
Extensible Language Implementation with Object Algebras
(Short Paper)

Maria Gouseti
CWI, Amsterdam, The Netherlands

mgouseti@gmail.com

Chiel Peters
CWI, Amsterdam, The Netherlands

chiel.peters@student.uva.nl

Tijs van der Storm
CWI, Amsterdam, The Netherlands

storm@cwi.nl

Abstract
Object Algebras are a recently introduced design pattern to make the
implementation of recursive data types more extensible. In this short
paper we report our experience in using Object Algebras in building
a realistic domain-specific language (DSL) for questionnaires, called
QL. This experience has led to a simple, yet powerful set of tools
for the practical and flexible implementation of highly extensible
languages.

Categories and Subject Descriptors D.2.11 [Software Architec-
ture]: Languages; D.3.2 [Language Classifications]: Extensible
Languages; D.3.3 [Language Constructs and Features]: Frame-
works

General Terms Design, Languages

Keywords Object Algebras; extensibility; interpreter

1. Introduction
Object Algebras are a programming technique to make the imple-
mentation of recursive data types more extensible [2]. As a solution
to the “expression problem” [4], it supports modular extension of
both language constructs (e.g., expressions) and operations (e.g.,
evaluation, type checking, etc.).

The key idea of Object Algebras is to describe the abstract syntax
of a language using generic factory interfaces. Each factory method
corresponds to a constructor of a data type variant. For instance, the
following interface declares a data type for expressions, supporting
literals and addition:

interface ExpAlg<E> {
E lit(int n);
E add(E l, E r);

}

Operations over the data type are realized by implementing this
interface and instantiating the type parameter to a concrete type. For
instance, evaluation could be realized as follows1:

1 We will use Java 8 features such as functional interfaces and closure literals
throughout.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GPCE, ’14, September 15-16, 2014, Västerås, Sweden.
Copyright c© 2014 ACM 978-1-4503-3161-6/14/09. . . $15.00.
http://dx.doi.org/10.1145/

interface IEval { int eval(); }

class Eval implements ExpAlg<IEval> {
IEval lit(int n) { return () -> n; }
IEval add(IEval l, IEval r) {
return () -> l.eval() + r.eval();

}
}

The functional interface IEval captures the operation we’re interested
in. The class Eval acts as a factory for creating expressions that can
be evaluated.

Operations for particular expressions are created by calling
factory methods on implementations of the generic interface. For
instance, the following generic method creates the expression “1 +
2” over a specific algebra alg:

<X> X make(ExpAlg<X> alg) {
return alg.add(alg.lit(1), alg.lit(2));

}

To evaluate expressions, one would call this method with an instance
of Eval.

Implementing a different operation involves implementing the
generic interface again. This solves half of the expression problem:
extensibility of operations. The other half, extension of variants,
is solved by first extending the generic interface, for instance,
MulAlg<E> extends ExpAlg<E>). Operations are then extended by
implementing the extended interface and subclassing the class
representing the base operation. For instance, EvalMul extends Eval
implements MulAlg<IEval>.

A consequence of the object algebra style in the context of
language implementation is that the notion of an AST in a sense
disappears. Instead, each operation requires the (re)construction of
the program structure over the algebra that performs that operation.

Object Algebras were invented only recently (2012) and have
never been applied in a realistic language implementation project.
In this short paper we share our experience in using Object Algebras
in the implementation of a DSL for questionnaires, called QL. In
particular, we address the following problems:

• In practical language implementation, program structures are
created by a parser. To prevent parsing multiple times for each
operation (e.g., type checking, evaluation etc.) we present a
recorder combinator which delays the instantiation of a program
into a concrete algebras till after parsing

• In our experience, the use of inheritance tends to lead to inflexi-
ble designs. We present a dynamic union combinator to combine
languages without the use of inheritance.

• Although Object Algebras support extension of abstract syntax,
they do not solve the problem of extensible concrete syntax. We

static <T> T recorder(Class<T> ialg) {
return (T)Proxy.newProxyInstance(ialg.getClassLoader(),

new Class<?>[]{ialg},
(x, m, args) -> new Builder(m, args));

}

class Builder {
Method method; Object[] args;
<T> T build(Object alg) {
Object[] builtArgs = new Object[args.length];
for (int i = 0; i < args.length; i++)
builtArgs[i] = args[i] instanceof Builder

? args[i].build(alg) : args[i];
return (T)method.invoke(alg, builtArgs);

}
}

Figure 1. Recording factory method calls to delay instantiation

provide a practical solution to this problem by annotating factory
methods with concrete syntax productions, and generating the
parsers automatically.

