
Generic Feature-Based Software Composition

Tijs van der Storm

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands
storm@cwi.nl

Abstract. Bridging problem domain and solution in product line engi-
neering is a time-consuming and error-prone process. Since both domains
are structured differently (features vs. artifacts), there is no natural way
to map one to the other. Using an explicit and formal mapping creates
opportunities for consistency checking and automation. This way both
the configuration and the composition of product instances can be more
robust, support more product variants and be performed more often.

1 Introduction

In product line engineering, automatic configuration of product line instances
still remains a challenge [1]. Product configuration consists of selecting the re-
quired features and subsequently instantiating a software product from a set of
implementation artifacts. Because features capture elements of the problem do-
main, automatic product composition requires the explicit mapping of features
to elements of the solution domain. From a feature model we can then generate
tool support to drive the configuration process.

However, successful configuration requires consistent specifications. For in-
stance, a feature specification can be inconsistent if selecting one feature would
require another feature that excludes the feature itself. Because of the possibly
exponential size of the configuration space, maintaining consistency manually is
no option.

We investigate how to bridge the “white-board distance” between problem
space and solution space [15] by combining both domains in a single formalism
based on feature descriptions [20]. White-board distance pertains to the different
levels of abstraction in describing problem domain on the one hand, and solution
domain on the other hand. In this paper, feature descriptions are used to formally
describe the configuration space in terms of the problem domain. The solution
domain is modeled by a dependency graph between artifacts.

By mapping features to one or more solution space artifacts, configurations
resulting from the configuration task map to compositions in the solution do-
main. Thus it becomes possible to derive a configuration user interface from the
feature model to automatically instantiate valid product line variants.



1.1 Problem-Solution Space Impedance Mismatch

The motivation for feature-based software composition is based on the following
observations: solution space artifacts are unsuitable candidates for reasoning
about the configurability in a product line. Configuration in terms of the problem
domain, however, must stand in a meaningful relation to those very artifacts if
it should be generally useful. Let’s discuss each observation in turn.

First, if software artifacts can be composed or configured in different ways
to produce different product variants it is often desirable to have a high-level
view on which compositions are actually meaningful product instances. That
is, the configuration space should be described at a high level of abstraction. If
such configuration spaces are expressed in terms of problem space concepts, it
is easier to choose which variant a particular consumer of the software actually
needs. Finally, such a model should preferably be a formal model in order to
prevent inconsistencies and configuration mistakes.

The second observation concerns the value of relating the configuration model
to the solution space. The mental gap between problem space and solution space
complicates keeping the configuration model consistent with the artifacts. Every
time one or more artifacts change, the configuration model may become invalid.
Synchronizing both realms without any form of tool support is a time-consuming
and error-prone process. In addition, even if the configuration model is used to
guide the configuration task, there is the possibility of inconsistencies in both
the models and their interplay.

From these observations follows that in order to reduce the effort of configur-
ing product lines and subsequently instantiating product variants tool support
is needed that helps detecting inconsistencies and automates the manual, error-
prone task of collecting the artifacts for every configuration. This leads to the
requirements for realizing automatic software composition based on features.

– The configuration interface should be specified in a language that allows
formal consistency checking. If a configuration interface is consistent then
this means there are valid configurations. Only valid configurations must be
used to instantiate products. Such configurations can be mapped to elements
of the solution domain.

– A model is needed that relates features to artifacts in the solution space, so
that if a certain feature is selected, all relevant artifacts are collected in the
final product. Such a mapping should respect the (semantic) relations that
exist between the artifacts. For the mapping to be as applicable as possible
no assumptions should be made about programming language or software
development methodology.

1.2 Related Work

This work is directly inspired by the technique proposed in [9]. In that posi-
tion paper feature diagrams are compared to grammars, and parsing is used
to check the consistency of feature diagrams. Features are mapped to software



packages. Based on the selection of features and the dependencies between pack-
ages, the product variant is derived. Our approach generalizes this technique on
two accounts: first we allow arbitrary constraints between features, and not only
structural ones that can be verified by parsing. Second, in our approach com-
binations of features are mapped to artifacts, allowing more control over which
artifact is required when.

There is related work on feature oriented programming that provides features
with a direct solution space semantics. For instance, in AHEAD [2] features
form elements in an algebra that can be synthesized into software components.
Although this leaves open the choice of programming language it assumes that
it is class-based. Czarnecki describes a method of mapping features to model
elements in an model driven architecture (MDA) setting [7]. By “superimposing”
all variants on top of UML models, a product can be instantiated by selectively
disabling variation points.

An even more fine grained approach is presented in [17] where features be-
come first-class citizens of the programming language. Finally, a direct mapping
of features to a component role model is described in [12].

These approaches all, one way or the other, merge the problem domain and
the solution domain in a single software development paradigm. In our approach
we keep both domains separate and instead relate them through an explicit
modeling step. Thus our approach does not enforce any programming language,
methodology or architecture beforehand, but instead focuses on the possibility
of automatic configuration and flexibility.

Checking feature diagrams for consistency is an active area of research [20, 6,
16] but the level of formality varies. The problem is that checking the consistency
is equivalent to propositional satisfiability, and therefore it is often practically
infeasible. Our approach is based on BDDs [19], a proven technique from model
checking, which often makes the exponential configuration space practically man-
ageable.

1.3 Contributions

The contributions of this paper can be summarized as follows:

– Using an example we analyze the challenges of bridging the gap between
problem space and solution space. We identify the requirements for the ex-
plicit and controlled mapping of features to software artifacts.

– We propose a formal model that allows both worlds to be bridged in order to
achieve (solution space) composition based on (problem space) configuration.
Instances of the model are checked for consistency using scalable techniques
widely used in model-checking.

– The model is unique in that it does not dictate programming language, is
independent of software development methodology or architectural style, and
does not require up-front design. The latter in turn allows the approach to be
adopted late in the development process or in the context of legacy software.



Organization of this paper In the following section, Sect. 2, feature diagrams [13]
are introduced as a model for the configuration space of product lines. Feature
diagrams are commonly used to elicit commonality and variability of software
systems during domain analysis [21]. They can be formally analyzed so they are
a viable option for the first requirement.

Next, in Sect. 2.3 we present an abstract model of the solution space. Because
we aim for a generic solution, this model is extremely simple: it is based on
the generic notion of dependency. Thus, the solution space is modeled by a
dependency graph between artifacts. Artifacts include any kind of file that shapes
the final software product. This includes source files, build files, property files,
locale files etc.

Then, in Sect. 3 we discuss how feature diagrams and dependency graphs
should be related in order to allow automatic composition. The formalization of
feature diagrams is described in Sect. 3.2, thus enabling the application of model-
checking techniques for the detection of inconsistencies. How both models are
combined is described in Sect. 4. This combined model is then used to derive
product instances. Finally we present some conclusions and provide directions
for future work.

2 Problem and Solution Space Models

Tree

Factory

arraylist logging

bottom−uptop−down

Visitors

Strategy

Fig. 1. Problem space of a small example visualized as a feature diagram

2.1 Introduction

To be able to reason about the interaction between problem space an solution
space, models are required that accurately represent the domains in a sufficiently
formal way. In this section we introduce feature diagrams as a model for the
problem space, and dependency graphs for the solution space.



TreeFactory Visitability
<<aspect>>

TreeFactory Visitability
<<aspect>>

Visitability
<<aspect>>

TreeFactory
<<abstract>>

<<abstract>>
Strategy

TopDown

BottomUp

Visitor

<<aspect>>
Logging

list

array

tree

visitors

Fig. 2. UML view of an example product line

2.2 Problem Space: Feature Diagrams

Figure 1 shows a graphical model of a small example’s problem space using fea-
ture diagrams [13]. Feature diagrams have been used to elicit commonality and
variability in domain engineering. A feature diagram can be seen as a specifica-
tion of the configuration space of a product line.

In this example, the top feature, Tree, represents the application, in this case
a small application for transforming tree-structured documents, such as parse
trees. The Tree feature is further divided in two sub features: Factory and Visi-
tors. The Visitors feature is optional (indicated by the open bullet), but if it is
chosen, a choice must be made between the top-down or bottom-up alternatives
of the Strategy feature and optionally there is the choice of enabling logging sup-
port when traversing trees. Finally, the left sub-feature of Tree, named Factory,
captures a mandatory choice between two, mutually exclusive, implementations
of trees: one based on lists and the other based on arrays.

Often these diagrams are extended with arbitrary constraints between fea-
tures. For instance one could state that the array feature requires the logging
feature. Such constraints make visually reasoning about the consistency of fea-
ture selection with respect to a feature diagram much harder. In order to auto-
mate such reasoning a semantics is needed. Many approaches exist, see e.g. [16,
3, 4]. In earlier work we interpreted the configuration problem as satisfiability
problem and we will use that approach here too [19]. The description consistency
checking of feature diagrams is deferred to Sect. 3.2.



2.3 Solution Space: Implementation Artifacts

The implementation of the example application consists of a number of Java
classes and AspectJ files [14]. Figure 2 shows a tentative design in UML. The
implementation of the transformation product line is divided over two compo-
nents: a tree component and visitors component. Within the tree component the
Abstract Factory design pattern is employed to facilitate the choice among list-
and array-based trees. In addition to the choice between different implementa-
tions, trees can optionally be enhanced with a Visitable interface by weaving
an aspect. This enables that clients of the tree component are able to traverse
the trees by using the visitors component. So weaving in the Visitability aspect
causes a dependency on the visitors component.

2.4 Artifact Dependency Graphs

What is a suitable model of the solution space? In this paper we take a an
abstract stance and model the solution space by a directed acyclic dependency
graph. In a dependency graph nodes represent artifacts and the edges represent
dependencies between them. These dependencies may be specified explicitly or
induced by the semantics of the source. As an example of the latter: a Java
class file has a dependency on the class file of its superclass. Another example
are aspects that depend on the classes they will be weaved in. For the example
the dependencies are shown in Fig. 3. The figure shows dependencies of three
kinds: subtype dependency (e.g. between list.Tree and Tree), aspect dependency
(between Visitability and Tree), collaboration dependency (between Visitor and
Strategy).

array.Visitability

array.Tree Visitability

list.Visitability

list.Tree

Tree

array.TreeFactory

TreeFactory

list.TreeFactory

Logging

Visitor

Strategy

BottomUp TopDown

Fig. 3. Solution space model of the example: dependency graph between artifacts

Dependency graphs are consistent, provided that the dependency relation
conforms to the semantics of the artifacts involved and provided that every
node in the graph has a corresponding artifact. A set of artifacts is consistent



with respect to a dependency graph if it is closed under the dependency relation
induced by that graph.

A nice property of these graphs is that, in theory, every node in it represents
a valid product variant (albeit a useless one most of the time). If we, for instance,
take the Visitability node as an example, then we could release this ‘product’
by composing every artifact reachable from the Visitability node. So, similar to
the problem space of the previous section, the solution space is also a kind of
configuration space. It concisely captures the possibilities of delivery.

3 Mapping Features to Artifacts

3.1 Introduction

Now that the problem space is modeled by a feature diagram and the solution
space by a dependency graph how can we bridge the gap between them? Intu-
itively one can map each feature of the feature diagram to one or more artifacts
in the dependency graph. Such an approach is graphically depicted in Fig. 4.

Tree

Factory

arraylist logging

bottom−uptop−down

Visitors

Strategy

Logging

Visitor

Strategy

BottomUp TopDown

Visitability

Tree

list.Tree

array.Visitability

array.Tree TreeFactory

list.TreeFactory array.TreeFactorylist.Visitability

Fig. 4. Partial mapping of features to artifacts

The figure shows the feature diagram together with the dependency graph of
the previous section. Arrows from features to the artifacts indicate which artifact
should be included if a feature is selected. For instance, if the top-down strat-
egy is chosen to visit trees, then the TopDown implementation will be delivered
together with all its dependencies (i.e. the Strategy interface). Note that the fea-
ture mapping is incomplete: selecting the Visitors feature includes the Visitabil-
ity aspect, but it is unspecified which concrete implementation (list.Visitability
or array.Visitability) should be used. The graphical depiction thus is too weak
to express the fact that if both array/list and Visitors is chosen, both the ar-
ray.Visitability/list.Visitability and Visitability artifacts are required. In Sect. 4
this problem will be addressed by expressing mapping as constraints between
features and artifacts.



