
A Case Study in Evidence-Based DSL Evolution

Jeroen van den Bos1,2 and Tijs van der Storm1

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 Netherlands Forensic Institute, Den Haag, The Netherlands

jeroen@infuse.org, storm@cwi.nl

Abstract. Domain-specific languages (DSLs) can significantly increase produc-
tivity and quality in software construction. However, even DSL programs need
to evolve to accomodate changing requirements and circumstances. How can we
know if the design of a DSL supports the relevant evolution scenarios on its pro-
grams? We present an experimental approach to evaluate the evolutionary capa-
bilities of a DSL and apply it on a DSL for digital forensics, called DERRIC. Our
results indicate that the majority of required changes to DERRIC programs are
easily expressed. However, some scenarios suggest that the DSL design can be
improved to prevent future maintenance problems. Our experimental approach
can be considered first steps towards evidence-based DSL evolution.

1 Introduction

Domain-specific languages (DSLs) can increase productivity by trading generality for
expressive power [17, 5]. Furthermore, DSLs have the potential to improve the prac-
tice of software maintenance: routine changes are easily expressed. More substantial
changes, however, might require the DSL itself to be changed [4]. How can we find out
whether the relevant maintenance scenarios will require routine changes or not?

In this paper we present a test-based experimental approach to answer this question
and apply it to a domain-specific language for describing file formats: DERRIC [2].
DERRIC is used in the domain of digital forensics to generate software to analyze,
reconstruct, and recover file-based evidence from storage devices. In digital forensics
it is common that such file format descriptions need to be changed regularly, either to
accomodate new file format versions, or to deal with vendor idiosyncrasies.

As a starting point, we have assembled a large corpus of image files to trigger
failing executions of the file recognition code that is generated from DERRIC descrip-
tions. Each failing execution is attempted to be corrected through a modification of the
DERRIC code, until all image files are correctly recognized. The required changes are
accurately tracked, categorized and rated in terms of complexity. This set of changes
provides an empirical baseline to assess whether the design of DERRIC sufficiently fa-
cilitates necessary maintenance.

The results show that all of the required changes were expressible in DERRIC; the
DSL did not have to be changed to resolve all failures. The majority of harvested changes
consists of multiple, inter-dependent modifications. The second most common change
consists of a single, simple, local modification. Finally, a minority of changes is more
complex. We discuss how the DERRIC DSL may be changed to make these changes

1format PNG

2extension png

3strings ascii

4sequence Signature IHDR Chunk* IEND

5

6structures

7Signature {

8 marker: 137,80,78,71,13,10,26,10;

9}

10

11Chunk {

12 length: lengthOf(chunkdata) size 4;

13 chunktype: type string size 4;

14 chunkdata: size length;

15 crc: checksum(

16 algorithm="crc32-ieee",

17 init="allone",start="lsb",

18 end="invert",store="msbfirst",

19 fields=chunktype+chunkdata)

20 size 4;

21}

22

23IHDR = Chunk {

24 chunktype: "IHDR";

25 chunkdata: {

26 width: !0 size 4;

27 height: !0 size 4;

28 bitdepth: 1|2|4|8|16;

29 colourtype: 0|2|3|4|6;

30 compression: 0;

31 filter: 0;

32 interlace: 0|1;

33 }

34}

35

36IEND {

37 length: 0 size 4;

38 chunktype: "IEND";

39 crc: 0xAE,0x42,0x60,0x82;

40}

Fig. 1. Simplified PNG in DERRIC.

expressed more easily. Thus, the experiment has provided us with empirical data to
improve the design of DERRIC.

The contributions of this paper can be summarized as follows:

– We describe and apply an experiment in DSL-based maintenance in the context of
DERRIC, and provide a detailed description including its parameters.

– We present empirical results on how the DERRIC DSL supports the maintenance
process in the domain of digital forensics.

– We discuss the usefulness of this approach and how it has helped us to both evaluate
and improve the design of DERRIC.

These contributions can be considered first steps towards evidence-based DSL evolution.

2 Background

DERRIC is a DSL to describe binary file formats [2]. It is used in digital forensics inves-
tigations to construct highly flexible and high performance analysis tools. One example
is the construction of file carvers [1], which are used to recover possibly damaged evi-
dence from confiscated storage devices (e.g., hard disks, cameras, mobile phones etc.).
DERRIC descriptions are used to generate some of the software components, called
validators, that check whether a recovered piece of data is a valid file of a certain type.

