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Abstract. Domain specific language embedding requires either a very
flexible host language to approximate the desired level of abstraction, –
or elaborate tool support for “compiling away” embedded notation. The
former confines the language designer to reinterpreting a given syntax.
The latter prohibits runtime analysis, interpretation and transformation
of the embedded language. I tentatively present CherryLisp: a Lisp
dialect with dynamically user-definable syntax that suffers from neither
of these drawbacks.

Jan Heering often speaks fondly of Lisp and much of his research has been
dedicated to programming environments, syntax, semantics, and domain
specific languages. On the occasion of his retirement I would like to hon-
our him and his work with this extended abstract which touches upon
some of these subjects.

1 Introduction

The project of defining M-expressions precisely and
compiling them or at least translating them into
S-expressions was neither finalized nor explicitly

abandoned. It just receded into the indefinite future, ...
John McCarthy [14].

Domain specific languages (DSLs) are a powerful tool to increase the level of
abstraction in programming [15]. Using a notation closer to the problem domain
increases productivity, improves communication with stakeholders, reduces code
size and allows for domain specific analysis and optimization. Nevertheless, de-
veloping a DSL requires a considerable investment up-front.

A more approach to DSL engineering is embedding domain specific notation
in a (general purpose) host language. There are basically two approaches: “bend-
ing” the syntax of the host language to reach the desired level of abstraction, or
compile-time preprocessing to assimilate the domain specific notation into the
host language by transformation. A drawback of the former is that a DSL de-
signer is confined to the syntactic (and semantic) freedom provided by the host
language. The latter suffers from the fact that domain specific notation is “com-
piled away”: the embedded notation is inaccessible at runtime, which prohibits



dynamic interpretation, analysis, debugging, pretty printing, optimization and
disambiguation of embedded DSLs. So we find ourselves in a quandary: restricted
syntax with runtime access, or rich syntax without.

Can we combine the best of both embedding worlds? This extended abstract
presents some evidence that the answer is affirmative. I present the prototype
implementation of a monolingual programming environment [9,11], called Cher-
ryLisp, which features arbitrary dynamically user-defined syntax. Embedded
syntax is accessible at runtime, so that language related tooling – interpreters,
typecheckers, debuggers, formatters, optimizers etc. [12] – can be developed from
within. Key features of CherryLisp include:

1. Dynamic syntax extension the syntax of CherryLisp can be extended
at runtime. The abstract syntax trees (ASTs) that are the result of parsing
embedded syntax are available at runtime for analysis, assimilation, trans-
lation, interpretation etc.

2. Immediate extension syntax extensions can be immediately used in the
same file that contains the very expressions to extend the language. Cher-
ryLisp’s grammar can be modified on the fly during a single parse.

3. Arbitrary context-free grammars CherryLisp’s parser is based on gen-
eralized parsing techniques to allow the use of arbitrary context-free gram-
mars for embedded notation. Because of 1, should ambiguity arise, it can be
dealt with from within CherryLisp.

Related work There is ample related work on syntax extension. Almost all
related work employs some form of static assimilation of embedded notation.
Below I briefly discuss some relevant references.

The Lithe language features completely user defined syntax [18]. Inspired
by Smalltalk-72 it combines a object-oriented class model with syntax directed
translation (SDT) to attach actions to grammar rules (“methods”). A (parsed)
string thus leads to a sequence of rule applications. It is unclear which grammar
class is allowed, but ambiguities are explicitly disallowed. ASTs are not first-class
and non-existent at runtime.

Cardelli et al. [6] presented incremental syntax extensions which respect the
scoping rules and type system of the host language. The syntax extensions are
compiled away to the host language. Their implementation is based on an LL(1)
parser so there are restrictions as to what kind of extensions are possible. An
approach that does not suffer from such restrictions is described in [5]. This
work is based on the syntax definition formalism Sdf [10,22] which allows arbi-
trary context-free grammars. Embedded languages are assimilated into the host
language in a compile-time preprocessing phase. Since Sdf supports arbitrary
context-free grammars, there is a risk of ambiguity; ambiguities must be resolved
before assimilation.