Tree : all(Factory, Visitors?)
Factory : one-of(list, array)
Visitors : all(Strategy, logging?)
Strategy : one-of(top-down, bottom-up)

Fig. 5. Textual FDL feature description of the example

3.2 Feature Diagram Semantics

Features Logic

feature boolean formula
atomic and composite features atoms
configurability satisfiability
configuration valuation
validity of a configuration satisfaction

Table 1. Feature descriptions as boolean formulas

This section describes how feature diagrams can be checked for consistency.
We take a logic based approach that exploits the correspondence between feature
diagrams and propositional logic (see Table 1). Since graphical formalisms are
less practical for building tool support, we use a textual version of feature dia-
grams, called Feature Description Language (FDL) [20]. The textual analog of
feature diagram in Fig. 1 is displayed in Fig. 5. Composite features start with an
upper-case letter whereas atomic feature start in lower-case. Composing features
is specified using connectives, such as, all (mandatory), one-of (alternative), ?
(optional), and more-of (non-exclusive choice). In addition to representing the
feature diagram, FDL allows arbitrary constraints between features.

For instance, in the example one could declare the constraint “array requires
logging”. This constraint has the straightforward meaning that selecting the
array feature should involve selecting the logging feature. Because of these and
other kinds of constraints a formal semantics of feature diagrams is needed,
because constraints may introduce inconsistencies not visible in the diagram,
and they may cause the invalidity of certain configurations, which is also not
easily discerned in the diagram.

3.3 Configuration Consistency

The primary consistency requirement is internal consistency of the feature de-
scription. An inconsistent feature description cannot be configured, and thus it
would not be possible to instantiate the corresponding product. An example of
an inconsistent feature description would be the following:



A : all(b, c)
b excludes c

Feature b excludes feature c, but they are defined to be mandatory for A. This
is a contradiction if A represents the product. Using the correspondence between
feature descriptions and boolean formulas (cf. Table 1), we can check the consis-
tency of a description by solving the satisfiability problem of the corresponding
formula.

Configuration spaces of larger product lines quickly grow to exponential size.
It is therefore essential that scalable techniques are employed for the verification
and validation of feature descriptions and feature selections respectively. Else-
where, we have described a method to check the logical consistency requirements
of component-based feature diagrams [19]. That technique is based on translat-
ing component descriptions to logical formulas called binary decision diagrams
(BDDs) [5]. BDDs are logical if-then-else expressions in which common subex-
pressions are shared; they are frequently used in model-checking applications
because they often represent large search spaces in a feasible way. Any proposi-
tional formula can be translated to a BDD. A BDD that is different from falsum
(⊥) means that the formula is satisfiable.

A slightly different mapping is used here to obtain the satisfiability result.
The boolean formula derived from the example feature description is as follows:

(Tree → Factory) ∧
(Factory → ((list ∧ ¬array) ∨ (¬list ∧ array))) ∧
(V isitors → Strategy) ∧
(Strategy → ((top-down ∧ ¬bottom-up) ∨ (¬top-down ∧ bottom-up))))

Note how all feature names become logical atoms in the translation. Feature
definitions of the form Name : Expression become implications, just like “re-
quires” constraints. The translation of the connectives is straightforward. Such
a boolean formula can be converted to a BDD using standard techniques (see
for instance [11] for an elegant approach).

The resulting BDD can be displayed as a directed graph where each node rep-
resents an atom and has two outcoming edges corresponding to the two branches
of the if-then-else expression. Figure 6 shows the BDD for the Visitors feature
bot as a graph and if-then-else expression. As one can see from the paths in
the graph, selecting the Visitors feature means enabling the Strategy feature.
This in turn induces a choice between the top-down and bottom-up features.
Note that the optional logging feature is absent from the BDD because it is not
constrained by any of the other variables.