An example DERRIC description for a simplified version of the PNG file format is
shown in Fig. 1. The structure of a file format is declared using the sequence keyword.

The sequence consists of a regular expression that specifies the syntax of a file format in
terms of basic blocks, called structures. In this case, a PNG file starts with a Signature

block, an IHDR block, zero-or-more Chunks and finally an IEND block.
The contents of each structure is defined in the following structures section. A

structure consists of one or more fields. The contents and size of each field are con-
strained by expressions. The simplest expression is a constant, that directly specifies
the content, and hence length, of a field. This is the case for the marker field of the
Signature structure. Another common type of constraint only restricts the type and/or
length of a field. For instance, the chunktype field of structure Chunk is constrained
to be of type string and size 4. Constraints may involve arbitrary content analyses.
For example, consider the crc field. To recognize this field a full checksum analysis
following the crc32-ieee algorithm should be performed.

3 Observing Corrective Maintenance

To study the maintainability characteristics of DERRIC, we need a way to inspect and
evaluate actual maintenance scenarios. In other words: we need to observe how DSL
programs are changed. For the purpose of this paper, we focus on corrective mainte-
nance [10], which is maintenance in response to observed failures (“bug fixing”).

To realize this, a large corpus of representative and relevant inputs to a DSL program
is needed, which allows us to automatically generate failures, which in turn trigger cor-
rective maintenance actions. The approach is similar to fuzzing where a program is run
on large quantities of invalid, unexpected or even random input data [19]. For mainte-
nance evaluation, however, it is of paramount importance that the data is representative
of what would be encountered in practice.

In the case of DERRIC we have assembled a large, representative corpus of image
files (JPEG, GIF and PNG) for which DERRIC descriptions are available. The exact nature
of these descriptions and the corpus is described in detail in Section 4.

For each file format f , the initial DERRIC Di
f description is compiled to a validator

and subsequently run on the corpus files of type f . This results in an initial set of files
for which validation fails3. The set of failures is then divided over equivalence classes
which are sorted by their size. This allows us to focus on the most urgent problems
first. Next, Di

f is edited to obtain a new version Di+1
f which resolves at least one of

the failures in the largest equivalence class. As soon as the set of failures is observed
to decrease, Di+1

f is committed to the version control system. Before committing we
ensure that the set of correctly validated files (the true positives) strictly increases, as a
form of regression test. The process then repeats, now using Di+1

f as a starting point.
After all failures have been resolved, the changes, as stored in the version control,

are categorized in change complexity classes. A change may thus be interpreted as being
more complex than another change. This provides an empirical base line to qualitatively
assess to what extent DERRIC supports maintenance of format descriptions.

3 Technically, both false positives and false negatives are failures. However, since the corpus
only contains real files, we cannot detect when a validator would incorrectly validate a file.

4 Experiment

4.1 DSL Programs and Corpus

The three DSL programs that have been used are DERRIC descriptions of JPEG, GIF
and PNG. These file formats are well-known, very common and highly relevant to the
practice of digital forensics. An impression of the sizes of these descriptions is given in
Table 1. From the table it can be inferred that the descriptions are significantly different.
Both GIF and PNG have a richer syntactic structure than JPEG. Structure inheritance is
heavily used in JPEG and PNG but only once in GIF. Finally, GIF has a lot more fields
per structure (58 per 12). Summarizing, we claim that the three file format descriptions
cover a wide range of DERRIC’s language features, in different ways.

JPEG GIF PNG

Sequence tokens 14 29 30
Structures 15 12 20
Uses of inheritance 10 1 17
Field definitions 32 58 27

Table 1. Initial DERRIC descriptions.

Data Set Failures
Format # size # %

JPEG 930,386 327GB 5,485 0.6%
GIF 36,524 3GB 389 1.1%
PNG 236,398 27GB 5,789 2.4%

Total 1,203,308 357GB 11,663 1.0%

Table 2. Initial validator results.

The second important component of the experiment, is a representative corpus.
We have developed such a corpus for the evaluation of our earlier work on model-
transformation of DERRIC descriptions [3]. This data set contains JPEG, GIF and PNG
images found on Wikipedia, downloaded using the latest available static dump list,
which dates from 20084. Around 50% of the files on that list were still available and
included in the set. An overview of the data set is shown in Table 2. The corpus contains
a total of 1,203,410 images, leading to a total size of 357 GB. As the last two columns
show, not all images in the data set are recognized by the validators generated from the
respective JPEG, GIF and PNG descriptions: between 0.6% and 2.4% of the files in the
data set are not recognized using the base descriptions of the respective file formats.

The Wikipedia data set can be considered representative, since the files uploaded to
it originate from many different sources (e.g., cameras, editing software, etc.). We have
verified this diversity by inspecting the metadata of the files and aggregating the results.

This shows that the set contains files from a large number of different cameras (e.g.,
Canon, Nikon, etc.) Furthermore, many images have been modified using a multiplicity
of tools (e.g., Photoshop, Gimp, etc.) Original computer images such as diagrams and
logos have been created using many different tools (e.g., Dot, Paintshop Pro, etc.)

The diversity is depicted graphically in Fig. 2, showing the distribution of files over
values of the EXIF Software tag present in 28.4% of the images. The most common tool
is Photoshop 7.0, used on 3.4% of the corpus; Photoshop CS2 and CS (Windows) are

4 Available at https://github.com/jvdb/derric-eval

used on 2.3% and 1.8% respectively. ImageReady covers 1.6%. After that the percent-
ages rapidly decrease: no specific version of any application was used in more than 1%
of the files. The number of different values is 4,024.

0 1,000 2,000 3,000 4,000
100

101

102

103

104

EXIF Software tag values

#
Fi

le
s

(l
og

)

Fig. 2. Distribution of EXIF Software tag values over 28.4% of the corpus

4.2 Classifying and Ordering Failures

To improve productivity and handle the most relevant issues first, the set of failures
is divided over equivalence classes, according to their longest normalized recognized
prefix: this is the sequence of DERRIC structures that has been successfully recognized
before recognition failed. Classification is repeated after each iteration, because after
each change to a description, files might now fail with another prefix.

The prefix is normalized to eliminate the common effect of repeating structures. For
instance, if the recognized prefix consists of the structures A B B C, then the normalized
prefix is A B+ C. The plus-sign indicates one-or-more occurrences. As a result, files that
failed recognition with prefixes A B C, A B B C, A B B B C, etc. all end up in the same
bucket. The equivalence classes thus obtained are then sorted according to size in order
to first improve those parts of the description that generate the most failures.

4.3 Evolving the Descriptions

The next step in the experiment is to manually fix the descriptions until all failures have
been resolved. After each change, we recorded how many edits—additions, modifica-
tions and deletions—were needed to reduce the number of failures. An edit captures an
atomic delta to a description. Edits can be applied to either the sequence or the list of
structures. The semantics of edits is summarized in Table 3.

The simplest edits are addition/removal of a structure to/from the structures sec-
tion of a DERRIC description, and adding/removing a referenced structure from the

Structures Sequence

Add Add new structure Insert structure symbol

Modify Add, modify, or delete field Change regular grammar

Delete Remove structure definition Remove structure symbol

Table 3. Edit semantics: a DERRIC description’s two main sections can be edited in three ways.

sequence expression (cf. Fig. 1). Furthermore, a structure itself can be modified by
adding, modifying or removing fields. The sequence can be modified by changing the
regular expression without adding or removing a structure reference.

Each change has been tracked in the Git version control system5 to allow full trace-
ability and reproducability of the results of this paper. In fact, a single change corre-
sponds to a single commit. After each change the DERRIC compiler was rerun with the
modified descriptions. The process was repeated until all failures were resolved.

4.4 Change Complexity Classes

After all failures have been resolved, the resulting set of changes is divided over equiv-
alence classes according to their change complexity. Change complexity is intuitively
defined in terms of the number of edits in a change, their interrelatedness and how
much they are scattered across a source file: more edits, more interrelatedness and more
scattering, means higher complexity.

A change consisting of a single edit has very low change complexity. On the other
hand, a change involving many logically related edits, scattered over the whole program,
has a high change complexity. Simple, low complexity changes leave the structure of
the original program mostly intact. At the opposite end, high complexity changes might
well create future maintenance problems.

Just like code smells [7] might be indicators of software design problems, in the case
of DERRIC, we conjecture, high complexity changes might indicate language design
problems. For the purpose of our experiment we have identified 3 change complexity
classes. Below we briefly describe each class, rated as Low, Medium or High.

