
Binary Change Set Composition

Tijs van der Storm

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB

Amsterdam, The Netherlands
storm@cwi.nl

Abstract. Binary component-based software updates that are efficient,
safe and generic still remain a challenge. Most existing deployment sys-
tems that achieve this goal have to control the complete software en-
vironment of the user which is a barrier to adoption for both soft-
ware consumers and producers. Binary change set composition is a tech-
nique that can be applied to deliver incremental, binary updates for
component-based software systems in an efficient and non-intrusive way.
This way application updates can be delivered more frequently, with min-
imal additional overhead for users and without sacrificing the benefits of
component-based software development.

Keywords: deployment, update management, component-based soft-
ware engineering, software configuration management.

1 Introduction

An important goal in software engineering is to deliver quality to users frequently
and efficiently. Allowing users of your software to easily take advantage of new
functionality or quality improvements can be a serious competitive advantage.
This insight seems to be widely accepted [10]. Software vendors are enhancing
their software products with an automatic update feature to allow customers to
upgrade their installation with a single push of a button. This prevents customers
from having to engage in the error-prone and time consuming task of deploying
new versions of a software product. However, such functionality is often propri-
etary and specific to a certain vendor or product, thereby limiting understanding
and broader adoption of this important part of the software process.

The aim of this paper is to maximize the agility of software delivery with-
out sacrificing the requirement that applications are developed as part of a
component-based product line. While it may not be beneficial to force the user
environment to be component-based, it certainly can be for the development
environment. One would like to develop software in a component-based fashion,
and at the same time allow users to transparently deploy an application as a
whole.

If certain actions are tedious, error-prone or just too expensive, they tend to
be performed less frequently. If the effort to package a software product in such
a way that it is ready for deployment is too high, releases will be put out less



frequently. Similarly, if deploying a new release is a time consuming activity with
a high risk of failure, the user probably will not upgrade every day. Therefore,
if we want to optimize software delivery this can be achieved by, on the one
hand, reducing the cost of release, and on the other hand, by reducing the cost
of deployment.

How would one optimize both release and deployment in a platform and pro-
gramming language independent way, when many products composed of multiple
shared components have to be released and deployed efficiently? In this paper
I present a technique, called binary change set composition, which provides an
answer to this question. It can be used to implement lightweight incremental ap-
plication upgrade in a fully generic and platform indepedent way. The resulting
binary upgrades are incremental, making the upgrade process highly efficient.

Contributions The contributions of this paper are summarized as follows:

1. A requirements analysis of application upgrade and a survey of related work.
2. The design of a lightweight, efficient and platform independent method for

application upgrade.
3. The implementation of this method on top of Subversion.

Organization This paper is organized as follows. Section 2 provides some back-
ground to the problem of application upgrade by identifying the requirements
and discussing related work. Section 3 forms the technical heart of this paper. I
describe how to automatically produce releases and deliver updates in an incre-
mental fashion. The implementation of the resulting concepts is then discussed
in Section 4. Then, in Section 5, I evaluate the approach by setting it out against
the requirements identified in Section 2. Finally, I present a conclusion and list
opportunities for future work.

2 Background

2.1 Requirements for Application Upgrade

Application upgrade consists of replacing a piece of software that has previously
been installed by a user. The aim of an upgrade for the user is to be able to
take advantage of repaired defects, increased quality or new functionality. The
business motivation for this is that customer satisfaction is increased. To achieve
this goal, the primary requirement is that upgrades succeed. Nevertheless, there
are additional requirements for application upgrade. In the paragraphs below I
discuss four requirements: lightweightness, efficiency, genericity and safety.

For an software deployment method to be lightweight, means that (future)
users of a software product should not be required to change their environment to
accomodate the method of deployment of the product. Reasoning along the same
lines, the method of creating deployable release should not force a development
organization to completely change their development processes. Furthermore,



the effort to create a release on the one hand, and the effort to apply an upgrade
on the other hand, should require minimum effort.

Efficiency is the third requirement. If the aim is to optimize software delivery,
both release and upgrade should be implemented efficiently. If deploying an
upgrade takes too much time or consumes too much bandwidth, users will tend
to postpone the possibly crucial update. Again, also the development side gains
by efficiency: the storage requirements for maintaining releases may soon become
unwieldy, if they are put out frequently.