The combinators and patterns have been applied in the implemen-
tation of QL, which includes extensible components for semantic
analysis, translation, and interpretation. Our experience has led us
to extract a small set of generic tools for language implementation,
called Naked Object Algebras, which can be found online here:
https://github.com/cwi-swat/naked-object-algebras.

2. Interfacing With Parsers
Practical language implementation requires interfacing with parsers.
A (generated) parser has to invoke the necessary factory method
during parsing to instantiate a program into a concrete algebra.
However, this would require reparsing the input program for every
operation that is needed.

A solution is to merge operations into combined interfaces (e.g.,
IEval and IPrint). The parser would then build multiple operations at
the same time. Unfortunately, this requires advanced type system
features, not present in languages such as Java [3]. Here we present
a more modest proposal: the object structure is rebuilt for each
operation, but the parser is invoked only once.

The recorder combinator shown in Figure 1 turns an algebraic
interface into a generic “recorder” algebra. Calling factory methods
on this algebra will create a structure that can recreate the same
structure into another algebra. Intuitively, the recorder combinator is
used as follows:

Build<X> builder = parse(recorder(Alg.class), input);
IEval eval = builder.build(new Eval());
IPrint print = builder.build(new Print());

The parser is invoked with the generic recorder algebra, derived from
the Alg interface. The result is a builder object which has “recorded”
the syntactic structure of the input. The builder can then be used
to instantiate this fixed structure into different operations using the
concrete algebras (e.g., Eval and Print).

3. Combining Languages
Object Algebras are primarily focused on language extension in the
narrow sense. An example is extending a language for expressions
with another type of expression. Language combination, on the other
hand, involves combining two different types of languages, such as,
for instance, expressions and statements.

Although inheritance could be used for language combination,
in practice this leads to inflexible designs. Inheritance prevents oper-

static <T> T union(Class<T> ialg, Object ...algs) {
return (T)Proxy.newProxyInstance(ialg.getClassLoader(),

new Class<?>[] { ialg },
(x, m, args) -> {
for (Object alg: algs)
try { return m.invoke(alg, args); }
catch (Throwable e) { }

throw new Exception("method not found");
});

}

Figure 2. Generic union combinator

ations to be specific for a sub language (e.g., expressions or state-
ments). Furthermore, single-inheritance is limiting for combining
independent extensions.

To obtain more modular designs, we would like to keep the
interfaces for statements and expressions separate, so that operations
can be scoped to each sub language, and so that each sub language
can be extended separately. For instance, the interface for statements
could then be:

interface StmtAlg<E, S> {
S assign(String x, E e);
S ifThen(E c, S b);

}

The dependency of statements on expressions is captured in generic
type E, but not on any concrete interface.

It is possible to combine language through delegation [2]. A
single class implements both languages’ interfaces and then dy-
namically delegates factory method invocations to their respective
algebra. To avoid writing delegation methods for every combination
of languages, the delegation can be handled using Java’s dynamic
proxies. This is realized by the union combinator shown in Figure 2.
The union operator can be used to dynamically combine any number
of languages.

The first argument of the union function is the class of a combined
interface, i.e. an interface extending all the language interfaces we
are about to combine. The rest of the arguments to union are any
number of algebras (i.e. implementations of factory interfaces), that
together realize the combined interface of the first argument. The
dynamic proxy then intercepts factory method calls, and delegates
them to the first algebra that can handle it. (We assume there is only
one unique object algebra that can service the request.)

Here is an example of using union to combine expressions and
statements for the operations evaluation of expressions (Eval), and
execution of statements (Exec):

interface All<E,S> extends ExpAlg<E>, StmtAlg<E,S> {}
All<IEval,IExec> evalExec
= union(All.class, new Eval(), new Exec());

The union combinator provides a flexible way of dynamically
combining language interfaces. Furthermore, in combination with
the recorder combinator, interfacing with a parser is for free: just
pass evalExec to the build method on the builder object obtained
using recorder.

