
THE ABC NEWSLETTER
ISSN 0922-8055

THEABC NEWSLETTER

© CWI, Amsterdam 1993. All rights reserved Issue 8, August 1995

The ABC Newsletter exists to provide information about ABC and
to provide a forum for discussions.

You are encouraged to submit any articles you see fit. Articles don’t
have to contain fully thought-out ideas, but may be yet undeveloped
thoughts intended to stimulate discussion. The kinds of articles we
have in mind are: interesting programs, either written or suggestions;
unusual applications; letters, discussions on points of the language,
proposed improvements, experience with the language, and so on.

If you are fortunate enough to be able to send email, you can submit
articles and send mail to:

abc@cwi.nl

Otherwise to:

The ABC Newsletter
CWI/AA
Postbox 94079
1090 GB Amsterdam
The Netherlands

This newsletter is available by ftp from:

ftp.cwi.nl

in directory

/pub/abc/newsletter/

CONTENTS

2 News
4 Publications
4 Readers write: the type checker
7 Grammar Analysis

11 Eight Queens, More or Less
13 A General-Purpose Database8

The ABCNewsletter

2

NEWS

Yes! at long last a new Newsletter! ABC is no longer a
funded research group, and therefore is a spare-time
activity for us; this means that there is much less
activity, both writing and programming.

Here is a summary of the current state of things.

NEWSLETTER

From now on the newsletter will principally be availa-
ble electronically as a PostScript file from the ABC
ftp archive (see below). For people without the
resources to get hold of a copy electronically, we will
send them on request. The directory is /pub/abc/
newsletter.

THE BOOK

Four misprints have been found, alas:

Page 6, 6th line from the bottom

keys count item 2
should read
(keys count) item 2

Page 37, 7th line from bottom

REMOVE p FROM s
should read

REMOVE p FROM set

Page 55, 9th line from bottom

WHILE group IN keys followers:
should read

WHILE group in keys followers:

Page 65 line 3, a ? is missing at the end of the line.

A revised version of the book will shortly be available
free from the ftp archive (see below). Watch this
space.

CHANGES

There is one function that has been added to the
implementation since the book went to print (though
it’s documented in the help file):

>>> WRITE now
(1995, 8, 4, 18, 3, 44.125996)

The function returns a compound consisting of (year,
month, day, hour, minute, seconds) with fractional
seconds to the accuracy supplied by the operating sys-
tem. The month is in the range {1..12}, the day

{1..31}, the hour {0..23}, the minutes {0..59}, and the
seconds 0≤ secs < 60.

For instance, here is a function to return what day of
the week it is today:

HOW TO RETURN today:
PUT now IN (year, month, day,

hour, minute, second)
RETURN day.name[which]^”day”

which:
RETURN (day.in.year -

dominic) mod 7
dominic:

PUT floor(year/100) IN century
RETURN 7-((year+(floor(year/4))-

century+(floor(century/4))-
leap) mod 7)

leap:
IF (year mod 4 = 0 AND

year mod 100 <> 0) OR
 year mod 400 = 0:

RETURN 1
RETURN 0

day.in.year:
PUT {[2]: 28+leap} IN length
FOR i IN {1; 3; 5; 7; 8; 10; 12}:

PUT 31 IN length[i]
FOR i IN {4; 6; 9; 11}:

PUT 30 IN length[i]
PUT day IN total
FOR m IN {1..month-1}:

PUT total+length[m] IN total
RETURN total

day.name:
RETURN split ”Sun Mon Tues Wednes

Thurs Fri Satur”

>>> WRITE today
Friday

IMPLEMENTATIONS

The Unix, Macintosh, MS-DOS and Atari ST imple-
mentations are available by ftp and WWW and on
floppy disk and tape from us. The implementations
were also posted to comp.binaries.{atari.st; ibm-pc;
mac} and comp.sources.unix (make sure you get the
three patches too, for that one).

The ftp address is ftp.cwi.nl in directory /pub/abc., the
WWW address is http://www.cwi.nl/~steven/abc.html

At the time of writing the files available are:

The ABCNewsletter

3

index for a list of all files available
abc.intro for an overview of ABC (also

included with the implementations below)
abcst.arc for the Atari ST version
abcpc.arc for the IBM PC version
abc.mac.sit.hqx for the Mac version
abc.unix.tar.Z for the Unix version
README for an explanation of how to unpack the

above files
abcversions for a description of updates as

they are made.

There will be a new version of the sources made avail-
able that will be considerably easier to port. Contact
abc@cwi.nl .

There is a new test version of ABC available. Cur-
rently only the (Unix) source is available in the
archive, since it hasn’t been tried on a wide range of
machines yet. What would be nice is if all you Abece-
darians with Unix try it out, report the problems,
which we fix, and then we can distribute the versions
for everybody else; the test version is called test.tar.Z
in /pub/abc on ftp.cwi.nl.

Are there people with the time and responsibility to do
the MS-DOS and Mac compilations when the time
comes?

The new version has the following additions:
— support of ABC source ‘archives’
— support of a ‘central’ workspace.

Both of these are explained below.

ARCHIVES

Many people have asked for a repository of useful
ABC programs. The problem was that ABC didn’t
easily support importing programs, and certainly not
in a machine-independent way. The new version does.
It is done with two new flags -p (pack) for producing
an archive, and -u (unpack) for importing an archive.
For instance:

abc -w program -p > program.abc

produces an archive of the workspace ’program’;

abc -w new -u < program.abc

will unpack it again in the workspace ’new’.