To ease the adoption of a release and deployment method, it should not be
constrained by choice of programming language, operating system or any other
platform dependency. This genericity requirement mostly serves the development
side, but obviously has consequences for users: if they are on the wrong platform
they cannot deploy the application they might desire.

The final requirement serves primarily users: safety of upgrades. Deployment
is hard. If it should occur that an upgrade fails, the user must be able to undo the
consequences quickly and safely. Or at least the consequences of failure should
be local.

2.2 Related Work

Related work exists in two areas: update management and release management,—
both areas belong to the wide ranging field of software deployment. In this field,
update management has a more user oriented perspective and concerns itself with
the question how new releases are correctly and efficiently consumed by users.
Release management, on the other hand, takes a more development-oriented
viewpoint. It addresses the question of how to prepare software that is to be
delivered to the user.

In the following I will discuss how existing update and release tools for
component-based software deployment live up to the requirements identified in
Section 2.1.

Research on software deployment has mostly focused on combining both
the user and development perspectives. One example is the Software Dock [11],
which is a distributed architecture that supports the full software deployment
life cycle. Field docks provide an interface to the user’s site. These docks con-
nect to release docks at producer sites using a wide area event service. While the
software dock can be used to deploy any kind of software system, and thus satis-
fies the genericity requirement, the description of each release in the Deployable
Software Description (DSD) language presents significant overhead. Moreover,
the Software Dock is particularly good at deploying components from different,
possibly distributed origins, which is outside the scope of this paper. The same
can be said of the Software Release Manager (SRM) [18].

Deployment tools that primarily address the user perspective fall in the cat-
egory of software product updaters [12]. This category can be further subdi-
vided into monolithic product updaters and component-based product updaters.
Whereas product updaters in general do not make assumptions on the structure



of the software product they are updating, component (or package) deployment
tools are explicitly component-based.

JPloy [14] is a tool that gives users more control over which components are
deployed. The question is, however, whether users are actually interested in how
applications are composed. In that sense, JPloy may not be a good match for
application deployment in the strict sense.

Package deployment tools can be further categorized as based on source pack-
ages or binary packages. A typical example of source-based package deployment
tools is the FreeBSD ports system [15]. Such systems require users to down-
load source archives that are subsequently built on the user’s machine. Source
tree composition [6] is another approach that works by composing component
source distributions into a so-called bundle. The tool performing this task, called
AutoBundle, constructs a composite build interface that allows users to trans-
parently build the composition. Source-based deployment, however, is relatively
time-consuming and thus fails to satisfy the efficiency requirement.

Binary package deployment tools do, however, satisfy the efficiency require-
ment. They include Debian’s Advanced Package Tool (APT) [16], the Redhat
Package Manager (RPM) [3], and more recently AutoPackage [2]. These tools
download binary packages that are precompiled for the user’s platform. Both
APT and RPM are tied to specific Linux distributions (Debian/Ubuntu and
Redhat/SuSe respectively) whereas autopackage can be used across distribu-
tions. Nevertheless AutoPackage only works under Linux. Although these de-
ployment tools are independent of programming language, they are not generic
with respect to operating system.

The deployment system Nix [7] supports both source and binary deploy-
ment of packages in such a way that it is transparent to the user. If no binary
package is found it falls back to source deployment. It features a store for non-
destructively installing packages that are identified by unique hashes. This allows
side-by-side installation of different versions of the same package. Nix is the only
deployment tool that is completely safe because its non-destructive deployment
model guarantees that existing dependencies are never broken because of an up-
date. Furthermore, it is portable across different flavors of Unix and does not
require root access (which is the case for all package deployment tools except
AutoPackage).

One problem in general with package deployment tools is that they are in-
vasive with respect to the environment of the user. For instance, the value of
these tools is maximum when all software is managed by it. This explains why
most such tools are so intertwined with operating system distributions, but it is
a clear violation of the lightweightness requirement.

While some systems, such as Nix, AutoPackage and JPloy, can be used next
to the ‘native’ deployment system, they still have to be able to manage all
dependencies in addition to the component that the user actually wants to install.
In the worst case this means that a complete dependency tree of packages is
duplicated, because the user deployed her application with a deployment tool
different from the standard one. Note that this is actually unavoidable if the



user has no root access. Note also that the user is at least required to install the
deployment system itself, which in turn may not be an easy task.