The MS2 programmable syntax macro system [25] provides the macro writer
with full C to define their semantics. Macro expansion has to be completed be-
fore running the program: “none of it exists at runtime”. Metamorphic syntax



macros are another powerful tool to extend a host language syntax [4]. How-
ever, “a syntax macro must ultimately produce host syntax and thus cannot
return user defined ASTs” hence the ASTs are not available at runtime. Finally,
OMeta [24] is fully dynamic language extension tool, allowing lexically scoped
syntax extensions. It is based on Packrat parsing. This has the advantage that
no ambiguities are possible, but this also means it does not support arbitrary
context-free grammars. For instance, no left-recursive rules can be used (see how-
ever, [23]). Additionally, there is no access to parse-trees, since it is recognition
based (in essence similar to Lithe and inspired by Meta II [19]).

In fact Common Lisp’s [20] reader macros provide almost the functionality
we are looking for: by hooking into the reader programmers can seize the oppor-
tunity of parsing any embedded syntax (see [17] for an example). CherryLisp
differs from reader macros in that it uses context-free grammars to define syn-
tax and a dedicated parsing algorithm producing uniform ASTs. In other words
CherryLisp provides declarative reader macros. The result can be interpreted,
translated, analyzed etc. using powerful macro facilities just like in Common
Lisp [21].

2 Dynamic Syntax Extension in CherryLisp

CherryLisp is a Scheme dialect featuring runtime, grammar-based syntax ex-
tension. Below I illustrate a single special form used for syntax extension. Cursory
knowledge of Lisp is assumed.

To allow arbitrary user-defined syntax, CherryLisp features the following
special form:

(extend-syntax [(l s (x1...xn))]∗)

This special form is used for dynamically extending the current grammar with
context-free productions s ::= x1...xn. The syntax extension will be immediately
available. Resulting AST nodes will be labeled l. To illustrate how this special
form works, let’s extend the syntax with the notation for absolute values |x|
by entering the following extend-syntax invocation in the read-eval-print-loop
(REPL1):

> (extend-syntax (abs Form ("|" Form "|")))
()

Since |x| should be a normal expression, we extend the non-terminal for Cher-
ryLisp expressions (Form). After evaluation, the notation is immediately avail-
able:

> |1|
Unbound variable: abs

1 The > indicates the prompt, the last line is the evaluation result.



A snippet of syntax like this will be converted to internal S-expressions by the
parser. After parsing, the REPL attempts to evaluate this expression. Since the
AST label for absolute value notation is “abs” the evaluator attempts to call
this function which results in an unbound variable error. To see what the parser
returns, we have to quote the snippet:

> ’|x|
(abs 1)

To give semantics to this construct, ordinary functions or macros can be used:

> (define (abs x) (if (>= x 0) x (- 0 x)))
abs
> |1|
1
> |-1|
1

In this a case a simple function suffices, but the real power lies in arbitrary
combinations of functions and macros. For instance, to give a more involved
example, let’s try and self-apply syntax extension by adding syntax for context-
free productions so that grammars can be written in more natural form:

> (extend-syntax
(sort Element (Symbol))
(lit Element (String))
(star Element (Symbol "*"))
(plus Element (Symbol "+"))
(prod Form (Symbol ":" Symbol "::=" (star Element) ";")))

()

Note the use of ordinary S-expressions for complex grammar symbols in last pro-
duction ((star Element)). Evaluating this form at the command-line will add
context-free productions defining the syntax of context-free productions itself to
the current grammar of CherryLisp. We now can write productions as follows:

> ’abs:Form ::= "|" Form "|";
(prod "abs" "Form" ((sort "Form")))

This new syntax makes it a lot more easy to define extension grammars. It is
not readily possible to give semantics to these productions using just functions
because of eager argument evaluation. For example, we could use a macro to
interpret prod AST forms, as follows:

> (define prod (macro (label sym elts)
‘’(,(str2sym label) ,(str2sym sym) ,elts)))

prod
> abs:Form ::= "|" Form "|";
(abs Form ((sort "Form")))



Macros in CherryLisp are similar to ordinary lambdas but with unevaluated
arguments. The quasi-quotation (‘) returns its argument unevaluated except
where anti-quotes (,) are encountered [1]. So this macro returns a list with the
label and symbol strings converted to symbols. Note how the result of entering
a syntax production is evaluated on the fly via the prod macro, returning an
S-expression conforming to the rule format accepted by extend-syntax (with
exception of the , as of yet, unevaluated (sort "Form") construct). In the follow-
ing I will assume there is a macro syntax that completely interprets production
ASTs and converts them extend-syntax invocations. So the following expression
(syntax tuple:Form ::= "|" Form "|";) will effectively add absolute value
notation to the language.

3 Embedding a Programming Language: Pico

3.1 Syntax

Pico [2] is a small, While-like language, featuring assignment, if-then-else,
while-do and skip statements. Supported expressions are literals (strings, natu-
rals), variables, addition, subtraction and string concatenation. Using the syntax
macro from Section 2 the syntax of CherryLisp is extended with the syntax of
Pico (an excerpt of which is listed in Figure 1).

program:Program ::= "begin" Declare Series "end";

declare:Declare ::= "declare" Decls ";";

decl:Decls ::= Decl;

decls:Decls ::= Decl ";" Decls;

idtype:Decl ::= Symbol ":" Type;

assign:Stat ::= Symbol ":=" Exp;

skip:Stat ::= "skip";

if:Stat ::= "if" Exp "then" Series "else" Series "fi";

while:Stat ::= "while" Exp "do" Series "od";

add:Exp ::= Exp "+" Term;

sub:Exp ::= Exp "-" Term;

term:Exp ::= Term;

cat:Term ::= Term "||" Factor;

fact:Term ::= Factor;

bracket:Factor ::= "(" Exp ")";

Fig. 1. Excerpt of a (context-free) grammar for Pico

To be able to embed Pico programs in CherryLisp programs, we have to
inject Pico sorts into the primary sort of CherryLisp. This is where the form
macro comes in. For instance, evaluating (form Stat) adds the production Form
::= “[” Stat “]” to the syntax. Recall that Form is the non-terminal capturing



CherryLisp expressions. This means that Pico statements enclosed in square
brackets are valid CherryLisp expressions:

> ’[x := 3]
(form (stat (assign "x" (term (factor (int "3"))))))

The use of the form macro only allows ground Pico terms to be embedded
in CherryLisp, however, to allow for patterns with holes, another syntax ex-
tension is required. One could, for instance, define a macro (var str S) for
declaring pattern variables, which, when evaluated, extends the grammar with
the following productions2:

var:S ::= S-Var;
var:S-Var ::= ":" str;
var:S-Var ::= ":" str Number;

These productions allow Pico syntax patterns to contain variables. For example,
after having evaluated (var "exp" Exp), we can evaluate:

> ’[x := :exp]
(form (stat (assign "x" (var ":exp"))))

Of course, such pattern variables are of little use if these patterns cannot be
used to match Pico source code. Since embedded syntax is converted to ASTs
by the parser, matching can be programmed in plain CherryLisp. Such a match
function is illustrated as follows:

> (match ’[x := x + 1] ’[x := :exp])
((":exp" add (term (factor (id "x"))) (factor (int "1"))))

The match function traverses the structure of both its arguments, and compares
each pair of subtrees it visits. If a variable is encountered in the pattern, the
corresponding subtree of the first argument is bound to it in an environment
structure. The result of matching a term against a pattern is the set of bindings
created during matching, in this case the binding “:exp” to the AST for “x+ 1”.
Note that since patterns and pattern variables are defined using ordinary macros,
nothing keeps the user from using different, embedded-language specific quotes
(i.e. other than “[...]” and “:”).