CENTRAL WORKSPACE

Very often when writing ABC programs, you use
how-tos that you have already written in other work-
spaces and have to copy them physically across.

The central workspace is a place where you can store
all the how-tos that are common across workspaces:
how-tos in the workspace called ’abc’ are now acces-
sible from all other workspaces, suggestions and all.

SOURCE ARCHIVE

To go with the new archiving version of ABC is a
repository of example programs. It is in the usual
place (ftp.cwi.nl), and currently the programs availa-
ble are:

advent: an (incomplete) adventure game
grammar: a collection of grammar analysis tools.

This workspace also contains how-tos for set,
sequence, tree, and graph handling.

eliza: a psychoanalysis program, and a paranoid
patient

We will be adding more, and candidate programs can
be sent to us for inclusion.

The directory is programming/languages/abc/exam-
ples, where there is a general README.

We also plan to add a FAQ (frequently asked ques-
tions) directory for answers that we often have to give.

FUTURE

Other future plans, given the time, include a window-
ing version of ABC, graphics and system extensions,
and the older newsletters available by ftp. Now, where
did we put that time? :-)

The ABCNewsletter

4

PUBLICATIONS
J. Zwaan, and R. Zwart,Graphics for ABC, CWI
Report CS-R9255, CWI, Amsterdam, 1992.

This report gives the first steps towards a graphical
facility for the programming language ABC. It
discusses which features are to be included as
primitives in a graphical extension to the lan-
guage, the way pictures could be represented and
gives directions towards an implementation.

L.G.L.T. Meertens, S. Pemberton, and G. van Ros-
sum,The ABC structure editor: Structure-based edit-
ing for the ABC programming environment. CWI
Report CS-R9256, CWI, Amsterdam, 1992

ABC is an interactive programming language
where both ease of learning and ease of use stood
high amongst its principle design aims. The lan-
guage is embedded in a dedicated environment
that includes a structure-based editor. In with the
design aims, the editor had to be easy to learn,
demanding a small command set, and easy to use,
demanding a powerful command set and strong
support for the user in composing programs, with-
out enforcing a computer-science understanding of
issues of syntax and the like. Some novel design
rules have led to an interesting editor, where the
user may enter and edit text either structurally or
non-structurally, without having to use different
‘modes’.

Robin Jones, Clive Maynard, Ian Stewart,The Art of
Lisp Programming, Springer Verlag, Berlin etc, 1990,
ISBN 0-387-19568-8 and ISBN 3-540-19568-8.

A textbook for anyone who has a passing
acquaintance with procedural languages, such as
BASIC or Pascal, but who has not met a functional
language like Lisp before. In addition to providing
a step-by-step introduction to Lisp, this book is
unique in illustrating the use of Lisp through the
development of a realistic project: the design and
implementation of a Lisp-based interpreter for the
language ABC.

Peter Landrock, Knud Nissen,Kryptologi, Abacus
Publishers, Vejle, Denmark, 1990, ISBN 87-89182-
24-3

An introduction to cryptography, with example
programs in ABC. In Danish.

The CWI reports mentioned here are available as
PostScript files by ftp from site ftp.cwi.nl in directory
/pub/CWIreports/AA; the file names are the report
numbers mentioned above.

READERS WRITE
We get sent a lot of email about ABC, much of which
is questions about using ABC or why aspects of ABC
are like they are. Here is one.

The Type Checker

Dear ABC people:

There’s a problem in the type checker: when you
interactively enter a table with different element types
it works, but when you leave ABC and restart, ABC
won’t accept the types any more.

Here’s an example:

$ abc
ABC Release 1.01.07.
>first
>>> PUT {} IN zork
>>> PUT 10 IN zork[”integer”]
>>> PUT ”ten” IN zork[”string”]
>>> WRITE zork
{[”integer”]:10; [”string”]: ”ten”}
>>> WRITE zork[”string”]
ten
>>> QUIT

$ abc
ABC Release 1.01.07.
>first
>>> WRITE zork
*** Can’t reconcile the types in your location zork:
{[”integer”]:10; [”string”]:”ten”}
*** The problem is: I found type EG 0 where I

expected ””
>>> ?

What’s the problem?

Nico Verwer, Utrecht University, The Netherlands.

We reply:

What you are trying to do isn’t allowed in ABC: the
error message is correct. The problem is that ABC
failed to spot it in the first instance.

The problem is in the typechecker: it checks each
immediate command separately, without looking at
the contents of locations. Thus:

>>> PUT {} IN zork

No problem.

>>> PUT 10 IN zork[”integer”]

The ABCNewsletter

5

Still no problem.

>>> PUT ”ten” IN zork[”string”]

Officially, it should complain at this point, but because
it doesn’t look at the contents of locations, it doesn’t
spot this error.

>>> WRITE zork
{[”integer”]: 10; [”string”]: ”ten”}
>>> WRITE zork[”string”]
ten

The ABC system is built so thatinternally tables with
mixed element types work (the system uses them
itself for symbol tables, for instance), but because
ABC is strongly typed, it is not allowed.

In the second session:

>>> WRITE zork
*** Can’t reconcile the types in your location zork
{[”integer”]:10;[”string”]: ”ten”}
*** The problem is: I found type EG 0 where I
expected ””
>>> ?

