * + s * + s * + s
2| s * + s * + s * + s * + s * + s * + s * + s * + s * +
1| * + s * + s * + s * + s * + s * + s * + s * + s * + s * + s * + s
-|--
 | 2 3 4 5 6 7 8 9 10 11 12

Finally, a less trivial example:

29

The ABCNewsletter

>>> PICTURE 7 DICE OF 3 SIDES
*: real dice +: normal simulation s: sample of 100
510| s
480| s
450| s
420| s s
390| s *+s
360| *+s *+s *+
330| s *+s *+s *+ s
300| s *+s *+s *+ s
270| *+s *+s *+s *+ *+s
240| *+s *+s *+s *+ *+s
210| *+s *+s *+s *+ *+s
180| *+s *+s *+s *+s *+s
150| s *+ *+s *+s *+s *+s *+s *+
120| s *+ *+s *+s *+s *+s *+s *+ s
 90| * s *+ *+s *+s *+s *+s *+s *+s * s
 60| *+s *+ *+s *+s *+s *+s *+s *+s *+s
 30| s *+s *+s *+s *+s *+s *+s *+s *+s *+s *+s *+
---|---
 | 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

30

The ABCNewsletter

How To Order ABC

If you can’t find ABC on any bulletin board or archive machine that you have access to, you can order a copy using
this form, from:

ABC Implementations
CWI/AA
Postbox 94079
1090 GB Amsterdam
The Netherlands

ORDER FORM

Name: ...

Address: ...

...

...

Country: ..

For personal computers

Please send me a copy of the ABC implementation for:

◊ Apple Macintosh, 3 1/2" single sided floppy disk (400K).

◊ Atari ST, 3 1/2" single sided floppy disk (360K).

◊ IBM PC and compatibles running MS-DOS, 5 1/4" floppy disk (360K).

◊ IBM PC and compatibles running MS-DOS, 3 1/2" floppy disk (720K).

For Unix

Please send me a copy of the Unix sources for the ABC implementation in tar format on:

◊ 600′, 1/2" reel tape, 1600 bpi.

◊ 1/4" cartridge tape, QIC-24 format.

◊ 1/4" cartridge tape, QIC-11 format.

(For other media and formats, please inquire.)

Prices

Prices are in Dutch guilders for Europe, and US dollars for the rest of the world. They include all taxes and postage
costs, and are correct at the time of printing:

On floppy disk: ◊ fl. 35 within Europe ◊ $25 elsewhere
On reel tape: ◊ fl. 100 within Europe ◊ $60 elsewhere
On cartridge tape: ◊ fl. 250 within Europe ◊ $150 elsewhere

I enclose a cheque or international money order for

made payable to ‘‘Stichting Mathematisch Centrum, Amsterdam’’.

Signature and Date:

