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Abstract. In component-based product populations, variability has to
be described at the component level to be able to benefit from a product
family approach. As a consequence, composition of components becomes
very complex. We describe how this complexity can be managed au-
tomatically. The concepts and techniques presented are the first step
toward automated management of variability for web-based software de-
livery.

1 Introduction

Variability [13] is often considered at the level of one software product. In a
product family approach different variants of one product are derived from a set
of core assets. However, in component-based product populations [14] there is
no single product: each component may be the entry-point for a certain software
product (obtained through component composition).

To let this kind of software products benefit from the product family ap-
proach, we present formal component descriptions to express component vari-
ability. To manage the ensuing complexity of configuration and component com-
position, we present techniques to verify the consistency of these descriptions,
so that the conditions for correct component composition are guaranteed.

This paper is structured as follows. In Sect. 2 we first discuss component-
based product populations and why variability at the component-level is needed.
Secondly, we propose a Software Knowledge Base (SKB) concept to provide some
context to our work. We describe the requirements for a SKB and which kind
of facts it is supposed to store. Section 3 is devoted to exploring the interaction
of component-level variability with context dependencies. Section 4 presents the
domain specific language CDL for the description of components with support
for component-level variability. CDL will serve as a vehicle for the technical
exposition of Sect. 5. The techniques in that section implement the consistency
requirements that were identified in Sect. 2. Finally, we provide some concluding
remarks and our future work.
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2 Towards Automated Management of Variability

Why Component Variability? Software components are units of indepen-
dent production, acquisition, and deployment [9]. In a product family approach,
different variants of one system are derived by combining components in differ-
ent ways. In a component-based product population the notion of one system is
absent. Many, if not all, components are released as individual products. To be
able to gain from the product family approach in terms of reuse, variability must
be interpreted as a component-level concept. This is motivated by two reasons:

– In component-based product populations no distinction is made between
component and product.

– Components as unit of variation are not enough to realize all kinds of con-
ceivable variability.

An example may further clarify why component variability is useful in product
populations. Consider a component for representing syntax trees, called Tree.
Tree has a number of features that can optionally be enabled. For instance, the
component can be optimized according to specific requirements. If small memory
footprint is a requirement, Tree can be configured to employ hash-consing to
share equal subtrees. Following good design practices, this feature is factored
out in a separate component, Sharing, which can be reused for objects other
than syntax trees. Similarly, there is a component Traversal which implements
generic algorithms for traversing tree-like data structures. Another feature might
be the logging of debug information.

The first point to note, is that the components Traversal and Sharing

are products in their own right since they can be used outside the scope of
Tree. Nevertheless they are required for the operation of Tree depending on
which variant of Tree is selected. Also, both Traversal and Sharing may have
variable features in the very same way.

The second reason for component variability is that not all features of Tree
can be factored out in component units. For example, the optional logging feature
is strictly local to Tree and cannot be bound by composition.

The example shows that the variability of a component may have a close
relation to component dependencies, and that each component may represent a
whole family of (sub)systems.

The Software Knowledge Base The techniques presented in this paper are
embedded in the context of an effort to automate component-based software
delivery for product families, using a Software Knowledge Base (SKB). This SKB
should enable the web-based configuration, delivery and upgrading of software.
Since each customer may have her own specific set of requirements, the notion
of variability plays a crucial role here.

The SKB is supposed to contain all relevant facts about all software compo-
nents available in the population and the dependencies between them. Since we
want to keep the possibility that components be configured before delivery, the



SKB is required to represent their variability. To raise the level of automation
we want to explore the possibility of generating configuration related artifacts
from the SKB:

Configurators Since customers have to configure the product they acquire,
some kind of user interface is needed as a means of communication between
customer and SKB. The output of a configurator is a selection of features.

Suites To effectively deliver product instantiations to customers, the SKB is
used to bundle a configured component together with all its dependencies in
a configuration suite that is suitable for deployment. The configuration suite
represents an abstraction of component composition.

Crucial to the realization of these goals is the consistency of the delivered configu-
rations. Since components are composed into configuration suites before delivery,
it is necessary to characterize the relation between component variability and
dependencies.

3 Degrees of Component Variability

A component may depend on other components. Such a client component re-
quires the presence of another component or some variant thereof. A precondition
for correct composition of components is that a dependent component supports
the features that are required by the client component. Figure 1 depicts three
possibilities of relating component variability and composition.
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Fig. 1. Degrees of component variability

The first case is
when there is no vari-
ability at all. A compo-
nent Ca requires com-
ponents C1, ..., Cn. The
component dependen-
cies C1, ..., Cn should
just be present some-
how for the correct op-
eration of Ca. The re-
sulting system is the
composition of Ca and
C1, ..., Cn, and all com-
ponent dependencies that
are transitively reach-
able from C1, ..., Cn.

Figure 1 (b) and (c) show the case that all components have configuration

interfaces in the form of feature diagrams [4] (the triangles). These feature di-
agrams express the components’ variability. The stacked boxes indicate that a
component can be instantiated to different variants. The shaded triangles in-
dicate that Cb and Cc depend on specific variants of C1, ..., Cn. Features that



remain to be selected by customers thus are local to the chosen top component
(Cb resp. Cc).

The component dependencies of Cb are still fixed. For component Cc however,
the component dependencies have become variable themselves: they depend on
the selection of features described in the configuration interface of Cc. This allows
components to be the units of variation. A consequence might be, for example,
that when a client enables feature a, Cc requires component A. However, if
feature b would have been enabled, Cc would depend on B. The set of constituent
components of the resulting system may differ, according to the selected variant
of Cc.

When composing Ca into a configuration suite, components C1, ..., Cn just
have to be included. Components with variability, however, should be assembled
into a suite guided by a valid selection of features declared by the top component
(the component initially selected by the customer). Clients, both customers and
requiring components, must select sets of features that are consistent with the
feature diagram of the requested component.

How to establish these conditions automatically is deferred until after Sect. 4,
where we introduce a domain specific language for describing components with
variability.

4 Component Description Language

To formally evaluate component composition in the presence of variability, a
language is needed to express the component variability described in Sect. 3.
For this, Component Description Language (CDL) is presented. This language
was designed primarily for the sake of exposition; the techniques presented here
could just as well be used in the context of existing languages. The language
will serve as a vehicle for the evaluation of the situation in Fig. 1 (c), that is:
component dependencies may depend themselves on feature selections.

For the sake of illustration, we use the ATerm library as an example compo-
nent. The ATerm library is a generic library for a tree like data structure, called
Annotated Term (ATerm). It is used to represent (abstract) syntax trees in the
Asf+Sdf Meta-Environment [5], and it in many ways resembles the aforemen-
tioned Tree component. The library exists in both Java and C implementations.
We have elicited some variable features from the Java implementation. The com-
ponent description for the Java version is listed in Fig. 2.

A component description is identified by a name (aterm-java) and a version
(1.3.2). Next to the identification part, CDL descriptions consist of two sections:
the features section and the requires section.

The features section has a syntax similar to Feature Description Language
(FDL) as introduced in [12]. FDL is used since it is easier to automatically ma-
nipulate than visual diagrams due to its textual nature. The features section
contains definitions of composite features starting with uppercase letters. Com-
posite features obtain their meaning from feature expressions that indicate how



sub-features are composed into composite features. Atomic features can not be
decomposed and start with a lowercase letter.

The ATerm component exists in two implementations: a native one (imple-
mented using the Java Native Interface, JNI), and a pure one (implemented
in plain Java). The composite feature Nature makes this choice explicit to
clients of this component. The feature obtains its meaning from the expres-
sion one-of(native, pure). It indicates that either native or pure may be
selected for the variable feature Nature, but not both. Both native and pure

component description 〈“aterm-java”, “1.3.2”〉
features

ATerm : all(Nature, Sharing, Export, visitors?)
Nature : one-of(native, pure)
Sharing : one-of(nosharing, sharing)
Export : more-of(sharedtext, text)
sharedtext requires sharing

requires

when sharing {
〈“shared-objects”, “1.3”〉 with fasthash

}
when visitors {
〈“JJTraveler”, “0.4.2”〉

}

Fig. 2. Description of aterm-java

are atomic features. Other
variable features of the ATerm-
library are the use of maximal
sub-term sharing (Sharing)
and an inclusive choice of
some export formats (Export).
Additional constraints can
be used to reduce the fea-
ture space. For example, the
sharedtext feature enables
the serialization of ATerms, so
that ATerms can be written
on file while retaining max-
imal sharing. Obviously, this
feature requires the sharing

feature. Therefore, the fea-
tures section contains the con-
straint that sharedtext cannot be enabled without enabling sharing.

The requires section contains component dependencies. A novel aspect of
CDL is that these dependencies may be guarded by atomic features to state
that they fire when a particular feature is enabled. These dependencies are condi-

tional dependencies. They enable the specification of variable features for which
components themselves are the unit of variation.

As an example, consider the conditional dependency on the shared-ob-

jects component which implements maximal sub-term sharing for tree-like ob-
jects. If the sharing feature is enabled, the ATerm component requires the
shared-objects component. As a result, it will be included in the configura-
tion suite. Note that elements of the requires section refer to variants of the
required components. This means that component dependencies are configured
in the same way as customers would configure a component. Configuration oc-
curs by way of passing a list of atomic features to the required component. In the
example this happens for the shared-objects dependency, where the variant
containing optimized hash functions is chosen.



5 Guaranteeing Consistency

Since a configuration interface is formulated in FDL, we need a way to rep-
resent FDL feature descriptions in the SKB. Our prototype SKB is based on
the calculus of binary relations, following [6]. The next paragraphs are therefore
devoted to describing how feature diagrams can be translated to relations, and
how querying can be applied to check configurations and obtain the required set
of dependencies.

Transformation to Relations The first step proceeds through three interme-
diate steps. First of all, the feature definitions in the features section are inlined.
This is achieved by replacing every reference to a composite feature with its
definition, starting at the top of the diagram. For our example configuration
interface, the result is the following feature expression:

all(one-of(native, pure), one-of(nosharing, sharing),

more-of(sharedtext, text),visitors?)

The second transformation maps this feature expression and additional con-
straints to a logical proposition, by applying the following correspondences:

all(f1, ..., fn) 7→
∧

i∈{1,...,n} fi

more-of(f1, ..., fn) 7→
∨

i∈{1,...,n} fi

one-of(f1, ..., fn) 7→
∨

i∈{1,...,n}(fi ∧ ¬(
∨

j∈{1,..,i−1,i+1,...,n} fj))

Optional features reduce to >. Atomic features are mapped to logical variables
with the same name. Finally, a requires constraint is translated to an implica-
tion. By applying these mappings to the inlined feature expression, one obtains
the following formula.

((native ∧ ¬pure) ∨ (pure ∧ ¬native)) ∧ ((nosharing ∧ ¬sharing)∨

(sharing ∧ ¬nosharing)) ∧ (sharedtext ∨ text) ∧ (sharedtext → sharing)

Checking the consistency of the feature diagram now amounts to obtaining sat-

isfiability for this logical sentence. To achieve this, the formula is transformed to
a Binary Decision Diagram (BDD) [1]. BDDs are logical expressions ITE(ϕ, ψ, ξ)
representing if-then-else constructs. Using standard techniques from modelcheck-
ing any logical expression can be transformed into an expression consisting only
of if-then-else constructs. If common subexpressions of this if-then-else expres-
sion are shared we obtain a directed acyclic graph which can easily be embedded
in the relational paradigm. The BDD for the aterm-java component is depicted
in Fig. 3.

Querying the SKB Now that we have described how feature diagrams are
transformed to a form suitable for storing in the SKB, we turn our attention
to the next step: the querying of the SKB for checking feature selections and
obtaining valid configurations.
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Fig. 3. BDD for aterm-java

The BDD graph consists of nodes la-
beled by guards. Each node has two out-
going edges, corresponding to the boolean
value a particular node obtains for a cer-
tain assignment. All paths from the root
to > represent minimal assignments that
satisfy the original formula.

A selection of atomic features corre-
sponds to a partial truth-assignment. This
assignment maps for each selected feature
the corresponding guard to 1 (true). Let ϕ
be the BDD derived from the feature dia-
gram for which we want to check the con-
sistency of the selection, then the meaning
of a selection is defined as: {a1, ..., an} 7→⋃

i∈{1,...n} [ai/1] when ai ∈ ϕ. Checking
whether this assignment can be part of a
valuation amounts to finding a path in the
BDD from the root to > containing the
edges corresponding to the assignment. If
there is no such path, the enabled features
are incorrect. If there is such a path, but some other features must be enabled
too, the result is the set of possible alternatives to extend the assignment to a
valuation. The queries posted against the SKB use a special built-in query that
generates all paths in a BDD. The resulting set of paths is then filtered according
to the selection of features that has to be checked. The answer will be one of:

– {{f1, ..., fn}, {g1, ..., gm}, ...}: a set of possible extensions of the selection,
indicating an incomplete selection

– {{}}: one empty extension, indicating a correct selection
– {}: no possible extension, indicating incorrect selection

If the set of features was correct, the SKB is queried to obtain the set of config-
ured dependencies that follow from the feature selection.

Take for example the selection of features {pure, sharedtext, visitors}.
The associated assignment is [pure/1][sharedtext/1]. There is one path to > in
the BDD that contains this assignment, so there is a valuation for this selection
of features. Furthermore, it implies that the selection is not complete: part of
the path is the truth assignment of sharing, so it has to be added to the set
of selected features. Finally, as a consequence of the feature selection, both the
JJTraveler and SharedObjects component must be included in the configuration
suite.