2.3 Overview of the Approach

The motivations for component-based development are manyfold and well-known.
Factoring the functionality of an application in separate components, creates
opportunities for reuse,—both within a single product or across multiple prod-
ucts [17]. Similarly, productivity is increased because components can be devel-
oped in parallel. In this paper components are interpreted as groupings of files
that can be versioned as a whole.

Components are not stand-alone applications. This means that a component
may require the presence of other components to function correctly. Such depen-
dencies may be bound either at build-time or at runtime. Applications are then
derived by composing constituent components.

In the following I assume a very liberal notion of dependency, and conse-
quently of composition. When one component requires another component it is
left unspecified what the concrete relation between the two components amounts
to. Abstract dependencies thus cover both build-time and runtime dependencies.
Under this interpretation, composition is loosely defined as merging all files of
all related components into a single directory/archive.

When a component has been built, some of the resulting object files will con-
tribute to the composed application. This set of files is called the (component)
distribution. To distribute an application to users, the relevant component dis-
tributions are composed before release, resulting in a single application distribu-
tion. Thus, an application is identified with a certain root node in the component
dependency graph and its distribution consists of the transitive-reflexive closure
of the dependencies below the root.

In the next section I will present a technique to efficiently create and deliver
such application releases, called binary change set composition. We will see that
continuous integration of component-based software extends naturally to a pro-
cess of automatic continuous release. A component will only be built if it has
changed or if one of its dependencies has changed. If a component has been built
it is released automatically. The results of a build are stored persistently so that
components higher up in the dependency graph may reuse previous builds from
components lower in the dependency graph.

Apart from the files belonging to a single component, the composition of
these sets of files is also stored. The space requirements for this can quickly
become unwieldy, therefore these application distributions are stored differen-
tially. Differential storage works by saving the changes between files. Instead of
composing sets of files, one can now compose sets of change sets. In addition to
storing many releases efficiently, binary change set composition yields an efficient
way of updating user installations.



toolbuslib

toolbus toolbus toolbus

toolbuslib

toolbus

aterm

toolbuslib

aterm

0 1 2 3

Fig. 1. Incremental integration

3 Binary Change Set Composition

3.1 Incremental Integration

Tools like make optimize software builds because it only updates targets when
they are out of date. It is possible to lift this paradigm from the level of files
to the level of components. Hence, a component is only built if it is out of date
with respect to some saved state, or when one of its dependencies is out of date.
If built artifacts are stored persistently they can be reused. Sharing of builds
is particularly valuable when a software product is continuously integrated [9].
Traditionally this involves building the complete application as soon as someone
commits changes to the source control system. However, building large systems
from scratch may not scale.

Consider an example that derives from three real-world components, tool-
bus, toolbuslib and aterm. The Toolbus is a middleware component that allows
components (“tools”) to communicate using a centralized software bus. Tools im-
plemented in C use the toolbuslib component for this. Using the Toolbus, tools
exchange data in a tree-like exchange format called Annotated Terms (ATerms)
this datastructure is implemented by the aterm component. Obviously, toolbus
requires both the connection and the exchange format libraries, whereas the
connection library only requires the exchange format. All three components are
used with the Asf+Sdf Meta-Environment, a component-based application for
language development [4].

Figure 1 shows four build iterations. The dashed boxes indicate changes in
that particular component. In the first iteration every component has been built.
At the time of the second iteration, however, only the top-level toolbus compo-
nent has changed, so it is built again but this time reusing the previous builds
of toolbuslib and aterm. Similarly, in the third iteration there has been a change
in the toolbuslib component. Since toolbus depends on toolbuslib a new build is
triggered for both toolbuslib and toolbus. Finally, in the last iteration changes
have been committed to the aterm component and as a result all components
are rebuilt.

An implementation of incremental continuous integration, called Sisyphus,
has been described in [19]. This system works as follows. Every time a commit
to the source control system occurs, Sisyphus checks out all components. It does



this by starting with a root component, and reading a special file contained in
the source tree that describes the dependencies of this component. This process
is repeated for each of the dependencies. Meanwhile, if the current version of a
component has not been built before, or one of its dependencies has been built
in the current iteration, a build is triggered. Results are stored in a database
that serves as saved state.

3.2 Build and Release Model

The build and release model presented in this section is loosely based on the
model presented in [19]. It can be seen as the data model of a database for
tracing change, build and release processes. The state of a component at a certain
moment in time is identified with its version obtained from the source control
system. Each version may have been built multiple times. The model records for
every build of a component version which builds were used as dependencies. A
set of built artifacts is associated to each build. Finally, a release is simply the
labeling of a certain build; the set of releases is a subset of the set of builds.

In the context of this paper two sets are important: Build, the set that rep-
resents component builds, and Use defined as a binary relation between builds
(i.e. Use ⊆ Build × Build). The set of built artifacts contributed by a build b is
given by files(b).

The extent of a build is defined as the set of builds that have participated in
a build. The extent of a build b is computed by taking right image of b in the
transitive-reflexive closure of the Use relation:

extent(b) = Use∗[b]

The extent of a build contains all builds that will make up an application release.
The set of files that will be part of a release is derived from the set of files that
each component in the extent contributes. This is discussed in the next section.

3.3 Prefix Composition

When a component has been built some of the resulting object files will con-
tribute to the composed application. The set of files that is distributed to the
user is called the application distribution, and it is composed of component
distributions.

Figure 2 shows how the files contributed by each component to the toolbus
application are taken together to form a single application distribution. On the
left is shown that all installable files of each component first end up in a compo-
nent specific directory,—in the example this could have been the result of issuing
make install. To release the toolbus as an application, these sets of files and di-
rectories are merged, resulting in a single application distribution, as shown on
the right.

I call this way of composing components “installation prefix composition”
since the component directories on the left correspond to path prefixes passed



lib

bin

include

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

toolbus
bin

toolbus
toolbuslib

lib

include

aterm

libtoolbus.a

toolbus.h

libATerm.so

atdiff

aterm.h

Fig. 2. Prefix composition

to ./configure script that is generated by AutoConf [1], a tool to configure build
processes that is widely used in open source projects. Among other things, it
instructs make install to install files to a Unix directory hierarchy below the
prefix.

Since components are composed by merging sets of files and directories we
must ensure that no component overwrites files of another component. Formally,
this reads:

∀b ∈ Builds :
⋂

b′∈extent(b)

files(b′) = ∅

In other words, this ensures that making a distribution is compositional. Instead
of explicitly creating a global application distribution one can compose indi-
vidual component distributions to achieve the same effect. What the property
effectively states is that building a component, viewed as a function, distributes
over composition.

There is one technicality which has to be taken care of: the distributed files
should be relocatable. Because builds happen at the developer’s site one must
ensure that no (implicit) dependencies on the build environment are bound at
build time. For instance, if a Unix executable is linked to a dynamic library that
happens to be present at build time, then this library should also be present
on the user’s machine,—even on the same location. Since we do not want to
require that users should reproduce the complete build environment, care must
be taken to avoid such “imported” dependencies. I elaborate on this problem in
Section 4.3.

3.4 Change Set Delivery

If the compositionality property holds the composition is defined by collecting
all files that are in the extent of a build:

files∗(b) =
⋃

b′∈extent(b)

files(b′)



The function files∗ computes the set of files that eventually has to be distributed
to users. An update tool could transfer these files for every build that is released
to the users of the application. If a user already has installed a certain release,
the tool could just transfer the difference between the installed release and the
new release. Let F1,2 = files∗(b1,2). Then, the change set between two releases
b1 and b2 is defined as:

{∆(F1 ∩ F2),+(F2\F1),−(F1\F2)}

Change sets have three parts. The first part, indicated by ∆ contains binary
patches to update files that are in both releases. The second and third part add
and remove the files that are absent in the first or second release respectively.

Upgrade Change set delivered to user

0 → 1 {∆0
1bin/toolbus}

1 → 2 {∆1
2bin/toolbus, ∆0

2lib/libtoolbus.a}
2 → 3 {−bin/atdiff}

Table 1. Change set delivery

If we turn our attention once again to Figure 2, we see on the right the
composed prefix for the toolbus application. Let’s assume that this is the initial
release that a typical user has installed. In the meantime, development continues
and the system goes through three more release cycles, as displayed in Figure 1.
The sequence of change sets transferred to our user, assuming she upgrades to
every release, is listed in Table 1.