3.2 Semantics

Using patterns to embed Pico source code and pattern variables in matching
Pico terms against such patterns allows us to define an interpreter for Pico
in a style similar to the style employed in [2, 3]. A function to evaluate Pico
statements is shown below:
2 The latter two are actually lexical rules that do not contribute to the AST; for the

sake of exposition, however, I choose to gloss over this detail.



(define (ev-stat stat env)
(switch stat
([skip] env)
([:sym := :exp] (bind sym (ev-exp exp env) env))
([if :exp then :series1 else :series2 fi]
(if (ev-exp exp env)

(ev-series series1 env)
(ev-series series2 env)))

([while :exp do :series od]
(if (ev-exp exp env)
(ev-stat stat (ev-series series env))
env))))

The function ev-stat evaluates a statement; it assumes two auxiliary functions:
ev-series for evaluating sequences of statements and ev-exp for evaluating
expressions. The top-level expression of the function is a switch construct. This
macro attempts to match sequences of patterns to its first argument. If a match
is found, the captured variables are made into normal CherryLisp bindings
so that code right of the pattern can refer to them. For instance, the pattern
for assignment contains a variable :sym which matches a Pico variable. In the
right-hand side of this case the captured variable is available as sym.

4 Implementation: GLR & IPG

The current version of CherryLisp is implemented in Ruby3. There are three
important parts: the parser, de parser generator (the “grammar”) and the inter-
preter. The parser algorithm is the Generalized LR (GLR) algorithm as described
in [16]. The LR(0) parsetable generation algorithm is both incremental and lazy
(IPG) [13, 16]. I have instantiated both the parsing and parser generation algo-
rithms in scannerless style; this obviates the need for a separate lexical analysis
phase4.

The basic configuration of the CherryLisp interpreter proceeds as follows:

g = IPGGrammar.new("boot.grammar")
p = GLRParser.new(g)
e = Evaluator.new(g)
p.add_reduction_observer(e)

First the IPG parser generator is initialized with the initial grammar containing
the syntax of the host language, – in this case a small syntax for S-expressions
suffices. Then both the parser and evaluator are initialized with the parser gen-
erator. The GLR algorithm will use g to parse text and produce AST. The
interpreter has to know about the same g in order to add productions to it.
3 http://www.ruby-lang.org
4 ... but might require some provision to enforce longest match for certain lexical sorts,

such as identifiers; again, I choose to gloss over this technical detail.



Finally, following the Observer design pattern, the interpreter is added as an
observer of the GLR algorithm. In this case it means that the interpreter will be
notified of reductions performed by the GLR algorithm.

Figure 2 illustrates some of the internals of the interpreter. Evaluators are
initialized (through initialize) with a grammar and a fresh environment5.
The next method, notify reduction is called during runs of the GLR parsing
algorithm. The argument is the AST created in a reduce action. If this AST is
of the extend-syntax kind, the grammar is immediately modified.

def initialize(grammar)
@grammar = grammar
@env = Environment.new

end

def notify_reduction(form)

if node.first == "extend-syntax"

@grammar.extend(node.rest)
end

end

def eval(form, env)
...

case form.first

when "extend-syntax"

return nil
...

end
end

Fig. 2. Simplified method skeleton of the CherryLisp interpreter.

Finally, the main content of the interpreter is in the eval method. It consists
of a large case statement that dispatches on the incoming expression (form). For
the sake of brevity, only the cases relevant to syntax extension are shown. If the
interpeter encounters an extend-syntax form it just returns nil, since the argu-
ments to it have already been evaluated during parsing (in notify reduction),
and from the fact that form is a parameter to eval it naturally follows that
parsing (with respect to form) has already finished.