In this case it processes the types in one go and does
see the problem. Similarly, if you type

>>> PUT {[”integer”]: 10;
[”string”]: ”ten”} IN zork

as an immediate command, it would complain as well.

So the problem in this case is that ABC (the language)
doesn’t allow something you thought it might.

Solutions?

1) Store integers as texts, and convert:

>>> WRITE zork
{[”integer”]:”10”;[”string”]:”ten”
}

HOW TO RETURN value t:
IF t=””: RETURN 0
IF t|1=”-”: RETURN -(val (t@2))
RETURN (val (t|#t-1))*10+dig

dig: RETURN #{”1”..t item #t}

>>> WRITE value zork[”integer”]
10

2) Store integers or texts as indexes into another table:

>>> WRITE zork
{[”integer”]: 10; [”string”]: 1}

>>> WRITE strings
{[1]: ”ten”}

or

>>> WRITE zork
{[”integer”]:”1”;[”string”]:”ten”}
>>> WRITE integers
{[”1”]: 10}

How could you imitate the ABC system’s symbol
table in ABC? You need one table for the symbols
themselves, and 5 for the values of each ABC type
(number, text, compound, list, table):

>>> WRITE value
{[”a”]: ”n1”; [”b”]: ”t1”; [”c”]:
”l1”; [”d”]: ”T1”}

The keys are the names of locations, and the elements
are indexes into the tables for each type:

>>> WRITE number
{[”n1”]: 123; [”n2”]: 10; [”n3”]:
20; [”n4”]: 2.718; [”n5”]: 3.142}

>>> WRITE text
{[”t1”]: ”Hello there”; [”t2”]:
”e”; [”t3”]: ”pi”}

>>> WRITE list
{[”l1”]: {[1]: ”n2”; [2]: ”n3”}}

>>> WRITE table
{[”T1”]: {[1]: (”t2”, ”n4”); [2]:
(”t3”, ”n5”)}}

Here is a how-to to print out the contents of a location:

>>> FOR t IN keys value:
WRITE t, ”: ”
PRINT value[t]
WRITE /

a: 123
b: ”Hello there”
c: {10; 20}
d: {[”e”]: 2.718; [”pi”]: 3.142}

HOW TO PRINT v:
SHARE number, text, compound
SHARE list, table
SELECT:

v in keys number:
WRITE number[v]<<1

The ABCNewsletter

6

v in keys text:
WRITE ‘”’, text[v], ‘”’

v in keys compound:
PRINT COMPOUND

v in keys list:
PRINT LIST

v in keys table:
PRINT TABLE

ELSE:
WRITE ”?‘v‘?”

PRINT COMPOUND:
PUT ”” IN sep
WRITE ”(”
FOR i IN compound[v]:

WRITE sep
PRINT i
PUT ”, ” IN sep

WRITE ”)”
PRINT LIST:

PUT ”” IN sep
WRITE ”{”
FOR i IN list[v]:

WRITE sep
PRINT i
PUT ”; ” IN sep

WRITE ”}”
PRINT TABLE:

PUT ”” IN sep
WRITE ”{”
FOR k, i IN table[v]:

WRITE sep, ”[”
PRINT k
WRITE ”]: ”
PRINT i
PUT ”; ” IN sep

WRITE ”}”

Here is a (simple) how-to to tell the type of a value:

>>> FOR t IN keys value:
WRITE t, ”: ”
TELL TYPE value[t]
WRITE /

a: 0
b: ””
c: {0}
d: {[””]: 0}

HOW TO TELL TYPE v:
SHARE number, text, compound
SHARE list, table
SELECT:

v in keys number:
WRITE ”0”

v in keys text:
WRITE ’””’

v in keys compound:
TELL COMPOUND

v in keys list:
TELL LIST

v in keys table:
TELL TABLE

ELSE:
WRITE ”?‘v‘?”

TELL COMPOUND:
PUT ”” IN sep
WRITE ”(”
FOR u IN compound[v]:

WRITE sep
TELL TYPE u
PUT ”, ” IN sep

WRITE ”)”
TELL LIST:

WRITE ”{”
PUT list[v] IN c
SELECT:

#c > 1:TELL TYPE c item 1
ELSE: WRITE ”?”

WRITE ”}”
TELL TABLE:

WRITE ”{”
PUT table[v] IN c
SELECT:

#c > 1:
PUT c item 1 IN k, i
WRITE ”[”
TELL TYPE k
WRITE ”]: ”
TELL TYPE i

ELSE: WRITE ”[?]: ?”
WRITE ”}”

Finally (to drive home the message in the ABC Pro-
grammer’s Handbook ...), here is a function to replace
PRINT above:

HOW TO RETURN repr v:
SHARE number, text, compound
SHARE list, table
SELECT:

v in keys number:
RETURN number[v]<<1

v in keys text:
RETURN ’”’^text[v]^’”’

The ABCNewsletter

7

v in keys compound:
RETURN repr.compound

v in keys list:
RETURN repr.list

v in keys table:
RETURN repr.table

ELSE:
RETURN ”?‘v‘?”

repr.compound:
RETURN ”(” ̂ listed.compound ̂ ”)”

listed.compound:
RETURN ”, ” listed compound[v]

repr.list:
RETURN ”{” ^ listed.list ^ ”}”

listed.list:
RETURN ”; ” listed list[v]

repr.table:
RETURN ”{” ^ listed.table ^ ”}”

listed.table:
PUT ””, ”” IN sep, res
FOR k, i IN table[v]:

PUT res^sep^”[‘repr k‘]: ”^
repr i IN res

PUT ”; ” IN sep
RETURN res

HOW TO RETURN sep listed t:
PUT ””, ”” IN sep, res
FOR i IN t:

PUT res^s^repr i IN res
PUT sep IN s

RETURN res

(I’ve mixed the use of̂ , ‘‘ , and<< for pedagogic
reasons :-)

>>> FOR t IN keys value:
WRITE t,”: ”,repr value[t] /

a: 123
b: ”Hello there”
c: {10; 20}
d: {[”e”]: 2.718; [”pi”]: 3.142}

By the way, note that although really disjoint texts
have been used for the keys into the different tables
(like “n1” for numbers, “t1” for texts) that’s not abso-
lutely necessary; simple integers would also work,
just as long as the numbers are disjoint. All the how-
to’s above work without change on this set of data-
structures. The advantage of the first method is when
debugging: you can see immediately what the type of
the value ought to have been.

GRAMMAR ANALYSIS
WITH ABC

Steven Pemberton
CWI, Amsterdam

When working with grammars, I always use ABC to
do it. Among the advantages are that you can do the
work interactively, that you can very quickly build
additional tools, and that you have the already power-
ful programming environment at your disposal.

What follows is a brief description of some of the
tools I use, with an example. Some of what follows is
also presented in the ABC Handbook, though at a
somewhat more relaxed pace.

This code is available from the ABC ftp archive. For
didactic reasons, what is presented here differs in
detail from the code there.

GRAMMARS

The representation that I use is more or less a direct
transcription of what a grammar is. I use a table whose
keys are texts (i.e. strings) representing the nontermi-
nals of the language, and whose items are sets of alter-
natives. Each alternative is a sequence of texts,
representing terminals and nonterminals. So here is a
how-to that displays a grammar in this form:

HOW TO DISPLAY grammar:
FOR name IN keys grammar:

WRITE ”‘name‘: ” /
FOR alt IN grammar[name]:

WRITE ” ”
FOR symbol IN alt:

WRITE symbol, ” ”
WRITE /

and as example:

>>> DISPLAY sentence
ADJ:

EMPTY
clever
shy

BOY:
John
Kevin

EMPTY:

The ABCNewsletter

8

GIRL:
Mary
Susan

OBJ:
SUBJ

SENT:
SUBJ loves OBJ

SUBJ:
ADJ BOY
ADJ GIRL

You can generate a random phrase from a grammar
with the following:

HOW TO GENERATE sym FROM grammar:
SELECT:

sym in keys grammar: \Nonterminal
FOR new IN choice grammar[sym]:

GENERATE new FROM grammar
ELSE: \Terminal symbol

WRITE sym, ” ”

>>> GENERATE ”SENT” FROM sentence
Susan loves clever John

SETS

Here are some necessary functions on sets. Set union:

HOW TO RETURN set1 with set2:
FOR x IN set2:

IF x not.in set1:
INSERT x IN set1

RETURN set1

Set difference:

HOW TO RETURN set1 less set2:
FOR x IN set2:

IF x in set1:
REMOVE x FROM set1

RETURN set1

Here is a function that collects all symbols used in the
rules of a grammar:

HOW TO RETURN used grammar:
PUT {} IN all
FOR rule IN grammar:

FOR alt IN rule:
FOR sym IN alt:

IF sym not.in all:
INSERT sym IN all

RETURN all
>>> WRITE used sentence
{”ADJ”; ”BOY”; ”EMPTY”; ”GIRL”;

”John”; ”Kevin”; ”Mary”; ”OBJ”;
”SUBJ”; ”Susan”; ”clever”; ”loves”;
”shy”}

The terminals of the grammar are all the symbols less
the nonterminals:

>>> WRITE (used sentence)less keys
sentence

{”John”; ”Kevin”; ”Mary”; ”Susan”;
”clever”; ”loves”; ”shy”}

and the unused nonterminals (such as the root symbol)
are the nonterminals less the used symbols:

>>> WRITE (keys sentence)less used
sentence

{”SENT”}

For neater output, “listed” converts a set to a text:

HOW TO RETURN listed set:
PUT ”” IN line
FOR element IN set:

PUT line^”‘element‘ ” IN line
RETURN line

>>> WRITE listed ((used
sentence)less keys sentence)

John Kevin Mary Susan clever loves
shy

A useful set is the set of nonterminals that can gener-
ate empty. This is generated by repeatedly doing a
pass over the rules that we don’t know yet can gener-
ate empty, until we find no more:

HOW TO RETURN empties grammar:
PUT keys grammar IN to.do
PUT {} IN empties
WHILE SOME name IN to.do HAS

empty:
INSERT name IN empties
REMOVE name FROM to.do

RETURN empties
empty:

REPORT SOME alt IN grammar[name]
HAS empty.alt

empty.alt:
REPORT EACH sym IN alt HAS sym in empties

>>> WRITE listed empties sentence
ADJ EMPTY

The ABCNewsletter

9

RELATIONS

Relations between symbols of the grammar are the
essential element of the grammar tools. A relation is
represented as a table whose keys are symbols, and
whose items are sets of symbols.