The second iteration only contains changes to the toolbus component itself.
Since the only installable file in this component is bin/toolbus, a patch is sent
over updating this file at the user’s site. In the next iteration there is a change
in toolbuslib and as a consequence toolbus has been rebuilt. Updating to this
release involves transferring patches for both bin/toolbus and lib/libtoolbus.a.
There must have been a change in the bin/toolbus since libtoolbus.a is statically
linked. In the final iteration the changes were in the aterm component. However,
this time neither toolbuslib nor toolbus are affected by it—even though they have
been rebuilt—because the change involved the removal of a target: the bin/atdiff
program appears to be no longer needed. Neither toolbus, nor toolbuslib refer-
enced this executable, hence there was no change in any of the built files with
respect to the previous release. As a result, the change set only contains the
delete action for bin/atdiff . Note that these change sets can be easily reverted
in order to support downgrades.

3.5 Change Set Composition

Until now we have assumed that every application release was completely avail-
able and the change sets were only used to optimize the update process. From



〈1, toolbus〉:
{∆0

1bin/toolbus}

���
�
�

��

�

�

�
�

'

0

〈2, toolbus〉:
{∆1

2bin/toolbus}

���
�
�
�
�
�
�
�
�
�
�
�

���
�
�

〈3, toolbus〉:{}

��

�

�

�
�

'

/

7

���
�
�
�

〈0, toolbuslib〉:
{+lib/libtoolbus.a,
+include/toolbus.h}

��

〈2, toolbuslib〉:
{∆0

2lib/libtoolbus.a}

����
��

��
��

��
��

�

〈3, toolbuslib〉:{}

���
�
�
�
�

〈0, aterm〉:
{+bin/atdiff,
+lib/libATerm.so,
+include/aterm.h}

〈3, aterm〉:
{−bin/atdiff}

Fig. 3. Change set composition

the use of change sets to update user installations, naturally follows the use of
change sets for storing releases. Figure 3 shows how this can be accomplished.

Once again, the three integration iterations are shown. In the first iteration,
only the toolbus had changed and had to be rebuilt. This resulted in an updated
file bin/toolbus. The figure shows that we only have to store the difference be-
tween the updated file and the file of the previous iteration. Note that initial
builds of aterm and toolbuslib (from iteration 0) are stored as change sets that
just add files.

The second iteration involves a change in toolbuslib; again, patches for toolbus
and toolbuslib are stored. However, in the third iteration, the change in the aterm
component did not affect any files in toolbus or toolbuslib, so no change sets need
to be stored for these components. But if users should be able to update their
installation of the toolbus application, still the toolbus should be released. So
there really are four toolbus releases in total, but the last one only contains
changes originating from aterm.

I will now describe how this scheme of binary change set composition can be
implemented on top of Subversion.

4 Implementation using Subversion

4.1 Composition by Shallow Copying

Subversion [5] is a source control system that is gaining popularity over the
widely used Concurrent Version System (CVS). Subversion adds many features
that were missing in CVS, such as versioning of directories and a unified approach
to branching and tagging. Precisely these features prove to be crucial in the
implementation of binary change set composition on top of Subversion.



+bin/atdiff
+lib/libATerm.so
+include/aterm.h

3
lib

libATerm.so
include

aterm.h

3
0 ...

...

bin
atdiff

lib
libATerm.so
libtoolbus.a

include
aterm.h
toolbus.h

libATerm.so
libtoolbus.a

include
aterm.h
toolbus.h

lib

latest

−bin/atdiff
component

aterm toolbuslib
latest

0

lib
libATerm.so

bin
atdiff

include
aterm.h

+lib/libtoolbus.a
+include/toolbus.h

lib/libtoolbus.a

composition

component ...
0
2
3 ...

...

...

composition
0

2
3

...

Fig. 4. Composition by shallow copying

Next, I will describe how Subversion repositories can be used as release reposi-
tories that allow the incremental delivery of updates to users. The release process
consists of committing the component distributions to a Subversion repository,
and then use branching to identify component releases. Such component-release
branches are the unit of composition, which is also implemented by branching.