– Single, localized edit (Low) The ideal situation is where a change requires a single
modification of the program. By implication, such a change is always localized.
Example: a single edit of the sequence, or the change of a single field in a structure.

– Multiple, but dependent edits (Medium) In this case, a change requires multiple,
inter-dependent edits. For instance, defining a new structure, then adding a refer-
ence to it in the sequence section.

– Cross-cutting changes (High) Cross-cutting changes require many (more than two)
similar edits scattered across the program. Such changes always involve some form
of duplication. This kind of changes is very bad, since they affect the program in a
way that is dependent on the size of the program.

5 Available at https://github.com/jvdb/derric-eval

The changes, categorized in the change complexity classes, provide an empirical base
line to start discussing to what extent DERRIC supports maintenance.

5 Results

The results of the experiment are summarized in Table 4, 5 and 6 for the file formats
JPEG, GIF and PNG respectively. The first column of each table identifies the change (i.e.
set of edits). In the following, we will identify changes by using a combination of file
format name and Id, like so: PNG 11 denotes the eleventh change of the PNG description
in Table 6. Columns 2-5 display how many edits of that particular type were required in
order to decrease the number of failures. For instance, change JPEG 1 involved two edits:
a structure definition was added, and a reference was added to the sequence expression.
Note that deletions are omitted from these tables since they never occurred.

The actual decrease in failures is shown in the “Errors Resolved” column. Finally,
the last column shows how a change was categorized with respect to change complexity.
Revisiting change JPEG 1 we see that it is ranked as Medium, which means that the
change contains multiple, dependent edits. Hence we can conclude that the reference
inserted into the sequence expression has to be a reference to the newly added structure.

6 Analysis

To summarize the results of our experiment, Table 7 shows the total number of changes
per complexity level. The table shows that the majority of changes are easily supported
by DERRIC: 13 are simple, localized edits (Low), and 19 changes require multiple,
dependent edits. The dependency between edits in these changes is a direct consequence
of separating sequence from structure definition. In other words: this dependency is
anticipated by the design, and hence unavoidable.

Only 5 changes are categorized as cross-cutting (High). While in the experiment
these changes did not occur very frequently, they still might indicate there is room for
improving the design of DERRIC. Moreover, looking at the results for JPEG, we seem
to observe a pattern of deterioration. Investigating the actual changes reveals that, in-
deed, duplication introduced by earlier changes, has a detrimental effect on the required
subsequent changes. The fact that cross-cutting changes may amplify each other, is ex-
actly the evolutionary effect we would like to avoid. Three language features could be
introduced to DERRIC to eliminate such cross-cutting changes completely:

– Abstraction: a language construct to declare subsequences so that duplicate subse-
quences can be referred to by name.

– Padding: a construct to automatically interleave certain bytes inbetween structure
references in the sequence declaration.

– Precedence: declaring that a particular structure has priority over another one.

Below we motivate these language features based on the results of the experiment.

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 1 1 520 Medium
2 1 284 Low
3 1 1 245 Medium
4 1 1 821 Medium
5 1 3395 Low
6 1 138 Low
7 1 2 46 High
8 1 4 21 26 High
9 1 4 5 High

10 1 19 3 High
11 1 2 2 High

Table 4. Modifications to the JPEG description.

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 1 9 Low
2 1 115 Low
3 1 137 Low
4 3 36 Medium
5 1 39 Low
6 1 48 Low
7 1 3 Low
8 2 2 Medium

Table 5. Modifications to the GIF description.

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 5 5 3136 Medium
2 1 1 1819 Medium
3 1 1 332 Medium
4 1 1 63 Medium
5 1 1 73 Medium
6 2 2 112 Medium
7 1 1 144 Medium
8 1 1 24 Medium
9 1 20 Low

10 1 18 Low
11 1 20 Low
12 1 1 10 Medium
13 1 1 2 Medium
14 1 1 9 Medium
15 2 2 2 Medium
16 1 3 Low
17 1 1 1 Medium
18 3 1 Medium

Table 6. Modifications to the PNG description.

Level Name #

Low Single localized 13
Medium Multiple dependent 19

High Cross-cutting 5

Total 37

Table 7. Changes per change complexity class

Abstraction In JPEG 7, a newly discovered data structure SOF1 is added to the descrip-
tion. It was discovered that it is part of a sub-sequence of structures that may occur both
before and after a mandatory SOS structure. As a result, a reference to SOF1 had to be
inserted in two places. The relevant part of the original sequence reads as follows:

sequence ...

