
Extensible Modeling with Managed Data in Java

Theologos Zacharopoulos
CWI, The Netherlands

theol.zacharopoulos@gmail.com

Pablo Inostroza
CWI, The Netherlands

pvaldera@cwi.nl

Tijs van der Storm
CWI & University of Groningen,

The Netherlands
storm@cwi.nl

Abstract
Many model-driven development (MDD) tools employ spe-
cialized frameworks and modeling languages, and assume
that the semantics of models is provided by some form of
code generation. As a result, programming against models
is cumbersome and does not integrate well with ordinary
programming languages and IDEs. In this paper we present
MD4J, a modeling approach for embedding metamodels di-
rectly in Java, using plain interfaces and annotations. The
semantics is provided by data managers that create and manip-
ulate models. This architecture enables two kinds of extensi-
bility. First, the data managers can be changed or extended to
obtain different base semantics of a model. This allows a kind
of aspect-oriented programming. Second, the metamodels
themselves can be extended with additional fields and meth-
ods to modularly enrich a modeling language. We illustrate
our approach using the example of state machines, discuss
the implementation, and evaluate it with two case-studies: the
execution of UML activity diagrams and an aspect-oriented
refactoring of JHotDraw.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Data types
and structures

Keywords Managed Data, Model-driven Development,
Proxies, Interpretation

1. Introduction
MDD aims to raise the level of abstraction in software
development through the use of high-level, domain-specific
models that capture the main properties and relationships
between the elements of a software system [14]. Instead of
directly encoding the high-level properties and relationships

from models in a general-purpose programming language,
the models act as high-level specifications from which the
implementation is derived, often through code generation.

Since models are defined in a high-level modeling lan-
guage, programmers need to use dedicated, separate tools to
support the development of such models. This produces a
gap between the programming language and the development
environment, on the one hand, and between the language
and the models developers create and maintain, on the other
hand. This situation leads to problems such as tool lock-in
and co-evolution between models and code.

Managed Data [7] is an alternative approach, which pro-
vides modular strategies for defining the structure and manip-
ulation mechanisms of data, directly within a programming
language. As a result, data management becomes highly pro-
grammable, and decoupled from the mechanisms that are
hard-wired in the host programming language. Managed
Data relies on three main components: 1) a data descrip-
tion language that describes the structure of the data, 2) data
managers that create and manipulate data according to the
description, and 3) integration with the host programming
language, so that managed data can be used in the same way
as regular unmanaged data.

Managed Data can address crosscutting concerns such
as logging or security, by specifying the behavior of data
in custom data managers. Another interesting application
of Managed Data is to enforce invariants on the data, for
instance, certain high-level properties such as inverse-of or
containment. Thus, Managed Data allows the embedding
of high-level metamodeling properties in a general-purpose
programming language.

In this paper we introduce Managed Data for Java (MD4J),
a framework for embedding models in Java implemented with
Managed Data. Since Java is a statically-typed language, the
main challenge is to reconcile static types with the intensive
use of runtime reflection to implement the managed objects.
It turns out that Dynamic Proxies are the right mechanism
to achieve this. As an added benefit, Java developers can
still enjoy features such as code completion or type checking
when programming against MD4J models.

MD4J enables two kinds of extensibility. First, the data
managers can be changed or extended to create models with

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

GPCE’16, October 31 – November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4446-3/16/10...

http://dx.doi.org/10.1145/2993236.2993240

25



different kinds of data handling semantics. For instance, this
supports a kind of aspect-oriented programming, where ac-
cess, modification and creation of modeling elements can
be instrumented with additional behavior. Second, the meta-
models themselves can be extended with additional fields
and methods to modularly enrich a modeling language with
additional features. The combination of these two dimensions
of extensibility provides for a very flexible framework for
modeling without having to leave the Java ecosystem.

We introduce MD4J using a simple modeling language for
state machines. We discuss how the meta model is specified,
how state machines are constructed using various data man-
agers, and how the state machine meta model can be extended
with additional fields and behavior. Section 3, presents MD4J
from the implementation perspective. In particular we detail
the two-tiered dynamic proxy architecture that forms the back
bone of MD4J. To exercise both dimensions of model exten-
sibility, we provide two case-studies in Section 4. The first
is based on execution of UML Activity Diagrams [11]. In
particular, this involves extending the Activity meta model
with fields and methods to allow activities to be executed. Ex-
ecuting preexisting benchmarks shows that MD4J Activity ex-
ecution is between 19 and 27 times slower than the reference
implementation due to the reflective overhead of dynamic
proxies. The second case-study consists of an aspect-oriented
refactoring of the drawing application JHotDraw [1], where
custom data managers are used to encapsulate cross cutting
concerns. Based on separation-of-concerns metrics we can
conclude that tangling and scattering are indeed reduced.

The contributions of this paper can be summarized as
follows:

• We present MD4J, an implementation of managed data in
Java, for extensible modeling (Section 2).

• We detail how a two-tier dynamic proxy architecture is
instrumental in implementing MD4J (Section 3).

• We evaluate MD4J in two case-studies, one consisting of
a modular model extension to support UML Activity dia-
gram execution, and one consisting of an aspect-oriented
refactoring of JHotDraw (Section 4).

The code of MD4J and the case-studies can be found online
here: https://github.com/cwi-swat/JavaMD.

2. MD4J: Managed Data for Java
2.1 Overview
Managed data [7] is based on two key ingredients: schemas,
and factories. A schema defines the structure of data: it
defines classes, relations, attributes and constraints that de-
fine the layout and well-formedness of data. In our setting,
schemas correspond to class-based meta models, as used
in MDD. To create data conforming to a schema, a factory
acts as an interpreter of a schema in order to create objects
supporting the features and constraints as specified in the
schema.