6 Discussion

Related Work CDL is a domain specific language for expressing component
level variability and dependencies. The language combines features previously



seen in isolation in other areas of research. These include: package based software
development, module interconnection languages (MILs), and product configura-
tion.

First of all, the work reported here can be seen as a continuation of package
based software development [2]. In package based software development software
is componentized in packages which have explicit dependencies and configuration
interfaces. These configuration interfaces declare lists of options that can be
passed to the build processes of the component. Composition of components
is achieved through source tree composition. There is no support for packages
themselves being units of variation. A component description in CDL can be
interpreted as a package definition in which the configuration interface is replaced
by a feature description. The link between feature models and source packages is
further explored in [11]. However, variability is described external to component
descriptions, on the level of the composition.

Secondly, CDL is a kind of module interconnection language (MIL). Although
the management of variability has never been the center of attention in the
context of MILs, CDL complies with two of the main concepts of MILs [7]:

– The ability to perform static type-checking at an intermodule level of de-
scription.

– The ability to control different versions and families of a system.

Static type-checking of CDL component compositions is achieved by model
checking of FDL. Using dependencies and feature descriptions, CDL naturally
allows control over different versions and families of a system. Variability in tra-
ditional MILs boils down to letting more than one module implement the same
module interface. So modules are the primary unit of variation. In addition,
CDL descriptions express variability without committing beforehand to a unit
of variation.

We know of one other instance of applying BDDs to configuration problems.
In [8] algorithms are presented to achieve interactive configuration. The con-
figuration language consists of boolean sentences which have to be satisfied for
configuration. The focus of the article is that customers can interactively config-
ure products and get immediate feedback about their (valid or invalid) choices.
Techniques from partial evaluation and binary decision diagrams are combined
to obtain efficient configuration algorithms.

Contribution Our contribution is threefold. First, we have introduced variabil-
ity at the component level to enable the product family approach in component-
based product populations. We have characterized how component variability
can be related to composition, and presented a formal language for the evalua-
tion of this.

Secondly, we have demonstrated how feature descriptions can be transformed
to BDDs, thereby proving the feasibility of a suggestion mentioned in the future
work of [12]. Using BDDs there is no need to generate the exponentially large
configuration space to check the consistency of feature descriptions and to verify
user requirements.



Finally we have indicated how BDDs can be stored in a relational SKB
which was our starting point for automated software delivery and generation of
configurations.

The techniques presented in this paper have been implemented in a exper-
imental relational expression evaluator, called Rscript. Experiments revealed
that checking feature selections through relational queries is perhaps not the
most efficient method. Nevertheless, the representation of feature descriptions is
now seamlessly integrated with the representation of other software facts.

Future Work Future work will primarily be geared towards validating the ap-
proach outlined in this paper. We will use the Asf+Sdf Meta-Environment [5]
as a case-study. The Asf+Sdf Meta-Environment is a component-based envi-
ronment to define syntax and semantics of (programming) languages. Although
the Meta-Environment was originally targeted for the combination of Asf (Al-
gebraic Specification Formalism) and Sdf (Syntax Definition Formalism), direc-
tions are currently explored to parameterize the architecture in order to reuse
the generic components (e.g., the user interface, parser generator, editor) for
other specification formalisms [10]. Furthermore, the constituent components of
the Meta-Environment are all released separately. Thus we could say that the
development of the Meta-Environment is evolving from a component-based sys-
tem towards a component-based product population. To manage the ensuing
complexity of variability and dependency interaction we will use (a probably
extended version of) CDL to describe each component and its variable depen-
dencies.

In addition to the validation of CDL in practice, we will investigate whether
we could extend CDL to make it more expressive. For example, in this paper
we have assumed that component dependencies should be fully configured by
their clients. A component client refers to a variant of the required component.
One can imagine that it might be valuable to let component clients inherit the
variability of their dependencies. The communication between client component
and dependent component thus becomes two-way: clients restrict the variability
of their dependencies, which in turn add variability to their clients. Developers
are free to determine which choices customers can make, and which are made
for them.

The fact that client components refer to variants of their dependencies in-
duces a difference in binding time between user configuration and configuration
during composition [3]. The difference could be made a parameter of CDL by
tagging atomic features with a time attribute. Such a time attribute indicates the
moment in the development and/or deployment process the feature is allowed to
become active. Since all moments are ordered in a sequence, partial evaluation
can be used to partially configure the configuration interfaces. Every step effects
the binding of some variation points to variants, but may leave other features
unbound. In this way one could, for example, discriminate features that should
be bound by conditional compilation from features that are bound at activation
time (e.g., via command-line options).
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