4 Selection and Composition of Artifacts

4.1 Introduction

If a feature description is found to be consistent, it can be used to generate a con-
figuration user interface. Using this user interface, an application engineer would



top-down

false

1

true

0

top-down

0 1

bottom-up

1 0

Strategy

0

1

Strategy

0

1

Visitors

1 0

if Visitors then
if Strategy then

if bottom-up then
if top-down then ⊥ else > fi

else
if top-down then > else ⊥fi

fi
else
⊥

fi
else

if Strategy then
if bottom-up then

if top-down then ⊥ else > fi
else

if top-down then > else ⊥fi
fi

else
>

fi
fi

Fig. 6. BDD for the Visitors feature

select features declared in the feature description. Selections are then checked
for validity using the BDD. The selection of features, called the configuration,
is then used to instantiate the product. Sets of selected features correspond to
a sets of artifacts. Let’s call these the (configuration) induced artifacts. The in-
duced artifacts form the initial composition of the product. Then, every artifact
that is reachable from any of the induced artifacts in the dependency graph, is
added to the composition.

4.2 Configuration and Selection

In Sect. 3 we indicated that mapping single features to sets of artifacts was not
strong enough to respect certain constraints among the artifacts. The example
was that the concrete Visitability aspects (array.Visitability and list.Visitability)
were not selected if the Visitors feature were only mapped to the abstract as-
pect Visitability. To account for this problem we extend the logical framework
introduced in Sect. 3.2 with constraints between features and artifacts. Thus,
mappings become requires constraints (implications) that allow us to include
artifacts when certain combinations of features are selected. The complete map-
ping of the example would then be specified as displayed in Fig. 7.

The constraints in the figure – basically a conjunction of implications – are
added to the feature description. Using the process described in the previous
section, this hybrid ‘feature’ description is translated to a BDD. The set of
required artifacts can then be found by partially evaluating the BDD with the
selection of features. This results in a, possibly partial, truth-assignment for
the atoms representing artifacts. Any artifact atom that gets assigned > will
be included in the composition together with the artifacts reachable from it in



list and Visitors requires list.Visitability
array and Visitors requires array.Visitability
list requires list.TreeFactory
array requires array.TreeFactory
top-down requires TopDown
bottom-up requires BottomUp
logging requires Logging

Fig. 7. Mapping features to artifacts

the dependency graph. Every artifact that gets assigned ⊥ will not be included.
Finally, any artifact that did not get an implied assignment may or may not be
included, but at least is not required by the selection of features.

Figure 8 shows all possible configurations for the example product line. The
configurations are shown as a nested tree map. Every box represents a valid sub
composition induced by the feature at left-hand side, upper corner. The artifacts
contained in each composition are shown in italics. The figure shows that even
this very small product line already exposes 12 product variants.

top−down bottom−up

array.Visitability
Visitors

array.TreeFactory

array

BottomUp

bottom−uptop−down

Visitors
list.Visitability

list.TreeFactory

list

Tree

Tree

list.Tree

Strategy
Visitability

Strategy
Visitability

TopDown TopDownBottomUp

Logging
logging

Logging
logging

Logging
logging

Logging
logging

TreeFactory

array.Tree

Fig. 8. All configurations/compositions of the example as a nested tree-map

4.3 Composition Methods

In the previous subsection we described how the combination of problem space
feature models can be linked to solution space dependency graphs. For every valid
configuration of the feature description we can derive the artifacts that should
be included in the final composition. However, how to enact the composition
was left unspecified. Here we discuss several options for composing the artifacts
according to the dependency graph.



In the case of the example composing the Java source files entails collecting
them in a directory an compiling the source files using javac and AspectJ.
However, this presumes that the artifacts are actually Java source files, which
may be a too fine granularity. Next we describe three approaches to composition
that support different levels of granularity:

– Source tree Composition [8]
– Generation of a build scripts [22]
– Container-based dependency injection [10]

Source Tree Composition Source tree composition is based on source packages.
Source packages contain source code and have an abstract build interface. Each
source package explicitly declares which other packages it requires during build,
deployment and/or operation. The source trees contained in these packages can
be composed to obtain a composite package. This package has a build interface
that is used to build the composition by building every sub-packages in the right
order with the right configuration parameters.

Applying this to our configuration approach this would mean that artifacts
would correspond to source packages. Every valid selection of features would map
to a set of root packages. From these root packages every transitively required
packages can be found and subsequently be composed into a composite package,
ready for distribution.