The crucial feature of Subversion that makes this work, is that branching is
implemented by copying. So, for instance a branch is created for some repository
location—file or directory—by copying the tree to another location. At the new
location, Subversion records a reference to the source of the copy operation.
The copy operation is a constant-space operation and therefore a feasible way
to implement sharing.

Figure 4 shows a snapshot of a Subversion repository containing aterm and
toolbuslib releases based on the change set graph displayed in Figure 3. For
the sake of presentation releases of the toolbus have been omitted. On the left
we see the Subversion tree for aterm, and on the left the tree for toolbuslib.
The trees have subtrees indicated latest , component and composition. The latest
tree is where component distributions are stored. The rounded boxes contain the
change sets from Figure 3. The component tree and the composition tree contain
shallow copies of versions of the latest tree; these are the releases proper. Solid
arrows indicate copy relations the context of a single component,—dotted arrows
indicate cross component copying (i.e. composition relations).

After every build the changes in the distributions are commited to the latest
tree. The state of the latest tree at that time is then copied to a branch identifying
this particular build; such branches are created by copying the files from latest



to a separate directory under component . Note that since the change set for
toolbuslib in iteration 3 was empty, toolbuslib release 3 is created from the state
of the latest tree at iteration 2.

The tree below composition contains releases for compositions. This works
by, instead of just copying the files belonging to a single build, copying the
files in the extent of the build. In the example, this means that, next to the
files contained in toolbuslib releases also the files in aterm releases are copied.
If we compare toolbuslib composition 0 and 3, one can see in the figure that
composition 0 is composed with release 0 of aterm, whereas composition 3 is
composed with release 3 of aterm, exactly as in Figure 3.

4.2 Upgrade is Workspace Switch

Assuming the proper access rights are in place, the Subversion repository can be
made publicly accessible for users. A user can now check out the desired subtree
of compositions; this can easily be performed by a bootstrap script if it is the
initial installation. She then obtains the composed prefix of the application.

Now that the user has installed the application by checking out a reposi-
tory location, it is equally easy to down- or upgrade to a different version. Since
the subtrees of the composition tree contain all subsequent releases of the ap-
plication, and the user has checked out one of them, up- and downgrading is
achieved by updating the user’s local copy of the composed prefix to another re-
lease branch. Subversion provides the command svn switch for this. Subversion
will take care adding, removing or patching where necessary.

Note that the sharing achieved in the repository also has an effect on how
local checkouts are updated. For instance, recall that the third release of toolbus
in the example involved the removal of bin/atdiff . If we assume that the user
has installed the second release, and decides to upgrade, the only action that
takes place at the user site is the removal of bin/atdiff , since the third release
of both toolbus and toolbuslib contain the same change sets as second release of
both these components.

4.3 Techniques for Relocatability

Installed application releases are ready to use with the exception of one tech-
nicality that was mentioned before, which is: relocation. Since the released files
may contain references to locations on the build server at the side of develop-
ment, these references become stale as soon as the users installed them. We
therefore require that applications distributed this way should be binary relo-
catable. There are a number of ways to ensure that distributions are relocatable.
Some of these are briefly discussed below.

There are ways to discover dynamically what the locations are of libraries
and/or executables that are required at runtime. For instance, AutoPackage [2]
provides a (Linux-only) library that can be queried at runtime to obtain ‘your’



location at runtime. Since the files contributed by each component are com-
posed into a single directory hierarchy, dependencies can be found relative to
the obtained location.

Another approach is to use wrapper scripts. As part of the deployment of an
application a script could be generated that invokes the deployed application.
This script would then set appropriate environment variables (e.g. PATH or
LD LIBRARY PATH on Unix) or pass the location of the composed prefix on
the commandline.

Finally, we could use string rewriting to effectively relocate unrelocatable
files just after deployment. This amounts to replacing build time paths with
their runtime counter-parts in every file. Special care must be taken in the case
of binary files, since it is very easy to destroy their integrity. This trick, however,
has been applied successfully.