For instance, if symbolb follows symbola in some
rule, ”b” will be in the set forfollows[”a”] , so
you can say, for instance:

IF ”b” in follows[”a”]:

Relations are sparse (i.e. a symbol is not in the keys of
the relation if the set of elements is empty), so we use
the following to access a relation:

HOW TO RETURN relation for k:
\relation[k] for sparse relations
IF k in keys relation:

RETURN relation[k]
RETURN {}

To add an element to a relation, we use this:

HOW TO ADD x TO relation FOR thing:
IF thing not.in keys relation:

\First time
PUT {} IN relation[thing]

IF x not.in relation[thing]:
INSERT x IN relation[thing]

though you may prefer

HOW TO ADD x TO relation FOR thing:
PUT (relation for thing) with {x}

IN relation[thing]

For instance:

>>> ADD ”b” TO follows FOR ”a”

We’ll display a relation with:

HOW TO SHOW relation:
FOR k IN keys relation:

WRITE ”‘k‘: ”, listed
relation[k]/

Here are some general functions on relations. The
inverse:

HOW TO RETURN inverse relation:
PUT {} IN inv
FOR k IN keys relation:

FOR x IN relation[k]:
ADD k TO inv FOR x

RETURN inv

The product of two relations (a P c iff a R1 b and b R2 c):

HOW TO RETURN r1 prod r2:
PUT {} IN prod
FOR c IN keys r2:

FOR b IN r2[c]:
IF b in keys r1:

FOR a IN r1[b]:
ADD a TO prod FOR c

RETURN prod

The closure:

HOW TO RETURN closure r:
FOR i IN keys r:

FOR j IN keys r:
IF i in r[j]:

PUT r[i] with r[j] IN r[j]
RETURN r

To make a relation reflexive, we use the following.
Since relations are sparse, we also have to pass the set
of symbols that it must be reflexive over:

HOW TO RETURN symbols reflexive r:
FOR sym IN symbols:

ADD sym TO r FOR sym
RETURN r

SOME EXAMPLES OF RELATIONS

To collect thedirect followers for each symbol, we
walk along each alternative, collecting adjacent sym-
bols. There is one catch: in a rule like:

SENT: the ADJ PERSON

“the” and “ADJ” are adjacent, but if “ADJ” can gener-
ate empty, then so are “the” and “PERSON”:

HOW TO RETURN followers grammar:
PUT {} IN foll
PUT empties grammar IN empty
FOR rule IN grammar:

FOR alt IN rule:
TREAT ALT

RETURN foll
TREAT ALT:

FOR i IN {1..#alt-1}:
PUT alt item i IN this
TREAT PART

TREAT PART:
FOR j IN {i+1..#alt}:

PUT alt item j IN next
ADD next TO foll FOR this
IF next not.in empty: QUIT

>>> SHOW followers sentence

The ABCNewsletter

10

ADJ: BOY GIRL
SUBJ: loves
loves: OBJ

To collect the direct starter symbols of each rule, you
also have to deal with symbols that produce empty:

HOW TO RETURN heads grammar:
PUT {} IN heads
PUT empties grammar IN empty
FOR name IN keys grammar:

FOR alt IN grammar[name]:
TREAT ALT

RETURN heads
TREAT ALT:

FOR i IN {1..#alt}:
PUT alt item i IN head
ADD head TO heads FOR name
IF head not.in empty: QUIT

>>> SHOW heads sentence
ADJ: EMPTY clever shy
BOY: John Kevin
GIRL: Mary Susan
OBJ: SUBJ
SENT: SUBJ
SUBJ: ADJ BOY GIRL

Similarly for the direct enders:

HOW TO RETURN tails grammar:
PUT {} IN tails
PUT empties grammar IN empty
FOR name IN keys grammar:

FOR alt IN grammar[name]:
TREAT ALT

RETURN tails
TREAT ALT:

FOR i’ IN {-#alt..-1}:
PUT -i’ IN i
PUT alt item i IN tail
ADD tail TO tails FOR name
IF tail not.in empty: QUIT

The closure of the head relation represents all symbols
that can start a rule, either directly or indirectly:

>>> SHOW closure heads sentence
ADJ: EMPTY clever shy
BOY: John Kevin
GIRL: Mary Susan
OBJ: ADJ BOY EMPTY GIRL John Kevin

Mary SUBJ Susan clever shy
SENT: ADJ BOY EMPTY GIRL John Kevin

Mary SUBJ Susan clever shy
SUBJ: ADJ BOY EMPTY GIRL John

Kevin Mary Susan clever shy

Symbolb may follow symbola in a phrase ifb fol-
lows a in an alternative, or ifB follows A in an alter-
native andb is in heads*(B) anda is in tails*(A). This
is expressed as the product:

head* . follow . inverse(tail*).