(DQT DHT DRI SOF0 SOF2 APPX COM)*
SOS

(SOS DQT DHT DRI SOF0 SOF2 APPX COM)*

Note that the sequence DQT DHT DRI SOF0 SOF2 APPX COM is duplicated. An abstraction
construct would allow the description to be refactored as follows:

def Seq = DQT DHT DRI SOF0 SOF2 APPX COM;

sequence ... Seq* SOS (SOS Seq)*

To accomodate the new SOF1 structure, only the definition of Seq would have to be
adapted. Such an abstraction mechanism feature would not only reduce the severity of
such changes, it would also clearly communicate to readers of the description that the
sequences before and after the SOS reference are always the same.

Padding The JPEG 8 change clearly signals a problem: padding bytes are allowed ev-
erywhere in between structures. Every change that modifies the sequence will explicitly
make sure that padding is maintained. The duplication introduced by JPEG 7 makes the
way this change is expressed even less desirable. A (domain-specific) padding construct
allows padding to be expressed in a single place in the configuration section:

padding 0xFF

The compiler would then weave the generic padding element into the sequence.

Precedence The cross-cutting change JPEG 10 signals another language feature that
could be added to DERRIC. A new structure COMElanGmk was identified, which functions
as an alternative to the standard COM structure. The only difference from COM is that
COMElanGmk redefines the contents of a single field using DERRIC’s support for structure
inheritance. We would, however, like to also express that COMElanGmk has precedence
over COM: if it is there, consume it, otherwise attempt to match COM.

The current resolution involves duplicating large parts of the sequence to move the
choice between either structure to a higher level. A proper solution would be to extend
the set of sequence operators (?, *, etc.) with a new binary operator <. The precedence
ordering could then be expressed simply as COMElanGmk < COM.

7 Discussion

7.1 Lessons Learned

Based on this case study, we can draw a number of conclusions that are generally appli-
cable to the area of DSL development and model-driven development at large. First of
all, in order to do evidence-based DSL evolution, the existence of a large, representative
corpus is of paramount importance. Given such a corpus, it becomes possible to apply
our test-based experimental approach. Our results show that such an experiment indeed
provides useful feedback on the design of a DSL.

The corpus of files used in our experiment in essence represents a very large and
comprehensive test suite. In other domains, such a test suite has to be designed up front.
Nevertheless, the existence of test suites for (legacy) code, could thus be instrumental
in deciding whether to adopt a model-driven approach. For instance, in [14] the authors
perform a study whether the Mod4J framework is suitable to build web applications
following a reference architecture. In this case, the organization had ample experience
building such web applications. If (evolving) test suites for a representative sample
of non-Mod4J applications exist, they can be run against Mod4J replicas to find out
whether Mod4J supports the necessary evolution facilities to fix the failing tests.

Second, to our surprise, the experiment showed that even a simple DSL such as DER-
RIC requires abstraction facilities in order to mitigate future maintenance. Maybe DSLs
and modeling languages are much more like programming languages than we might
think. As such, our results provide a cautionary tale, which may be taken into consider-
ation when designing a DSL or modeling language. Furthermore, it might suggest that,
if such a feature is to be avoided, that graph-like, visual concrete syntax is preferrable,
since it would allow the direct representation of sharing of sub-structures.

Finally, since our experiment requires the accurate tracking and classification of
changes to source models, textual syntax seems to be an advantage. The textual syntax
of DERRIC allowed us to use standard diff tools to get insight into what was changed
inbetween revisions. A visual modeling language would most certainly require custom,
domain-specific difference algorithms [20]. Generic difference algorithms (on trees or
graphs) would likely contain irrelevant noise, and hence would be hard to interpret.

7.2 Threats to Validity

Even though our classification of changes is informal, we contend that it is sufficiently
intuitive. Proficient users of computer languages (domain-specific or general purpose)
use similar reasoning to distinguish “good” changes from “bad” changes. Most pro-
grammers are familiar with the principles of Don’t-Repeat-Yourself (DRY) and Once-
and-Only-Once (OAOO). These are precisely the principles that were violated in the
cross-cutting changes.