5 Evaluation

5.1 Experimental Validation

A prototype implementation has been developed as part of the Sisyphus inte-
gration framework [20]. It has been used to deliver updates for a semi-large
component-based system, consisting of around 30 components: the Asf+Sdf
Meta-Environment [4]. All built artifacts were put under Subversion, as described
in the previous section. As expected, the repository did not grow exponentially,
although all 40 component compositions were stored multiple times.

The Asf+Sdf Meta-Environment is released and delivered using source tree
composition [6]. This entails that every component has an abstract build in-
terface based on AutConf. The prefixes passed using --prefix during build are
known at the time of deployment so could be substituted quite safely. In order
to keep binary files consistent, the prefixes passed to the build interface were
supplanted with superfluous ‘/’ characters to ensure enough space for the sub-
tituted (user) path. This trick has not posed any problem as of yet, probably
because package-based development requires that every dependency is always
passed explicitly to the AutoConf generated ./configure script.

A small Ruby script served as update tool. It queries the repository, listing all
available releases. If you select one, the tree is checked out to a certain directory.
After relocation the Meta-Environment is ready to use. Before any upgrade or
downgrade however, the tool undoes the relocation to prevent Subversion from
seeing them as “local modifications”.

5.2 Release Management Requirements

The subject of lightweight application upgrade belongs to the field of software re-
lease management. In [18], the authors list a number of requirements for effective
release management in the context of component-based software. I discuss each
of them briefly here and show that our approach satisfies them appropriately.



Dependencies should be explicit and easily recorded Incremental contin-
uous integration of components presumes that dependencies are declared as
meta data within the source tree of the component. Thus, this requirement
is satisfied.

Releases should be kept consistent This requirement entails that releases
are immutable. The incremental continuous integration approach discussed
in this paper guarantees this.

The scope of the release should be controllable Scope determines who is
allowed to obtain a software release. The release repository presented in this
paper enables the use of any access control mechanism that is provided by
Subversion.

A history of retrievals should be kept Although I do not address this re-
quirement directly, if the Subversion release repository is served over HTTP
using Apache, it is easily implemented by consulting Apache’s access logs.

With respect to release management the implementation of change set compo-
sition using Subversion has one apparent weakness. Since Subversion does not
allow cross-repository branching it would be hard to compose application releases
using third-party components. However, this can be circumvented by using the
Subversion dump utility that exports sections of a repository on file. Such a file
can then be transferred to a different repository.

5.3 Update Management Requirements

In Section 1 I listed the requirements for application upgrade from the user
perspective. Let’s discuss each of them in turn to evaluate whether application
upgrade using Subversion satsifies them.

Lightweightness No invasive software deployment tool has to be installed
to receive updates. Many language bindings exist for subversion, so self-
updating functionality can be easily bundled with the application itself.

Genericity Change set composition works with files of any kind; there is no
programming language dependency. Moreover, Subversion is portable across
many platforms, thereby imposing no constraints on the development or user
environment.

Safety The Subversion switch command is used for both upgrade and down-
grade. A failed upgrade can thus be quickly rolled back. Another contribu-
tion to safety is the fact that Subversion repository modifications are atomic,
meaning that the application user is shielded from inconsistent intermediate
states, and that releases put out in parallel do not interfere.

Efficiency Efficiency is achieved on two accounts. First the use of Subversion
as delivery protocol ensures that an upgrade involves the transfer of just
the differences between the old version and the new version. Secondly, while
the unit of delivery is a full application, only the files per component are
effectively stored, and even these are stored differentially.



Although all requirements are fulfilled satisfactory, the primary weakness of bi-
nary change set composition remains the fact that distributed files have to be
relocatable. Solving this problem is left as future work.

6 Conclusion and Future Work

In this paper I have discussed the requirements that have to be fulfilled so that
application upgrade is a burden neither for the development side, nor for the
user side. Related work in the area of software release management did not live
up to these requirements. The binary change set composition technique does live
up to these requirements, and can be used to deliver new application releases
accurately, frequently and quickly. The implementation on top of Subversion
shows that the approach is feasible and may serve as a low impact adoption
path.

However, ample opportunities for future work remain. Currently, which con-
figurations of components should be released and updated is implicit. To promote
variation this should be explicitly specified. Therefore, one direction of future
work is to investigate how binary change set composition could be applied in
the context of component-based product populations [21]. This ways, different
product variants could be automatically released and updated.