Now we have enough to define a command for a
grammar g, that prints for each symbol in each alter-
native what may follow that symbol at that point:

HOW TO SHOW LOCAL FOLLOWERS g:
PUT (used g) with keys g IN symbols
PUT symbols reflexive

(closure heads g) IN head.star
PUT symbols reflexive

(closure tails g) IN tail.star
PUT followers g IN follow
PUT (head.star prod follow) prod

(inverse tail.star) IN
deep.follow

FOR parent IN keys g:
FOR alt IN g[parent]:

TREAT ALT
ANNOUNCE ALT:

WRITE ”‘parent‘: ”, listed alt /
TREAT ALT:

ANNOUNCE ALT
FOR i IN {1..#alt}:

TREAT SYM
TREAT SYM:

PUT alt item i IN sym
WRITE ” ‘sym‘: ”
WRITE listed local.follow /

local.follow:
PUT {} IN foll
FOR j IN {i+1..#alt}:

PUT alt item j IN next
PUT foll with (head.star for

next) IN foll
IF next not.in empty:

RETURN foll
RETURN foll with (deep.follow for

parent)

This prints each alternative separately, followed by
each symbol of the alternative indented one to a line
followed by the symbols that can follow it at that point.

For example:

The ABCNewsletter

11

>>> SHOW LOCAL FOLLOWERS sentence

ADJ: EMPTY

EMPTY: BOY GIRL John Kevin Mary
Susan

ADJ: clever

clever: BOY GIRL John Kevin Mary
Susan

ADJ: shy

shy: BOY GIRL John Kevin Mary
Susan

BOY: John

John: loves

BOY: Kevin

Kevin: loves

EMPTY:

GIRL: Mary

Mary: loves

GIRL: Susan

Susan: loves

OBJ: SUBJ

SUBJ:

SENT: SUBJ loves OBJ

SUBJ: loves

loves: ADJ BOY EMPTY GIRL John
Kevin Mary OBJ SUBJ Susan
clever shy

OBJ:

SUBJ: ADJ BOY

ADJ: BOY John Kevin

BOY: loves

SUBJ: ADJ GIRL

ADJ: GIRL Mary Susan

GIRL: loves

CONCLUSIONS

What has been presented here is a set of grammar
tools that let you play with grammars and analyse
them very easily, and interactively. Some major tools
that are missing are a LL-1 checker, that lets you
check that a grammar is parsable with an LL-1 parser,
and a parser. These will be the subjects of later arti-
cles.

EIGHT QUEENS, MORE
OR LESS

Steven Pemberton
CWI, Amsterdam

I was asked what an Eight Queens program would
look like in ABC. The problem is, can you put eight
queens on an 8 by 8 chess board board in such a way
that they cannot take each other. A queen can take by
moving vertically, horizontally or diagonally.

My first version was a fairly traditional version — for
instance see E.W. Dijkstra’s version in the bookStruc-
tured Programming — although of course, I immedi-
ately generalised it to any number of queens1:

HOW TO QUEENS n:
DISPLAY n filled {}

The commandDISPLAY just displays the board,
which is represented as a table whose keys are the row
numbers (1 to n), and whose items are the column
number of the piece for that row:

HOW TO DISPLAY board:
IF board = {}:

WRITE "No solution" /
FOR p IN board:

WRITE "# "^^(p-1), "O "
WRITE "# "^^(#board - p) /

The work of finding a solution for the problem is done
by the functionfilled . If the board is already of
sizen then an answer has already been found. Other-
wise, a piece is added for the next row: each possible
piece is tried, and if one is found that is ‘safe’ — it
can’t be taken by any of the other queens on the board
— it is placed on the board (byboard’), and
filled is called to fill the next row. If the result of
that call is successful, then that result is returned, oth-
erwise the next piece for the current row is tried. If no
piece is found, then the empty board is returned, to
indicate failure.

The check for safeness uses properties of row and col-
umn numbers to see if a position is being attacked.

1. (Actually the question then arises:Why eight? Why
not twelve?I think that the answer is that eight is the
smallest value that gives an interesting result).

The ABCNewsletter

12

The function uses backtracking and the fact that ABC
functions can’t produce side-effects. See my article
Backtracking in B in theABC Newsletter 5 for more
details about backtracking in ABC.

HOW TO RETURN n filled board:

IF #board = n: RETURN board

FOR p IN {1..n}:

IF safe:

PUT n filled board’ IN new

IF new <> {}: RETURN new

RETURN {}

safe: REPORT col AND left AND right
col: REPORT p not.in board

left: REPORT NO r IN keys board HAS
r+board[r] = #board+1+p

right: REPORT NO r IN keys board
HAS r-board[r] = #board+1-p

board’:

PUT p IN board[#board+1]

RETURN board

>>> QUEENS 8

O # # # # # # #
O # #
O
O #
O # # # #
O
O # # # # #
O # # #

A More Direct Version

However, I also decided to try a more direct solution,
by simulating what you would do by hand more
closely. Here the board is again a table with the row
number as key, but with a list of numbers as items.
These numbers represent which positions on the cur-
rent row are not being attacked. So you start out with a
full board, which must then be emptied:

HOW TO QUEENS’ n:

PUT {} IN board

FOR i IN {1..n}:

PUT {1..n} IN board[i]

DISPLAY’ 1 emptied board

HOW TO DISPLAY’ board:

IF board = {}:

WRITE "No solution" /

FOR row IN board:

CHECK #row = 1

PUT min row IN p

WRITE "# "^^(p-1), "O "

WRITE "# "^^(#board - p) /

The work is done by the functionemptied . You no
longer have to check if a piece is safe or not: for each
row you have just the list of safe pieces available.
When you choose a piece, then all the positions that
are attacked by this piece are then removed from the
board, and the next row is tried.