The changes were performed by the first author (the designer of DERRIC) who has
ample experience in digital forensics. As such, he could have tended towards the small-
est and simplest changes. However, in order to evaluate the way a language supports
maintenance it is essential to analyze optimal changes; only then can the language as-
pect be isolated. A subject who is less versed in the domain of digital forensics or
DERRIC, would probably have added noise to the results (i.e. unneeded complexity in
the changes), and consequently, the results would have been harder to interpret.

As shown in Section 4, we consider the set of image files from Wikipedia a suitable
test set for generating failures and harvesting changes. First, the set of images is con-
structed by thousands of users of Wikipedia, so there is no selection bias. Second, there
is a high variability in the origin of the images and how the images were processed in
user programs (Fig. 2). Finally, the data set is large enough to generate realistic failures;
any of the observed failures could have occurred in practice.

It could be argued that neither JPEG, GIF nor PNG are rich enough to cover the full
expressivity or expose the lack thereof of DERRIC. This might be true, however, the
DERRIC language is designed precisely for this kind of file formats. In Section 4 we
have argued that the DERRIC descriptions of these file formats are sufficiently different
to cover the whole language.

7.3 Related Work

Mens et al. [16] define evolution complexity as the computational complexity of a
metaprogram that performs a maintenance task, given a “shift” in requirements. Our
classification of changes is comparable since we consider small and local edits (fewer

“steps”) to be easier than multiple, dependent and scattered edits (requiring more steps).
Making this relation more precise, however, is an interesting direction for further re-
search. This would involve formalizing each change as a small metaprogram, and then
using its computational complexity to rank the changes.

Hills et al. [9] do a similar experiment but use an imaginary virtual machine for
“running” maintenance scenarios encoded as simple process expressions. Since the
changes and programs investigated in this paper are relatively small, writing them as
actual metaprograms might be practically feasible. Even more so since DERRIC is im-
plemented using the metaprogramming language RASCAL [11], which is highly suit-
able for expressing the changes as source-to-source transformations.

The work presented in this paper can be positioned as an experiment in language
evaluation. Empirical language evaluation is relatively new since, as pointed out by
Markstrum [15], most language features are introduced without evidence to back up its
effectiveness or usefulness. In the area of DSL engineering, however, there is work on
evaluating the effectiveness of DSLs with respect to program understanding [17], key
success factors [8], and maintainability [12]. Our experiment can be seen in this line of
work, but focusing on how a DSL as a language supports evolution.

Corpus-based language analysis dates at least from the ’70s, but is getting more
attention recently; see [6] for a comprehensive list of references. A recent study is
performed by Lämmel and Pek. [13]. The authors have collected over 3,000 privacy
policies expressed in the P3P language in order to discover how the language is used
and which features are used most. Morandat et al. [18] gather a corpus of over 1,000
programs written in R to evaluate some of the design choices in its implementation. A
difference with respect to our work, however, is that corpus-based language analysis
focuses on a corpus of source files. Instead, in this paper we used a corpus of input files
to trigger realistic failures, not to analyze the usage of language features, but to analyze
how these features fare in the face of evolution.

8 Conclusion

DSLs can greatly increase productivity and quality in software construction. They are
designed so that the common maintenance scenarios are easy to execute. Nevertheless,
there might be changes that are impossible or hard to express. In this paper we have
presented an empirical experiment to discover whether DERRIC, a DSL for describing
file formats, supports the relevant corrective maintenance scenarios.

We have run three DERRIC descriptions of image formats on a large and represen-
tative set of image files. When file recognition failed, the descriptions were fixed. This
process was repeated until no more failures were observed. The required changes, as
recorded in version control, were categorized and rated according to their complexity.

Based on the results we have identified to what extent DERRIC supports mainte-
nance of file format descriptions. The results show that most of the changes are easily
expressed. However, the results also show there is room for improvement: three fea-
tures should be added to the language. The most important of those is a mechanism for
abstraction to factor out commonality in DERRIC syntax definitions.

Our experimental approach can be applied in the context of other DSLs. The only
requirement is a representative corpus of inputs that will trigger realistic failures in
the execution of DSL programs and a way to classify and rank the changes required
to resolve the failures. By fixing the DSL programs, tracking and ranking the required
changes, it becomes possible to observe how seamless (or painful) actual maintenance
would be. We consider the experiment presented in this paper as a first step towards
evidence-based DSL evolution.