Another direction of future work concerns the integration of deployment func-
tionality with the released application itself. Nowadays, many applications con-
tain functionality to check for new updates. If they are available they are installed
and the application is restarted. It would be interesting if using the approach of
this paper one could design such “update buttons” in a reusable and generic way.
Similarly, it should be investigated how such self-updating applications could be
enhanced with functionality for reporting bugs or other kinds of feedback.

Finally, the notion of application state has been completely disregarded in
this paper. Application state has many faces, from configuration parameters
set by the user, to complete databases. The deployment method must ensure
that this data is preserved across upgrades. Moreover, if an upgrade involves
a change in the data format of this state, for instance, the database schema,
XML schema, or grammar, then the data has to be migrated. Further research
is required to see if results from the areas of, for instance, schema evolution [13]
or data synchronization [8] can applied in this context. In this scenario the data
should not only be preserved but converted to the new format. It is as of yet
unclear how to do this in a sufficiently generic way.

References

1. AutoConf. Online: http://www.gnu.org/software/autoconf.

2. AutoPackage. Online: http://www.autopackage.org.

3. E. C. Bailey. Maximum RPM. Taking the Red Hat Package Manager to the Limit.
Red Hat, Inc., 2000. Online: http://www.rpm.org/max-rpm.



4. M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In R. Wilhelm, editor, Compiler Construction (CC
’01), volume 2027 of Lecture Notes in Computer Science, pages 365–370. Springer-
Verlag, 2001.

5. Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Con-
trol with Subversion. O’Reilly Media, 2004. Online: http://svnbook.red-bean.
com/.

6. M. de Jonge. Source tree composition. In Cristina Gacek, editor, Proceedings:
Seventh International Conf. on Software Reuse, volume 2319 of LNCS, pages 17–
32. Springer-Verlag, April 2002.

7. E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free system for soft-
ware deployment. In Lee Damon, editor, 18th Large Installation System Admin-
istration Conference (LISA ’04), pages 79–92, Atlanta, Georgia, USA, November
2004. USENIX.

8. J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C.
Pierce, and Alan Schmitt. Exploiting schemas in data synchronization. In Database
Programming Languages (DBPL), August 2005.

9. M. Fowler and M. Foemmel. Continuous integration. Online: http://www.

martinfowler.com/articles/continuousIntegration.html.
10. E. Grossman. An update on software updates. ACM Queue, March 2005.
11. Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. A cooperative ap-

proach to support software deployment using the software dock. In Proceedings of
the 1999 International Conf. on Software Engineering (ICSE’99), pages 174–183,
New York, May 1999. Association for Computing Machinery.

12. S. Jansen, G. Ballintijn, and S. Brinkkemper. A process framework and typology for
software product updaters. In 9th European Conference on Software Maintenance
and Reengineering (CSMR), 2005.

13. Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for
grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, 2005.

14. C. Lüer and A. van der Hoek. JPloy: User-centric deployment support in a com-
ponent platform. In Second International Working Conference on Component De-
ployment, pages 190–204, May 2004.

15. FreeBSD Ports. Online: http://www.freebsd.org/ports.
16. G. Noronha Silva. APT HOWTO. Debian, 2004. Online: http://www.debian.

org/doc/manuals/apt-howto/index.en.html.
17. Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software:

Beyond Object-Oriented Programming. ACM Press and Addison-Wesley, New
York, NY, 2nd edition, 2002.

18. André van der Hoek and Alexander L. Wolf. Software release management for
component-based software. Software—Practice and Experience, 33(1):77–98, 2003.

19. Tijs van der Storm. Continuous release and upgrade of component-based software.
In Jim Whitehead and Annita Persson Dahlqvist, editors, Proceedings of the 12th
International Workshop on Software Configuration Management (SCM-12), 2005.

20. Tijs van der Storm. The Sisyphus continuous integration system. In Proceedings
of the Conference on Software Maintenance and Reengineering (CSMR’07). IEEE
Computer Society Press, 2007. To Appear.

21. Rob van Ommering. Configuration management in component based product pop-
ulations. In Proc. of the 10th Intl. Workshop on Software Configuration Manage-
ment, May 2001.


