MasterMath
 Spring 2015
 Exam Cryptology Course
 Tuesday 9 June 2015

Name :
Student number :

Exercise	1	2	3	4	5	6	total
points							

Notes: Please hand in this sheet at the end of the exam. You may keep the sheets with the exercises.
This exam consists of 6 exercises. You have from 14:00-17:00 to solve them. You can reach 100 points.
Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.
All answers must be submitted on paper provided by the university; should you require more sheets ask the proctor. State your name on every sheet. Do not write in red or with a pencil.
You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.
You are allowed to use a calculator without networking abilities. Usage of laptops and cell phones is forbidden.

1. This exercise is about code-based cryptography.
(a) The binary Hamming code $\mathcal{H}_{4}(2)$ has parity check matrix

$$
H=\left(\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

and parameters $[15,11,3]$.
Correct the word $(0,1,1,0,0,1,1,0,0,0,1,1,0,1,1)$. 4 points
2. This exercise is about attacks on code-based cryptography.

Lee and Brickel's algorithm finds low-weight codewords. Assume for concreteness that the code contains a word of weight t and assume for simplicity that there is only one word c of weight t.
The outer loop randomizes the columns of the parity-check matrix H and turns the rightmost $n-k$ columns into an $(n-k) \times(n-k)$ identity matrix (if these columns are not linearly independent more columns are swapped).
The inner loop picks p of the remaining k columns and computes the sum of these p columns, resulting in a column vector of length $n-k$. The algorithm succeeds if the resulting vector has weight $t-p$.
(a) Explain how to obtain the word c of weight t from the steps described above, i.e., assume that you have found p columns so that their sum has weight $t-p$.

4 points
(b) Compute the probability that the column swap distributes the positions of c in such a way that p of the ones land in the k positions on the left and $t-p$ of them land in the $n-k$ positions on the right.

8 points
(c) Compute the probability of picking the correct p columns to get the weight $t-p$ vector, given that the outer loop has swapped the columns to end up with a split suitable to find c this way. 4 points
3. This exercise is about the NTRU encryption system.
(a) Let $p=2, d_{f}=d_{\phi}=d_{g}=2$ and $N=13$. Compute the maximum size of the coefficients of $a=f \cdot c$ in R and determine how large q needs to be so that decryption is guaranteed to be unique.
4. This exercise is about differential cryptanalysis of the same toy cipher from the lectures. Using key $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right) \in\left(\{0,1\}^{16}\right)^{5}$ it encrypts a plaintext $P=P_{1}\|\ldots\| P_{16} \in\{0,1\}^{16}$ as follows. Let S be the current state, we start with $S=P$. Rounds $i=1,2,3$ perform key mixing

$$
S \leftarrow S \oplus k_{i},
$$

substitution using a Sbox Table 2)

$$
S \leftarrow S b o x\left(S_{1} \ldots S_{4}\right)\|\ldots\| S b o x\left(S_{12} \ldots S_{16}\right),
$$

and finally applies permutation π_{P} (Table 1) on the state bits:

$$
S \leftarrow S_{\pi_{P}(1)}\|\ldots\| S_{\pi_{P}(16)}=S_{1}\left\|S_{5}\right\| S_{9}\|\ldots\| S_{12} \| S_{16}
$$

Round 4 applies key mixing with round key k_{4}, substitution using the sbox and finally applies another key mixing with round key k_{5}. After round 4 , the cipher outputs the current state S as the ciphertext C.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_{P}(i)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
out	0	3	5	8	6	9	C	7	D	A	E	4	1	F	B	2

Note most significant bit is left most bit and using hexidecimal notation.
So ' C ' represents number 12 or ' 1100 ' in binary.