5 Future Work

Understanding First of all, further research should concentrate at deeper under-
standing of the consequences of modifying LR parsetables during parsing. The
experiments with the current prototype of CherryLisp are encouraging (how-
ever naive the implementation may be). Nevertheless, it is unclear whether there
are circumstances where the current scheme would not work. For instance, cur-
rently, there is control over what would happen if, in the case of ambiguity, the
parsetable is modified “concurrently” in different, possibly interacting, ways (!).
Similarly, there is no rollback for undoing parsetable modifications in the case
that a certain path exercised by the GLR algorithm does not eventually lead
to a valid parse. In other words, currently, parsetable modifications do not obey
the stack discipline of the GLR algorithm and ignore the its quasi concurrency.
5 In Ruby, instance variables start with an “@”.



A purely function implementation of GLR using a persistent datastructure for
the parsetable could be a viable approach to solve these problems.

Bootstrapping Lisps have a very simple syntax: CherryLisp therefore begs to be
bootstrapped. In fact, I think that the following five (context-free) productions
are should be enough to bootstrap CherryLisp to having a full-fledged Lisp
syntax:

nil:Form ::= "(" ")"

pair:Form ::= "( Prefix "." Form ")"

form:Prefix ::= Form

num:Form ::= Number

sym:Form ::= Symbol

These rules suffice for Lisp expressions consisting of dotted pairs (e.g. (1 .
2)), number literals and symbols. Using the syntax extension mechanism of
CherryLisp any other syntax can be added: list syntax, string literals, quotation
syntax, etc.

Syntax restrictions Currently, CherryLisp only allows the current syntax to
be extended, but not restricted. It can be useful however, to sometimes undo
a syntax extension: this will also help to minimize possible ambiguities arising
from the interaction among embedded languages and the host language. The
incremental parser generation algorithm IPG already caters for the removal of
productions from a grammar.

Lexically scoped syntax extensions This area of future work is closely related
to the previous point. Similar to the approach of [6] one would like to restrict
the grammar for a certain region of source code without having to introduce
extra non-terminals. Lexically scoped syntax extensions can be implemented by
performing extension and restriction using a stack discipline. However, there are
techniques to (temporarily) restrict a grammar without adding and/or removing
productions ( [16], Chapter 3).

I have performed some experiments based on adding and subsequently remov-
ing productions from a grammar the results of which are somewhat encouraging.
Scoped grammar modification would cater for idioms like:

(with-syntax (abs:Form ::= "|" Form "|";) |x - y|)

This would effectively set up a kind of syntax jail : the absolute value notation is
only available within the confines of the with-syntax construct. Additionally,
one could imagine syntax jails where a completely different grammar is active
and not just a certain extended grammar (as in the example). Further research
is required however to understand the possible effects of destructively (i.e. non-
conservatively) modifying the parse table during parsing.

First class grammars To make the previous construct even more powerful the
current grammar (or really any kind of grammar) should be a first-class value in
the runtime system. Grammars could then be assigned to variables just like any
other value. In combination with lexically scoped syntax regions, this would allow



idoms like: (with-syntax abs-syntax |-1|), where the variable abs-syntax
holds the productions defining the absolute value notation.

Additionally, first class grammars would enable grammars to be processed
within CherryLisp itself. In combination with Lisp’s powerful macro facilities,
one could generate default source code formatters [8] and AST manipulation
programming interfaces [7].

First class parse trees The current focus of CherryLisp is syntax extension
for DSL embedding. In this case, abstract syntax is often sufficient for analysis,
interpretation and transformation purposes. However, for reverse- and reengi-
neering purposes concrete syntax trees are needed. Such trees could readily be
made available in CherryLisp since the GLR parsing algorithm, in fact, already
produces them6. Concrete syntax trees preserve information on layout, literals,
and comments, – essential information, for instance, when implementing auto-
matic refactorings or source level debugging facilities.

6 Conclusion

I have described a simple, yet very powerful approach to dynamic, incremental
and immediate syntax extension. Embedded syntax is transformed by the parser
into S-expressions which are readily available for analysis, evaluation, expansion
or any kind of processing one could conceive of in a Lisp-like language. The
current prototype is admittedly naive, and further work should focus on deeper
understanding of the dynamics of syntax extension.
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