4. Extensible Concrete Syntax
The union combinator facilitates combining the abstract syntax of
languages, but it does not solve the problem of combining the
concrete syntax of these languages. In this section we present a
lightweight solution to this problem based on decorating factory
methods with annotations that specify the concrete syntax of each
language construct. An example is shown in Figure 3.

https://github.com/cwi-swat/naked-object-algebras

interface ExpAlg<E> {
@Syntax("exp = NUM");
E lit(int n);

@Syntax("exp = exp ’+’ exp") @Level(10)
E add(E l, E r);

}

class Tokens {
@Token("[0-9]+")
static int num(String s) { return Integer.parseInt(s); }

@Token("[]+") @Skip
void ws();

}

Figure 3. Specifying concrete syntax using annotations

The @Syntax annotation contains a syntax production2. Each
production needs to correspond to the signature of the factory
method. That is, non-terminals should correspond to the generic
arguments of the method. Non-generic arguments map to tokens.
For instance, the int n argument of the lit constructor maps to
the NUM token. Tokens are defined in a separate interface as
static methods from String to the actual token value (e.g., of type
int). Token methods representing whitespace or comments may
be annotated with @Skip. Finally, to deal with operator precedence,
factory methods can be annotated with @Level annotations indicating
ordering constraints on the productions.

The parser generator reflectively collects all syntax annotations
for a certain set of interfaces, and generates a parser for that
specific combination of languages. The generated parser will call
the appropriate factory and token methods to create the desired
structure.

5. Case Study: QL
QL is a simple language for defining questionnaires. An example
questionnaire is shown in Figure 4. QL programs are rendered as an
interactive form. The rendering of the questionnaire in Figure 4 is
shown in Figure 5. The language features labeled, typed questions,
which can be answerable or computed. In the latter case, the value of
a question is computed in terms of what the user of the questionnaire
answered to other questions. Questions can be made conditional
using an if-then-else construct.

The implementation of QL realizes the following features:

• Syntax: language interfaces, all annotated with concrete syntax
productions for parsing.

• Check: name resolution, undefined name checking and type
checking of expressions and statements.

• Eval: evaluation of expressions.
• Format: pretty printing, including insertion of parentheses where

needed.
• Render: present the questionnaire as an interactive form; entered

values are propagated to dependent, computed questions.

There is no inheritance. All combination of languages happens
through union. Parsing-based instantiation into different operations
is done using the recorder algebra. The full code of the case-study
can be found here: https://github.com/cwi-swat/ql-obj-alg.

2 Currently, we use ANTLR4 as parser generator, and the syntax of produc-
tion closely follows the syntax used in ANTLR4.

form HouseOwning {
soldHouse: "Did you sell a house?" boolean
boughtHouse: "Did you buy a house?" boolean
if (soldHouse) {
sellingPrice: "Selling price:" integer
privateDebt: "Private debts:" integer
valueResidue: "Value residue:" integer

= (sellingPrice - privateDebt)
}

}

Figure 4. Example QL questionnaire

Figure 5. Rendered QL questionnaire

Language Combination To illustrate the combination of recorder
and union, the following method could be used for formatting
questionnaires:

void prettyPrint(InputStream input, StringWriter output) {
IAllAlg recorder = recorder(IAllAlg.class);
Builder builder = (Builder) parse(input, recorder);
FormFormat ff = new FormFormat();
StmtFormat fs = new StmtFormat();
ExprPrec prec = new ExprPrec();
ExprFormat<ExprPrecedence> fe = new ExprFormat<>(prec);
IAllAlg all = union(IAllAlg.class, ff, fs, fe);
IFormat printableForm = builder.build(all);
printableForm.format(0, false, output);

}

First a recorder is created for the IAllAlg interface which extends the
expression, statement and form interfaces. The input is then parsed,
which results in a builder object. Then the form, statement and
expression specific implementations of formatting are instantiated.
Note that formatting of expressions (ExprFormat) depends on an
interpreter computing precedence levels (prec). Finally, the three
algebras (ff, fs, and fe) are combined using union. The resulting
algebra is input to the builder object to create the program structure
that supports pretty printing (printableForm). The format method in
interface IFormat performs the actual formatting starting with zero
indentation and in horizontal mode (false).

Language Extension To evaluate the extensibility of the base QL
implementation, three additional, separate projects were created. The
first project extends QL with an additional expression type (Modulo).
The second project extends QL questions with an input validation
construct (Validate). Finally, both extensions were combined.