HOW TO RETURN n emptied board:

IF n > #board: RETURN board

FOR p IN board[n]:

PUT (n+1) emptied board’ IN new

IF new <> {}: RETURN new

RETURN {}

board’:

PUT {p} IN board[n]

FOR row IN {n+1..#board}:

PUT board[row] less

{p; p+(row-n); p-(row-n)}
IN board[row]

RETURN board

This uses a small function to return the difference
between two lists:

HOW TO RETURN l1 less l2:

FOR i IN l2:

IF i in l1:

REMOVE i FROM l1

RETURN l1

>>> QUEENS’ 8
O # # # # # # #

O # #

O

O #

O # # # #

O

O # # # # #

O # # #

The ABCNewsletter

13

>>> QUEENS’ 11
O # # # # # # # # # #
O # # # # # # #
O # # # # #
O # # #
O #
O
O # # # # # # # #
O # # # # # #
O # # # #
O # #
O

As it turns out, this version runs faster than the first
version. The reason for this is that you have to search
much less to find a candidate piece for a row, and
when you reach a row where all positions are
attacked, you know it immediately, without having to
check each position separately.

A GENERAL-PURPOSE
DATABASE

Steven Pemberton
CWI, Amsterdam

Someone came to the database experts in our depart-
ment and said that the mailing lists she had to admin-
ister were getting unmanageable. They had originally
been prepared by different people, so they were all in
a different format, using different conventions, and in
different files. She needed a program to help her man-
age them, and she sketched the facilities she needed:

The database would be quite small, a couple of
thousand records or so. Each record would have a
number of standard fields: name, institute, depart-
ment, address, city, country, email address, and so
on. There should also be a ‘code’ field where she
could say which mailing lists this address
belonged to, such as ABC, the Operating System
list she managed, and so on.

She should then be able to look up entries, and
above all make selections which could then be
printed off as labels. She should be able to find out
how large a selection was. She should also be able
to print all records out for a card index on her
desk.

To aid searching, certain fields such as country,
should be constrained so that only unique values
are used; not United Kingdom in one case, and
Great Britain in another.

At this point, I got called in on the discussions, and
after rejecting some possibilities (the standard data-
base package is only available on one computer that is
not accessible for everyone who needs to access the
mailing lists), without further ado, three of us sat
down at a workstation, and in an afternoon wrote the
program in ABC.

Data Representation

A first decision we had to take was how we were
going to represent the database.

It was obvious from the specification that we didn’t
know exactly how many fields there were going to be,
nor what they were, and furthermore that it was likely
to change, so we needed to be as flexible as possible.

The ABCNewsletter

14

Therefore we decided to have a structure defining the
allowable field names, and each record would then be
a table from these field names to the field value. Each
record would be regarded as having an entry for each
field, though if it were empty, it wouldn’t be physi-
cally there. This meant that if we added a new field-
name to the defining structure, all records effectively
got an empty field with that name.

It also meant that if a field-name was later deleted, all
those fields in the database became no longer accessi-
ble, they apparently disappeared, though they were
physically still there, so that if later the field name was
reinstated, the values would reappear.

So to define the allowable field names:

 PUT split "Name Institute Dept
Address City Postcode Land Code"

IN field.names

An entry in the database might then look like:

{["Name"]: "Jane Smith";
 ["Institute"]: "Univ. of Life";
 ["Land"]: "Erewhon"}

Missing fields are considered present but empty.

Now, given this format, we can immediately write a
how-to to show a record:

HOW TO SHOW RECORD record:
SHARE field.names
FOR name IN field.names:

IF name IN keys record:
WRITE name, ": "
WRITE record[name]/

and one to read a record:

HOW TO GET record:
SHARE field.names
PUT {} IN record
FOR name IN field.names:

WRITE name, ": "
READ field RAW
IF field <> "":

PUT field IN record[name]

The whole database is just a set of records (with no
implied ordering) So to display the whole database,
record by record, we can use:

HOW TO SHOW db:
FOR r IN db:

SHOW RECORD r
WRITE /

To add a record to the database:

HOW TO ADD TO db:
GET record
IF record <> {}

INSERT record IN db

Selection

A basic action you want to do with a database is select
records on the basis of certain criteria. To do this, we
shall write some functions that given a database and a
set of selection criteria, deliver a database that is a
sub-set of the original one.

The represention we shall use for the criteria is just a
record: for each record in the database if the record
matches in the required way with the criteria-record,
then it will form a part of the result:

HOW TO RETURN db equals criteria:
PUT {} IN result
FOR record IN db:

IF matches:
INSERT record IN result

RETURN result

matches:
REPORT EACH name IN keys criteria

HAS field.match
field.match:

REPORT name in keys record AND
record[name] = criteria[name]

This version gives an exact match, so if we say

SHOW db matches {["Land"]: "UK"}

then we’ll get all records with the Land field equal to
UK. If we want a partial match, we can use:

HOW TO RETURN db contains criteria:
PUT {} IN result
FOR record IN db:

IF matches:
INSERT record IN result

RETURN result

matches:
REPORT EACH name IN keys criteria

HAS field.match
field.match:

REPORT name IN keys record AND
lower record[name] includes
lower criteria[r]

andincludes reports whether the one text includes
the other:

The ABCNewsletter

15

HOW TO REPORT t includes s:
REPORT SOME i IN {1..#t-#s+1}

HAS t@i|#s = s

The how-tocontains matches any record where the
field contains the relevant criteria, ignoring case. So:

SHOW db contains {["Land"]: "UK"}

would match for instance UK and Ukraine.

