MasterMath Spring 2015 Exam Cryptology Course Tuesday 9 June 2015

Name

Student number :

Exercise	1	2	3	4	5	6	total
points							

:

Notes: Please hand in this sheet at the end of the exam. You may keep the sheets with the exercises.

This exam consists of 6 exercises. You have from 14:00 - 17:00 to solve them. You can reach 100 points.

Make sure to justify your answers in detail and to give clear arguments. Document all steps, in particular of algorithms; it is not sufficient to state the correct result without the explanation. If the problem requires usage of a particular algorithm other solutions will not be accepted even if they give the correct result.

All answers must be submitted on paper provided by the university; should you require more sheets ask the proctor. State your name on every sheet. Do not write in red or with a pencil.

You are allowed to use any books and notes, e.g. your homework. You are not allowed to use the textbooks of your colleagues.

You are allowed to use a calculator without networking abilities. Usage of laptops and cell phones is forbidden.

- 1. This exercise is about code-based cryptography.
 - (a) The binary Hamming code $\mathcal{H}_4(2)$ has parity check matrix

and parameters [15, 11, 3]. Correct the word (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1). 4 points

2. This exercise is about attacks on code-based cryptography.

Lee and Brickel's algorithm finds low-weight codewords. Assume for concreteness that the code contains a word of weight t and assume for simplicity that there is only one word c of weight t.

The outer loop randomizes the columns of the parity-check matrix Hand turns the rightmost n-k columns into an $(n-k) \times (n-k)$ identity matrix (if these columns are not linearly independent more columns are swapped).

The inner loop picks p of the remaining k columns and computes the sum of these p columns, resulting in a column vector of length n-k. The algorithm succeeds if the resulting vector has weight t - p.

- (a) Explain how to obtain the word c of weight t from the steps described above, i.e., assume that you have found p columns so that their sum has weight t - p. 4 points
- (b) Compute the probability that the column swap distributes the positions of c in such a way that p of the ones land in the kpositions on the left and t - p of them land in the n - k positions 8 points on the right.
- (c) Compute the probability of picking the correct p columns to get the weight t - p vector, given that the outer loop has swapped the columns to end up with a split suitable to find c this way. 4 points
- 3. This exercise is about the NTRU encryption system.
 - (a) Let $p = 2, d_f = d_{\phi} = d_q = 2$ and N = 13. Compute the maximum size of the coefficients of $a = f \cdot c$ in R and determine how large q needs to be so that decryption is guaranteed to be unique.

8 points

4. This exercise is about differential cryptanalysis of the same toy cipher from the lectures. Using key $(k_1, k_2, k_3, k_4, k_5) \in (\{0, 1\}^{16})^5$ it encrypts a plaintext $P = P_1 || \dots || P_{16} \in \{0, 1\}^{16}$ as follows. Let S be the current state, we start with S = P. Rounds i = 1, 2, 3 perform key mixing

$$S \leftarrow S \oplus k_i$$
,

substitution using a Sbox (Table 2)

$$S \leftarrow Sbox(S_1 \dots S_4) || \dots || Sbox(S_{12} \dots S_{16})$$

and finally applies permutation π_P (Table 1) on the state bits:

$$S \leftarrow S_{\pi_P(1)} || \dots || S_{\pi_P(16)} = S_1 || S_5 || S_9 || \dots || S_{12} || S_{16}.$$

Round 4 applies key mixing with round key k_4 , substitution using the sbox and finally applies another key mixing with round key k_5 . After round 4, the cipher outputs the current state S as the ciphertext C.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\pi_P(i)$	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

Table 1: State bit permutation

In contrast to the lecture notes, we use the following SBox:

in	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
out	0	3	5	8	6	9	С	7	D	А	Е	4	1	F	В	2

Note most significant bit is <u>left most</u> bit and using hexidecimal notation. So 'C' represents number 12 or '1100' in binary.

Table 2: Sbox

		out															
		0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
	0																
	1																
	2																
	3			0	2	4	2	2	0	2	2	0	0	0	0	0	0
	4			0	0	0	4	4	0	0	2	2	0	2	0	0	2
	5			4	0	2	2	0	0	0	2	0	2	2	0	0	2
	6			0	2	2	0	2	0	2	0	0	2	2	0	0	2
	7			0	0	0	2	0	2	0	0	0	0	2	0	2	4
in	8			0	0	0	2	2	4	0	2	0	2	2	2	0	0
	9			0	0	0	0	2	0	2	2	2	0	2	0	4	0
	А			2	0	0	0	0	2	4	0	0	2	0	4	2	0
	В			2	2	4	2	2	0	0	0	0	0	0	2	0	2
	С			2	4	0	0	0	0	0	0	2	2	2	0	2	0
	D			2	2	2	0	0	2	2	2	0	0	2	0	0	2
	Е			0	0	2	0	0	2	2	0	0	2	0	4	0	0
	F			4	0	0	0	2	2	2	2	4	0	0	0	0	0