The results in terms of source lines of code (SLOC) are shown
in Table 1. The two independent extensions required very few lines
of code, directly proportional to how much code is needed for a
feature. The combination of both extensions (not shown) required

https://github.com/cwi-swat/ql-obj-alg

class Stmt2Box<X> implements StmtAlg<X,X> {
BoxAlg<X> ba;
X assign(String x, X e) {
return ba.H(1, ba.L(x), ba.L(":="), e);

}
X ifThen(X e, X b) {
return ba.V(0, ba.H(1, ba.L("if"), e), ba.I(2, 0, b));

}
}

Figure 6. Translating statements to Box

Table 1. SLOC per feature QL and its extensions

Feature Base QL +Modulo +Validate
Syntax 79 12 29
Check 993 24 148
Eval 1075 29 42
Format 335 32 40
Render 534 — 46
Total 3016 97 305

only a few lines of glue code to tie the base language and the two
extensions together. This really showed the convenience of union.

The prettyPrint method above in the extension project for mod-
ulo includes the following additional statements to include pretty
printing of modulo expressions:

IAllAlgWithMod recorder = recorder(IAllAlgWithMod.class);
...
ExprPrecWithMod precm = new ExprPrecWithMod();
ExprFormatWithMod fm = new ExprFormatWithMod(precm);
IAllAlgWithMod all = union(IAllAlgWithMod.class, ff, fs, fe, fm);

The only difference in constructing the pretty printer is to instantiate
the recorder over the extended syntactic interface (IAllAlgWithMod)
and adding the pretty printing algebra for modulo expressions to the
union operator.

Final Observations The code for formatting QL programs was
implemented through translation to a generic Box algebra for pretty
printing [1]. Each language construct is mapped to an L (literal), V
(vertical) , H (horizontal) or I (indented) box. The resulting Box
structure can then be pretty-printed to text. Directly delegating
factory methods to a different algebra turns out to be a very powerful
pattern to implement transformations, translations and desugarings.
An example of this pattern using the Box algebra is shown in
Figure 6. Note that the translation is generic: it does not depend on
any specific operation interface.

We have performed some initial performance benchmarks. For
all practical purposes, the overhead of dynamic proxies is negligible.
Multiple builds after parsing necessarily incur a performance penalty,
linear in the size of the constructed program. An experiment on an
artifically constructed questionnaire of 1.4MB (source code) showed
that parsing and directly creating a single operation takes roughly
0.125 seconds, whereas parsing and then building the same operation
after parsing using the recorder algebra takes about 0.1875 seconds.

Summary Summarizing, we consider the implementation of QL
using the Naked Object Algebras framework to be very successful.
The implementation of QL is independently extensible in both
dimensions identified by the expression problem. The recorder and
union combinators work together seamlessly, and provide a lot of
flexibility in how algebras are combined and instantiated. Taking this
approach to its limits has potential for constructing highly modular
libraries of language building blocks, from which custom languages
can be composed at will. Finally, even though the combinators
presented here are very dynamic, the object algebra implementations
themselves (Eval, Exec etc.) are statically typed.

6. Conclusion
The extensible and modular implementation of languages has the
potential to turn software languages into product lines. Object
Algebras support this vision by allowing language implementations
to be extended with new operations or new language constructs. In
this paper we have shared our experience in applying this technique
in the implementation of a simple DSL, QL.

We have extracted our experience into the Naked Object Alge-
bras framework, a generic toolbox for the flexible combination of
algebras, interfacing with a parser and supporting extensible con-
crete syntax. The result can be considered as a first step towards a
comprehensive toolbox for practical, end-to-end implementation of
extensible languages.

References
[1] J. Coutaz. The box, a layout abstraction for user interface toolkits.

Technical Report 2127, Carnegie Mellon University, 1984.
[2] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses:

practical extensibility with Object Algebras. In ECOOP’12, pages 2–27.
Springer, 2012.

[3] B. C. d. S. Oliveira, T. Van Der Storm, A. Loh, and W. R. Cook. Feature-
oriented programming with object algebras. In ECOOP’13, pages 27–51.
Springer, 2013.

[4] P. Wadler. The expression problem. Online, November 1998. http:
//www.daimi.au.dk/~madst/tool/papers/expression.txt.

http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://www.daimi.au.dk/~madst/tool/papers/expression.txt

	Introduction
	Interfacing With Parsers
	Combining Languages
	Extensible Concrete Syntax
	Case Study: QL
	Conclusion