Note that because these functions take a database as
parameter, we can chain them:

SHOW (db equals {["Land"]: "UK"})
contains {["City"]: "York"}

which selects all records that contain the city York, in
the country UK. Also note that

SHOW db contains {[”Land”]: ””}

would show all entries with a Land field.

Formatting

Each country has a different way of formatting its
addresses, so we need a flexible method of specifying
address formats.

What we are going to use here is a table of land names
to formats, where each format is a single text. For
instance:

>>> WRITE format["NL"]
Name / Dept / Institute / Address /
Postcode _ _ City / _

>>> WRITE format["UK"]
Name / Dept / Institute / Address /
City _ Postcode / UK / _

The text is a number of words. A "/" represents a new
line, a "_" represents a space. Other words are either
field names, in which case the corresponding entry in
the record is substituted, or literal words. Completely
empty lines are not output, but lines containing spaces
are (so the last part of the format above ensures a
blank line between records). Here’s how we output a
set of records:

HOW TO FORMAT records WITH formats:
SHARE field.names, format
FOR r IN records:

PUT "" IN out
FORMAT RECORD

chosen.format:
SELECT:

"Land" in keys r AND
r["Land"] in keys format:

RETURN format[r["Land"]]

ELSE:
RETURN format["default"]

FORMAT RECORD:
FOR word IN split chosen.format:

SELECT:
word in field.names:

IF word in keys r:
PUT out^r[word] IN out

word = "/":
IF out <> "": WRITE out/
PUT "" IN out

word = "_":
PUT out^" " IN out

ELSE:
PUT out^word IN out

IF out <> "": WRITE out/

This same code then lets us get an overview of a set of
entries, just by using another set of formats. For instance:

>>> WRITE brief
{["default"]: "Name , _ City , _ Land"}

Changing

Just as we had a method of inputting entries, we also
need to supply a way of changing them. Here we do
more or less the same as with input, except we display
the field name and entry before asking for input. If the
user types a newline, the entry is unchanged; if the
user types other data that then replaces the old. We
then need a way of deleting an entry: we do this by
saying that if the user types one or more spaces as
input, it has the effect of deleting the entry:

HOW TO RETURN modified record:
SHARE field.names
PUT record IN new
FOR field IN field.names:

WRITE field, ": "
IF field in keys record:

WRITE record[field], " "
READ answer RAW
SELECT:

answer = "": PASS
stripped answer = "":

IF field in keys new:
DELETE new[field]

ELSE:
PUT answer IN new[field]

RETURN new

HOW TO REPLACE old WITH new IN db:
IF old <> new:

IF old IN db: REMOVE old FROM db
IF new <> {}: INSERT new IN db

The ABCNewsletter

16

Note that we could now alterADD TO db to:

HOW TO ADD TO db:
REPLACE {} WITH modified {} IN db

which would have the same effect.

Putting it all together

Now that we’ve got a number of useful how-tos, we can
put them together with a driving program. In our final
version we had a parser with an extensive query lan-
guage. For now here is a simple version.

There is a concept of thecurrent selection. Initially the
selection is the whole database. The selection command
has the form “key = value” or “key ~ value” for exact or
approximate matches (for instance “Land = UK”). Sub-
sequent selection commands act on the current selection.
The commandall selects the whole database again.

You useshow to show the current selection,brief to sum-
marize the current selection,format to format the selec-
tion, change to modify records in the selection. Finally
help gives a help message.

HOW TO DATABASE:
SHARE db, field.names
PUT db IN selection
WRITE #db, "entries"/
GET COMMAND
WHILE command <> "quit":

IF stripped command <> "":
OBEY

GET COMMAND
GET COMMAND:

WRITE "> "
READ command RAW
PUT lower command IN command

OBEY:
PUT split command IN words
SELECT:

command = "new":
ADD TO db

#words = 3: \Selection command
PUT obey.select IN selection

command = "all": \Select all
PUT db IN selection

command = "show":
SHOW selection

command = "brief":
FORMAT selection WITH brief

command = "format":
FORMAT selection with formats

command = "change":

FOR r IN selection:

PUT modified r IN new

REPLACE r WITH new IN db

REPLACE r WITH new IN selection

command = "help": GIVE HELP

ELSE:

WRITE "Not recognised"/

WRITE "Use ’help’ for help" /

obey.select:

SELECT:

words[1] not.in field.names:

WRITE ”No such field name” /

WRITE ”Ignored” /

RETURN selection

words[2] = "=":

PUT selection matches
{[words[1]]: words[3]} IN s

words[2] = "~":

PUT selection contains

{[words[1]]: words[3]} IN s

ELSE:

WRITE "Operator ", words[2]

WRITE "unrecognised"/

WRITE "Ignored" /

RETURN selection

SELECT:

#s = 0:

WRITE "No matches" /

WRITE "Ignored" /

RETURN selection

#s = 1: WRITE "1 entry"/

ELSE: WRITE #s, "entries"/

RETURN s

You could easily add an undo command, by keeping a
copy of the current selection every time it gets
changed. For instance, replace

PUT obey.select IN selection

with

PUT selection IN undo

PUT obey.select IN selection

Then the undo command only has to swap the values
of the copy and the current selection:

PUT undo, selection IN selection, undo

Initially, undo should be empty.