Table 2: Sbox

This SBox has the following Difference Distribution Table Table 3:

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0																
1																
2																
3			0	2	4	2	2	0	2	2		0		0		0

Table 3: Sbox difference distribution table
(a) Complete the DDT. You only have to write down the missing numbers in a table.
(b) Consider the boomerang with input plaintext difference

$$
\Delta P=(0000111100000000)
$$

and output ciphertext difference

$$
\Delta C=(0000111000000000),
$$

then a quartet $\left(P^{(1)}, P^{(2)}, P^{(3)}, P^{(4)}\right)$ satisfies this boomerang if

$$
\begin{gathered}
P^{(1)} \oplus P^{(2)}=\Delta P, \quad P^{(3)} \oplus P^{(4)}=\Delta P, \quad \text { and } \\
C^{(1)} \oplus C^{(3)}=\Delta C, \quad C^{(2)} \oplus C^{(4)}=\Delta C .
\end{gathered}
$$

Compute the total success probability of finding such quartets over all round $1 \& 2$ differentials with the given ΔP and all round $3 \& 4$ differentials with the given ΔC. (Hint: in round 2 each Sbox has either input difference 0 or 4 (0100), so every active round 2 Sbox contributes a term $2 \times(4 / 16)^{2}+4 \times(2 / 16)^{2}$. Likewise, in round 3 each active Sbox has output difference 4.)
(c) Consider all 3 -round differentials that have only 1 active Sbox in round 1 and only 1 active Sbox in round 3. Prove that all such 3 -round differentials are impossible differentials. 8 points
5. This exercise is about hash-based signatures.

The HORS (Hash to Obtain Random Subset) signature scheme is an example of a few-time signature scheme. It has integer parameters k, t, and ℓ, uses a hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k \cdot \log _{2} t}$ and a one-way function $f:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell}$.
To generate the key pair a user picks t strings $s_{i} \in\{0,1\}^{\ell}$ and computes $v_{i}=f\left(s_{i}\right)$ for $0 \leq i<t$. The public key is $P=\left\{k, v_{0}, v_{1}, \ldots, v_{t-1}\right\}$; the secret key is $S=\left\{k, s_{0}, s_{1}, \ldots, s_{t-1}\right\}$.
To sign a message $m \in\{0,1\}^{*}$ compute $H(m)=\left(h_{0}, h_{1}, \ldots, h_{k-1}\right)$, where each $h_{i} \in\{0,1,2, \ldots, t-1\}$. The signature on m is $\sigma=$ $\left(s_{h_{0}}, s_{h_{1}}, s_{h_{2}}, \ldots, s_{h_{k-1}}\right)$.
To verify the signature, compute $H(m)=\left(h_{0}, h_{1}, \ldots, h_{k-1}\right)$ and $f(\sigma)=$ $\left(f\left(s_{h_{0}}\right), f\left(s_{h_{1}}\right), f\left(s_{h_{2}}\right), \ldots, f\left(s_{h_{k-1}}\right)\right)$ and verify that $f\left(s_{h_{i}}\right)=v_{h_{i}}$ for $0 \leq i<t$.
(a) Let $\ell=80, t=5$, and $k=3$. How many different signatures exist? How large (in bits) are the public and secret keys? How large is a signature?
(b) The same public key can be used for $r+1$ signatures if H is r -subset-resilient, meaning that given r signatures and thus r vectors $\sigma_{j}=\left(s_{h_{j, 0},}, s_{h_{j, 1}}, s_{h_{j, 2}}, \ldots, s_{h_{j, k-1}}\right), 1 \leq j \leq r$ the probability that $H\left(m^{\prime}\right)$ consists entirely of components in $\cup s_{h_{j, i}}$ is negligible. Even for $r=1$, i.e. after seeing just one signature, an attacker has an advantage at creating a fake signature. What are the options beyond exact collisions in H ?