Build Script Generation An approach taken in the Koala framework [22] is
similar to source tree composition but works at the level of C-files. In Koala
a distinction is made between requires interfaces (specifying dependencies of a
component) and provides interfaces (declaring the function that a component
has to offer). The composition algorithm of Koala takes these interfaces and
the component definitions (describing part-of hierarchies) and subsequently gen-
erates a Makefile that specifies how a particular composition should be built.

Again, this could be naturally applied in our context of dependency graphs.
The artifacts would be represented by the interfaces and the providing compo-
nents. The dependency graph then follows from the requires interfaces.

Dependency Injection Another approach to creating the composition based on
feature selections would consist of generating configuration files (or configuration
code) for a dependency injection container implementation [10]. Dependency
injection is a object-oriented design principle that states that every class should
only reference interfaces in its code. Concrete implementations of these interfaces
are then “injected” into a class via the constructor of via setter methods. How
component classes are connected together (“wiring”) is specified separately from
the components.

In the case of Java components, we could easily derive the dependencies
of those clasess by looking at the interface parameters of their constructors
and setters. Moreover, we can statically derive which classes implement those
interfaces (which also induces a dependency). Features would then be linked to



these implementation classes. Based on the dependencies between the interfaces
and classes one could then generate the wiring code.

5 Conclusions

5.1 Discussion: Maintaining the Mapping

Since problem space and solution space are structured differently, bridging the
two may induce a high maintenance penalty if changes in either of the two
invalidate the mapping. It is therefore important that the mapping of feature to
artifacts is explicit, but not tangled.

The mapping of features to artifacts presented in this paper allows the au-
tomatic derivation of product instances based on dependency graphs, but the
mapping itself must be maintained by hand. Maintaining the dependency re-
lation manually is no option since it continually co-evolves with the code base
itself, but often these relations can be derived from artifacts automatically (e.g.,
by static analysis).

It is precisely the separation of feature models and dependency graphs makes
maintaining the mapping manageable if the dependency graphs are available
automatically. For certain nodes in the graph we can compute the transitive
closure, yielding all artifacts transitively required from the initial set of nodes.
This means that a feature has to be mapped only to the essential (root) artifact;
all other artifacts follow from the dependency graph.

Additionally, changes in the dependencies between artifacts (as follows from
the code base) have less severe consequences on such mappings. On other words,
the coevolution between feature model and mapping on the one hand, and the
code base on the other is much less severe. This reduces the cost of keeping
problem space and solution space in sync.

5.2 Conclusion & Future Work

The relation between problem space and solution space in the presence of vari-
ability poses both conceptual and technical challenges. We have shown that both
worlds can be brought together by importing solution space artifacts into the do-
main of feature descriptions. By modeling the relations among software artifacts
explicitly and interpreting the mapping of combinations of features to artifacts
as constraints on the hybrid configuration space, we obtain a coherent formalism
that can be used for generating configuration user interfaces. On the technical
level we have proposed the use BDDs to make automatic consistency checking of
feature descriptions and mapping feasible in practice. Configurations are input
to the composition process which takes into account the complex dependencies
between software artifacts.

This work, however, is by no means finished. The formal model, as discussed
in this paper, is still immature and needs to be investigated in more detail. More
analyses could be useful. For instance, one would like to know which configura-
tions a certain artifact participates in order to better assess the impact of certain



modifications to the code-base. Another direction we will explore is the imple-
mentation of a feature evolution environement that would help in maintaining
feature models and their relation to the solution space.

A case-study must be performed to see how the approach would work in
practice. This would involve building a tool set that allows the interactive editing,
checking and testing of feature descriptions, which are subsequently fed into a
product configurator, similar to the CML2 tool used for the Linux kernel [18].
The Linux kernel itself would provide a suitable case to test our approach.

References

1. Don Batory, David Benavides, and Antonio Ruiz-Cortés. Automated analyses of
feature models: Challenges ahead. Communications of the ACM, December 2006.
To appear.

2. Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise re-
finement. In Proceedings of the 25th International Conf. on Software Engineering
(ICSE-03), pages 187–197, Piscataway, NJ, May 3–10 2003. IEEE Computer Soci-
ety.