This SBox has the following Difference Distribution Table (Table 3:

Table 3: Sbox difference distribution table

- (a) Complete the DDT. You only have to write down the missing numbers in a table. 4 points
- (b) Consider the boomerang with input plaintext difference

$$\Delta P = (0000 \ 1111 \ 0000 \ 0000)$$

and output ciphertext difference

 $\Delta C = (0000 \ 1110 \ 0000 \ 0000),$

then a quartet $(P^{(1)}, P^{(2)}, P^{(3)}, P^{(4)})$ satisfies this boomerang if

$$P^{(1)} \oplus P^{(2)} = \Delta P$$
, $P^{(3)} \oplus P^{(4)} = \Delta P$, and
 $C^{(1)} \oplus C^{(3)} = \Delta C$, $C^{(2)} \oplus C^{(4)} = \Delta C$.

Compute the total success probability of finding such quartets over all round 1 & 2 differentials with the given ΔP and all round 3 & 4 differentials with the given ΔC . (Hint: in round 2 each Sbox has either input difference 0 or 4 (0100), so every active round 2 Sbox contributes a term $2 \times (4/16)^2 + 4 \times (2/16)^2$. Likewise, in round 3 each active Sbox has output difference 4.) 8 points

- (c) Consider all 3-round differentials that have only 1 active Sbox in round 1 and only 1 active Sbox in round 3. Prove that all such 3-round differentials are impossible differentials.
- 5. This exercise is about hash-based signatures.

The HORS (Hash to Obtain Random Subset) signature scheme is an example of a few-time signature scheme. It has integer parameters k, t, and ℓ , uses a hash function $H : \{0,1\}^* \to \{0,1\}^{k \cdot \log_2 t}$ and a one-way function $f : \{0,1\}^{\ell} \to \{0,1\}^{\ell}$.

To generate the key pair a user picks t strings $s_i \in \{0, 1\}^\ell$ and computes $v_i = f(s_i)$ for $0 \le i < t$. The public key is $P = \{k, v_0, v_1, \ldots, v_{t-1}\}$; the secret key is $S = \{k, s_0, s_1, \ldots, s_{t-1}\}$.

To sign a message $m \in \{0,1\}^*$ compute $H(m) = (h_0, h_1, \ldots, h_{k-1})$, where each $h_i \in \{0, 1, 2, \ldots, t-1\}$. The signature on m is $\sigma = (s_{h_0}, s_{h_1}, s_{h_2}, \ldots, s_{h_{k-1}})$.

To verify the signature, compute $H(m) = (h_0, h_1, \ldots, h_{k-1})$ and $f(\sigma) = (f(s_{h_0}), f(s_{h_1}), f(s_{h_2}), \ldots, f(s_{h_{k-1}}))$ and verify that $f(s_{h_i}) = v_{h_i}$ for $0 \le i < t$.

- (a) Let $\ell = 80$, t = 5, and k = 3. How many different signatures exist? How large (in bits) are the public and secret keys? How large is a signature? 4 points
- (b) The same public key can be used for r + 1 signatures if H is rsubset-resilient, meaning that given r signatures and thus r vectors $\sigma_j = (s_{h_{j,0}}, s_{h_{j,1}}, s_{h_{j,2}}, \ldots, s_{h_{j,k-1}}), 1 \leq j \leq r$ the probability that H(m') consists entirely of components in $\cup s_{h_{j,i}}$ is negligible. Even
 for r = 1, i.e. after seeing just one signature, an attacker has
 an advantage at creating a fake signature. What are the options
 beyond exact collisions in H?
- (c) Analyze the following two scenarios for your chances of faking a signature on m: 1. You get to see signatures on random messages.2. You get to specify messages that Alice signs. You may not ask Alice to sign m in the second scenario.

How many HORS signatures do you need on average in order to construct a signature on m? How many HORS signatures do you need on average to be able to sign any message? Answer these questions in both scenarios for $\ell = 80$, t = 5, and k = 3. You should assume that H and f do not have additional weaknesses beyond having too small parameters 8 points

-

- (d) Explain how to improve the scheme by using Winternitz signatures instead of the function f and state how this would affect the key size. 8 points
- 6. This exercise is about the cryptanalysis of the broken cryptographic hash function MD5. In brief, MD5 uses a compression function **Compress** that takes as input a chaining value $CV_{in} = (A, B, C, D) \in (\mathbb{Z}/2^{32}\mathbb{Z})^4$ and a message block $M = (m_0, \ldots, m_{15}) \in (\mathbb{Z}/2^32\mathbb{Z})^{16}$. It initializes $(Q_0, Q_{-1}, Q_{-2}, Q_{-3}) = (B, C, D, A)$ and computes 64 steps $i = 0, \ldots, 63$:

$$F_{i} = BF_{i}(Q_{i}, Q_{i-1}, Q_{i-2}); \quad T_{i} = Q_{i-3} + F_{i} + AC_{i} + W_{i};$$
$$R_{i} = RL(T_{i}, RC_{t}); \quad Q_{i+1} = Q_{i} + R_{i},$$

where BF_i is a boolean function, AC_i is an addition constant, W_i is message word $m_{\pi(i)}$ and $RL(\cdot, n)$ is bitwise cyclic left rotation by n bit positions (see Table 4). It outputs an update chaining value CV_{out} :

$$CV_{out} = CV_{in} + (Q_{61}, Q_{64}, Q_{63}, Q_{62})$$

$$BF_{32}(x,y,z) = \cdots = BF_{47}(x,y,z) = x \oplus y \oplus z$$

$$BF_{48}(x, y, z) = \cdots = BF_{63}(x, y, z) = y \oplus (x \lor \overline{z})$$

Table 4: MD5 Round 3 & 4 boolean functions, rotation constants and message word permutations.

(a) Fill in the missing values in the following partial Sufficient Condition Tables for the boolean functions of round 3 & 4:

BF_{32-47}	$g = \{0\}$	$g = \{+1\}$	$g = \{-1\}$
XYZ	$c_{BF_{32},XYZ,g}$	$c_{BF_{32},XYZ,g}$	$c_{BF_{32},XYZ,g}$
• • •		n/a	n/a
+	n/a	^. +	!.+
BF_{48-63}	$g = \{0\}$	$g = \{+1\}$	$g = \{-1\}$
XYZ	$c_{BF_{48},XYZ,g}$	$c_{BF_{48},XYZ,g}$	$c_{BF_{48},XYZ,g}$
• • •		n/a	n/a
	0	-11	-01
+			
+ ++.			

4 points

- (b) Determine a partial differential path for MD5 over steps 48 up to 63 using $\delta m_{11} = 2^{11}$ (and $\delta m_i = 0$ for $i \neq 11$) such that $\delta Q_{45} = \dots \delta Q_{61} = 0$ and $\delta Q_{62} = \delta Q_{63} = \delta Q_{64} = 2^{21}$. Specify ΔQ_i for $i = 45, \dots, 64$ and for non-trivial steps i = 61, 62, 63 specify $\Delta F_i, \delta T_i$ and δR_i .
- (c) Determine a partial differential path for MD5 over steps 32 up to 47 using $\delta m_{11} = 2^{11}$ (and $\delta m_i = 0$ for $i \neq 11$) such that $\delta Q_{32} = \ldots \delta Q_{48} = 0$. Specify ΔQ_i for $i = 29, \ldots, 49$ and for nontrivial steps i = 32, 33, 34 specify $\Delta F_i, \delta T_i$ and δR_i . 4 points
- (d) As treated in the lecture notes, it is possible given any CV_{in}, CV'_{in} to compute a full differential path over steps $0, \ldots, 63$ that completes above found partial differential path over steps $32, \ldots, 63$. Finding a solution (M, M') for that full differential path results in

$$CV_{out} = \text{Compress}(CV_{in}, M), \quad CV'_{out} = \text{Compress}(CV'_{in}, M'),$$

with

$$\delta CV_{out} = \delta CV_{in} + (0, 2^{21}, 2^{21}, 2^{21}).$$

This in fact works for any $\delta m_{11} = 2^b$ with $b = 0, \ldots, 31$ and $\delta Q_{62} = \delta Q_{63} = \delta Q_{63} = RL(2^b, 10)$. Prove that given any CV_i, CV'_i with $\delta CV_i = (0, x, x, x)$ for some $x \in \mathbb{Z}/2^{32}\mathbb{Z}$, one can use a series of r of these near-collision attacks to obtain $\delta CV_{i+r} = (0, 0, 0, 0)$ with $r \leq 32$.

(e) To reduce the amount of near-collision attacks required, one can also consider the negated versions with $\delta m_{11} = -2^b$. As thereby one can add $\pm (0, 2^a, 2^a, 2^a)$ for any $a = 0, \ldots, 31$, one can use a binary signed digit representation of x.

Describe a procedure that given any x computes a series of r tuples $(\delta m_{11}, \delta Q_{61} = \delta Q_{62} = \delta Q_{63})$ that one can use to construct r nearcollision attacks to reduce $\delta CV_i = (0, x, x, x)$ to zero, where r is minimal. That is, there exists no shorter series that also reduces δCV_i to zero. 4 points

(f) Write down an algorithm that given any CV_{i-1}, CV'_{i-1} computes blocks M_i, M'_i such that

$$Compress(CV_{i-1}, M_i) - Compress(CV'_{i-1}, M'_i) = (0, x, x, x),$$

for some $x \in \mathbb{Z}/2^{32}\mathbb{Z}$ and estimate its complexity. (Hint: rewrite the condition $\delta CV_i = (A, B, C, D) = (0, x, x, x)$ as $\delta A = 0, \, \delta(B - C) = 0$ and $\delta(B - D) = 0$). 8 points