2 points
(c) Analyze the following two scenarios for your chances of faking a signature on m : 1 . You get to see signatures on random messages. 2. You get to specify messages that Alice signs. You may not ask Alice to sign m in the second scenario.
How many HORS signatures do you need on average in order to construct a signature on m ? How many HORS signatures do you need on average to be able to sign any message? Answer these questions in both scenarios for $\ell=80, t=5$, and $k=3$. You should assume that H and f do not have additional weaknesses beyond having too small parameters
(d) Explain how to improve the scheme by using Winternitz signatures instead of the function f and state how this would affect the key size.
6. This exercise is about the cryptanalysis of the broken cryptographic hash function MD5. In brief, MD5 uses a compression function Compress that takes as input a chaining value $C V_{i n}=(A, B, C, D) \in$ $\left(\mathbb{Z} / 2^{32} \mathbb{Z}\right)^{4}$ and a message block $M=\left(m_{0}, \ldots, m_{15}\right) \in\left(\mathbb{Z} / 2^{3} 2 \mathbb{Z}\right)^{16}$. It initializes $\left(Q_{0}, Q_{-1}, Q_{-2}, Q_{-3}\right)=(B, C, D, A)$ and computes 64 steps $i=0, \ldots, 63$:

$$
\begin{gathered}
F_{i}=B F_{i}\left(Q_{i}, Q_{i-1}, Q_{i-2}\right) ; \quad T_{i}=Q_{i-3}+F_{i}+A C_{i}+W_{i} \\
R_{i}=R L\left(T_{i}, R C_{t}\right) ; \quad Q_{i+1}=Q_{i}+R_{i}
\end{gathered}
$$

where $B F_{i}$ is a boolean function, $A C_{i}$ is an addition constant, W_{i} is message word $m_{\pi(i)}$ and $R L(\cdot, n)$ is bitwise cyclic left rotation by n bit positions (see Table 4). It outputs an update chaining value $C V_{\text {out }}$:

$$
C V_{\text {out }}=C V_{\text {in }}+\left(Q_{61}, Q_{64}, Q_{63}, Q_{62}\right)
$$

i	0	1	2	3	4	5	6	7
$R C_{32+i}$	4	11	16	23	4	11	16	23
W_{32+i}	m_{5}	m_{8}	m_{11}	m_{14}	m_{1}	m_{4}	m_{7}	m_{10}
$R C_{40+i}$	4	11	16	23	4	11	16	23
W_{40+i}	m_{13}	m_{0}	m_{3}	m_{6}	m_{9}	m_{12}	m_{15}	m_{2}
$R C_{48+i}$	6	10	15	21	6	10	15	21
W_{48+i}	m_{0}	m_{7}	m_{14}	m_{5}	m_{12}	m_{3}	m_{10}	m_{1}
$R C_{56+i}$	6	10	15	21	6	10	15	21
W_{56+i}	m_{8}	m_{15}	m_{6}	m_{13}	m_{4}	m_{11}	m_{2}	m_{9}

$$
\begin{gathered}
B F_{32}(x, y, z)=\cdots=B F_{47}(x, y, z)=x \oplus y \oplus z \\
B F_{48}(x, y, z)=\cdots=B F_{63}(x, y, z)=y \oplus(x \vee \bar{z})
\end{gathered}
$$

Table 4: MD5 Round $3 \& 4$ boolean functions, rotation constants and message word permutations.
(a) Fill in the missing values in the following partial Sufficient Condition Tables for the boolean functions of round $3 \& 4$:

$\begin{gathered} B F_{32-47} \\ X Y Z \end{gathered}$	$\begin{gathered} g=\{0\} \\ c_{B F_{32}, X Y Z, g} \end{gathered}$	$\begin{gathered} g=\{+1\} \\ c_{B F_{32}, X Y Z, g} \end{gathered}$	$\begin{gathered} g=\{-1\} \\ c_{B F_{32}, X Y Z, g} \end{gathered}$
		n/a	n/a
. . +	n/a	${ }^{\text {. }}$ +	!.+
$B F_{48-63}$	$g=\{0\}$	$g=\{+1\}$	$g=\{-1\}$
$X Y Z$	$c_{B F_{48}, X Y Z, g}$	$c_{B F_{48}, X Y Z, g}$	$c_{B F_{48}, X Y Z, g}$
		n/a	n/a
-.	-. 0	-11	-01
+. .			
++.			