3. David Benavides, Pablo Trinidad Mart́ın-Arroyo, and Antonio Ruiz Cortés. Au-
tomated reasoning on feature models. In Oscar Pastor and João Falcão e Cunha,
editors, Advanced Information Systems Engineering, 17th International Confer-
ence, CAiSE 2005, Porto, Portugal, June 13-17, 2005, Proceedings, volume 3520
of Lecture Notes in Computer Science, pages 491–503. Springer, 2005.

4. Yves Bontemps, Patrick Heymans, Pierre-Yves Schobbens, and Jean-Christophe
Trigaux. Semantics of feature diagrams. In Tomi Männistö and Jan Bosch, editors,
Proc. of Workshop on Software Variability Management for Product Derivation
(Towards Tool Support), Boston, August 2004.

5. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, September 1992.

6. Fei Cao, Barrett R. Bryant, Carol C. Burt, Zhisheng Huang, Rajeev R. Raje,
Andrew M. Olson, and Mikhail Auguston. Automating feature-oriented domain
analysis. In Proc. of the International Conf. on Software Engineering Research
and Practice (SERP’03), 2003.

7. Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A tem-
plate approach based on superimposed variants. In Robert Glück and Michael R.
Lowry, editors, Generative Programming and Component Engineering, 4th Interna-
tional Conference, GPCE 2005, Tallinn, Estonia, September 29 - October 1, 2005,
Proceedings, volume 3676 of Lecture Notes in Computer Science, pages 422–437.
Springer, 2005.

8. M. de Jonge. Source tree composition. In Cristina Gacek, editor, Proceedings:
Seventh International Conf. on Software Reuse, volume 2319 of LNCS, pages 17–
32. Springer-Verlag, April 2002.

9. M. de Jonge and J. Visser. Grammars as feature diagrams. draft, April 2002.
10. Martin Fowler. Inversion of control containers and the dependency injection pat-

tern. Online: http://www.martinfowler.com/articles/injection.html, Febru-
ary 2006.

11. J. F. Groote and J. C. van de Pol. Equational binary decision diagrams. Tech-
nical Report SEN-R0006, Centre for Mathematics and Computer Science (CWI),
Amsterdam, 2000.



12. Anton Jansen. Feature based composition. Master’s thesis, Rijksuniversiteit Gron-
ing, 2002.

13. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, SEI,
CMU, Pittsburgh, PA, November 1990.

14. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming, pages 327–353. Springer-Verlag,
2001.

15. Paul Klint and Tijs van der Storm. Reflections on feature-oriented software en-
gineering. In Christa Schwanninger, editor, Workshop on Managing Variabilities
Consistently in Design and Code held at the 19th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2004), 2004. Available from: http://www.cwi.nl/~storm.

16. Mike Mannion. Using first-order logic for product line model validation. In
G. Chastek, editor, Proc. of The 2nd Software Product Line Conf. (SPLC2), num-
ber 2379 in LNCS, pages 176–187, 2002.

17. Christian Prehofer. Feature-oriented programming: A fresh look at objects. In
ECOOP, pages 419–443, 1997.

18. Eric S. Raymond. The CML2 language. In 9th International Python Confer-
ence, 2001. Available at: http://www.catb.org/~esr/cml2/cml2-paper.html.
(accessed October 2006).

19. Tijs van der Storm. Variability and component composition. In Jan Bosch and
Charles Krueger, editors, Software Reuse: Methods, Techniques and Tools: 8th In-
ternational Conference (ICSR-8), volume 3107 of Lecture Notes in Computer Sci-
ence, pages 86–100. Springer, June 2004.

20. A. van Deursen and P. Klint. Domain-specific language design requires feature de-
scriptions. Journal of Computing and Information Technology, 10(1):1–18, March
2002.

21. Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability
in Software Product Lines. In Proceedings of the Working IEEE/IFIP Conf. on
Software Architecture (WICSA’01), 2001.

22. Rob van Ommering and Jan Bosch. Widening the scope of software product lines:
from variation to composition. In G. Chastek, editor, Proc. of The 2nd Software
Product Line Conf. (SPLC2), number 2379 in LNCS, 2002.