References

1. Aronson, L., van den Bos, J.: Towards an Engineering Approach to File Carver Construction.
In: 2011 IEEE 35th Annual Computer Software and Applications Conference Workshops
(COMPSACW). pp. 368–373. IEEE (2011)

2. van den Bos, J., van der Storm, T.: Bringing Domain-Specific Languages to Digital Foren-
sics. In: 33rd International Conference on Software Engineering (ICSE’11). pp. 671–680.
ACM (2011)

3. van den Bos, J., van der Storm, T.: Domain-Specific Optimization in Digital Forensics. In:
Hu, Z., de Lara, J. (eds.) 5th International Conference on Model Transformation (ICMT’12).
LNCS, vol. 7307, pp. 121–136. Springer (2012)

4. van Deursen, A., Klint, P.: Little Languages: Little Maintenance? Journal of Software Main-
tenance 10(2), 75–92 (1998)

5. van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated Bibliogra-
phy. SIGPLAN Notices 35(6), 26–36 (2000)

6. Favre, J.M., Gasevic, D., Lämmel, R., Pek, E.: Empirical Language Analysis in Software
Linguistics. In: Malloy, B.A., Staab, S., van den Brand, M. (eds.) Third International Confer-
ence on Software Language Engineering (SLE’10). LNCS, vol. 6563, pp. 316–326. Springer
(2010)

7. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring. Addison-Wesley
(1999)

8. Hermans, F., Pinzger, M., van Deursen, A.: Domain-Specific Languages in Practice: A User
Study on the Success Factors. In: Schürr, A., Selic, B. (eds.) 12th International Conference
On Model Driven Engineering Languages And Systems (MODELS’09). LNCS, vol. 5795,
pp. 423–437. Springer (2009)

9. Hills, M., Klint, P., van der Storm, T., Vinju, J.J.: A Case of Visitor versus Interpreter Pattern.
In: Bishop, J., Vallecillo, A. (eds.) 49th Int. Conference on Objects, Models, Components and
Patterns (TOOLS’11). Lecture Notes in Computer Science, vol. 6705, pp. 228–243. Springer
(2011)

10. ISO/IEC 14764: Software Engineering–Software Life Cycle Processes–Maintenance (2006)
11. Klint, P., van der Storm, T., Vinju, J.: Rascal: A Domain Specific Language for Source Code

Analysis and Manipulation. In: Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM’09). pp. 168–177. IEEE (2009)

12. Klint, P., van der Storm, T., Vinju, J.J.: On the Impact of DSL Tools on the Maintainabil-
ity of Language Implementations. In: 10th Workshop on Language Descriptions, Tools and
Applications (LDTA’10). ACM (2010)

13. Lämmel, R., Pek, E.: Vivisection of a Non-Executable, Domain-Specific Language – Un-
derstanding (the Usage of) the P3P Language. In: IEEE 18th International Conference on
Program Comprehension (ICPC’10). pp. 104–113. IEEE (2010)

14. Lussenburg, V., van der Storm, T., Vinju, J.J., Warmer, J.: Mod4J: A Qualitative Case Study
of Model-Driven Software Development. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
13th International Conference on Model Driven Engineering Languages and Systems (MOD-
ELS’10) Part II. LNCS, vol. 6395, pp. 346–360. Springer (2010)

15. Markstrum, S.: Staking Claims: A History of Programming Language Design Claims and
Evidence: A Positional Work in Progress. In: 2nd ACM SIGPLAN Workshop on Evaluation
and Usability of Programming Languages and Tools (PLATEAU’10). pp. 7:1–7:5. ACM
(2010)

16. Mens, T., Eden, A.H.: On the Evolution Complexity of Design Patterns. Electronic Notes in
Theoretical Computer Science 127(3), 147–163 (2005)

17. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific Lan-
guages. ACM Computing Surveys 37(4), 316–344 (2005)

18. Morandat, F., Hill, B., Osvald, L., Vitek, J.: Evaluating the Design of the R Language -
Objects and Functions for Data Analysis. In: Noble, J. (ed.) 26th European Conference
on Object-Oriented Programming (ECOOP’12). LNCS, vol. 7313, pp. 104–131. Springer
(2012)

19. Oehlert, P.: Violating Assumptions with Fuzzing. IEEE Security and Privacy 3(2), 58–62
(2005)

20. Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-Oriented Design Differencing. In:
20th IEEE/ACM International Conference on Automated Software Engineering (ASE’05).
pp. 54–65. ACM (2005)