(b) Determine a partial differential path for MD5 over steps 48 up to 63 using $\delta m_{11}=2^{11}$ (and $\delta m_{i}=0$ for $i \neq 11$) such that $\delta Q_{45}=\ldots \delta Q_{61}=0$ and $\delta Q_{62}=\delta Q_{63}=\delta Q_{64}=2^{21}$. Specify ΔQ_{i} for $i=45, \ldots, 64$ and for non-trivial steps $i=61,62,63$ specify $\Delta F_{i}, \delta T_{i}$ and δR_{i}.
(c) Determine a partial differential path for MD5 over steps 32 up to 47 using $\delta m_{11}=2^{11}$ (and $\delta m_{i}=0$ for $i \neq 11$) such that $\delta Q_{32}=\ldots \delta Q_{48}=0$. Specify ΔQ_{i} for $i=29, \ldots, 49$ and for nontrivial steps $i=32,33,34$ specify $\Delta F_{i}, \delta T_{i}$ and $\delta R_{i} .4$ points
(d) As treated in the lecture notes, it is possible given any $C V_{i n}, C V_{i n}^{\prime}$ to compute a full differential path over steps $0, \ldots, 63$ that completes above found partial differential path over steps $32, \ldots, 63$. Finding a solution $\left(M, M^{\prime}\right)$ for that full differential path results in

$$
C V_{\text {out }}=\operatorname{Compress}\left(C V_{\text {in }}, M\right), \quad C V_{\text {out }}^{\prime}=\operatorname{Compress}\left(C V_{\text {in }}^{\prime}, M^{\prime}\right),
$$

with

$$
\delta C V_{\text {out }}=\delta C V_{\text {in }}+\left(0,2^{21}, 2^{21}, 2^{21}\right)
$$

This in fact works for any $\delta m_{11}=2^{b}$ with $b=0, \ldots, 31$ and $\delta Q_{62}=\delta Q_{63}=\delta Q_{63}=R L\left(2^{b}, 10\right)$. Prove that given any $C V_{i}, C V_{i}^{\prime}$ with $\delta C V_{i}=(0, x, x, x)$ for some $x \in \mathbb{Z} / 2^{32} \mathbb{Z}$, one can use a series of r of these near-collision attacks to obtain $\delta C V_{i+r}=(0,0,0,0)$ with $r \leq 32$.
(e) To reduce the amount of near-collision attacks required, one can also consider the negated versions with $\delta m_{11}=-2^{b}$. As thereby
one can add $\pm\left(0,2^{a}, 2^{a}, 2^{a}\right)$ for any $a=0, \ldots, 31$, one can use a binary signed digit representation of x.
Describe a procedure that given any x computes a series of r tuples $\left(\delta m_{11}, \delta Q_{61}=\delta Q_{62}=\delta Q_{63}\right)$ that one can use to construct r nearcollision attacks to reduce $\delta C V_{i}=(0, x, x, x)$ to zero, where r is minimal. That is, there exists no shorter series that also reduces $\delta C V_{i}$ to zero.

4 points
(f) Write down an algorithm that given any $C V_{i-1}, C V_{i-1}^{\prime}$ computes blocks M_{i}, M_{i}^{\prime} such that

$$
\operatorname{Compress}\left(C V_{i-1}, M_{i}\right)-\operatorname{Compress}\left(C V_{i-1}^{\prime}, M_{i}^{\prime}\right)=(0, x, x, x),
$$

for some $x \in \mathbb{Z} / 2^{32} \mathbb{Z}$ and estimate its complexity. (Hint: rewrite the condition $\delta C V_{i}=(A, B, C, D)=(0, x, x, x)$ as $\delta A=0, \delta(B-$ $C)=0$ and $\delta(B-D)=0)$.

8 points