Machine

State

name

Transition

event

statesstart

in

out

owner to

from

*

*

*

Figure 1. State machine metamodel

At a high level, MD4J relates schemas and factories
through the following two functions:

load : Factoryschema × Class
Σ
→ SchemaΣ

factory : Class〈FactoryΣ〉 × SchemaΣ → FactoryΣ

The function load takes a factory that is able to create
schemas, and a sequence of reified Java interfaces that define
a schema Σ, and then produces a schema structure that
encodes Σ. Load can be seen as a parser of Java interfaces,
turning them into a more abstract representation defined by
the “schema of schemas” (the meta meta model). The factory
function then takes a specification of the factory (a reified
factory interface) and a schema describing Σ, and produces
a factory object which can be used to create objects of the
types defined in Σ.

The object FactoryΣ acts like a standard Abstract Fac-
tory [3]. The key step that makes managed data (and hence
MD4J) flexible in terms of data management, is that there can
be different ways to obtain a factory object from a schema.
In other words, the factory function can be defined in mul-
tiple, alternative ways, or base factories can be extended to
provide additional behavior. The factory step thus decouples
data definition from data management.

2.2 Example: State Machines
To make the abstract description of load and factory more
concrete, let us consider the simple state machine meta model
shown in Figure 1. A state machine consists of a number
of named states; each state contains transitions to other
states; and a transition has a field representing the event
that triggers that transition. Figure 2 shows the corresponding
MD4J schema.

The state machine schema contains a Java interface for
every meta model class. Fields are defined methods with a
varargs parameter. This is a convention to have a single decla-
ration serving both as a getter (when invoked without parame-
ters) and a setter (when invoked with one or more arguments).
High-level metamodeling properties, such as containment,
inverse relations and primary keys, are represented using Java
annotations. All interfaces inherit from the M interface which
is the base “managed data” interface of MD4J. We will come
back to the M interface in Section 3.

26

https://github.com/cwi-swat/JavaMD


interface Machine extends M {
@Contain Set<State> states(State... states);
State start(State... state);

}

interface State extends M {
@Key String name(String... name);
@Inverse(other = Machine.class, field = "states")
Machine owner(Machine... machine);
@Contain List<Transition> out(Transition... transition);
List<Transition> in(Transition... transition);

}

interface Transition extends M {
String event(String... event);
@Inverse(other = State.class, field = "out")
State from(State... from);
@Inverse(other = State.class, field = "in")
State to(State... to);

}

Figure 2. MD4J State machine schema

The interfaces that make up an MD4J schema represent
the “source code” of a schema. To get an actual schema
– that is, an object structure representing the information
declared in the interface – it needs to be loaded. MD4J
provides SchemaLoader, which, given a factory to create
schema objects, can be used to create a schema for a set
of interfaces like those of Figure 2.

Assuming we have schema factory schemaFactory, the
following code creates the state machine schema:

Schema stmSchema = SchemaLoader.load(schemaFactory,
Machine.class, State.class, Transition.class);

Schemas are represented as managed data themselves, to
allow extensibility of data management behavior on schemas,
and to decouple the schema interpretation as implemented
by data managers, from the low-level reflection details of
Java. We describe the “schema of schemas” in some detail in
Section 3. The astute reader may have noticed an apparent
circular dependency between load and factory if applied to
the schema of schemas. This circularity needs to be broken
using a bootstrap process, which we consider to be out of
scope for this paper (cf. [18]).

2.2.1 Creation of Managed Objects
Once a schema is available, it can be given to a data manager
which turns it into a factory to create objects of the types
defined in the schema. In MD4J, the interface of such a factory
needs to be explicitly defined, and must specify a factory
method for every element of the schema. For example, this is
the factory interface for the state machine schema:

interface StateMachineFactory{
State State();

Machine doors(StateMachineFactory factory) {
Machine m = factory.Machine();
State s1 = factory.State();
s1.name("Closed"); s1.owner(m);
State s2 = factory.State();
s2.name("Opened"); s2.owner(m);
Transition t1 = factory.Transition();
t1.event("open"); t1.from(s1); t1.to(s2);
Transition t2 = factory.Transition();
t2.event("close"); t2.from(s2); t2.to(s1);
m.start(s1);
m.states(s1, s2);
return m;

}

Opened Closed

close

open

Figure 3. Creating a simple state machine controlling doors

Machine Machine();
Transition Transition();

}

Implementations of this interface will construct objects con-
forming to the interfaces defined in the state machine schema
of Figure 2. The actual implementation of such a factory in-
terface, however, is the responsibility of a data manager. Data
managers specify the behavior of the objects created by the
factories they produce.

MD4J includes a BasicDataManager, which implements
default behavior for fields, associations, inverses, primary
keys and dynamic type checking. Given the state machine
schema defined earlier (stmSchema), and the factory interface
StateMachineFactory, a concrete state machine factory is
obtained as follows:

StateMachineFactory stmFactory =
new BasicDataManager()
.factory(StateMachineFactory.class, stmSchema);

The resulting stmFactory can be used just like any ordinary
factory object in Java. In this case, however, the semantics
of object creation, and the implementation of the declared
fields in the schema interface is solely determined by the
BasicDataManager.

Figure 3 shows a simple state machine for controlling
doors and a method doors that creates the same state machine
through a StateMachineFactory. The result of doors can be
used as an ordinary Java object. For instance, the following
method print prints out state machines to the console.

void print(Machine m) {
for (State s: m.states()) {
System.out.println("State " + s.name());
for (Transition t: s.out())
System.out.println(t.event() + " -> " + t.to().name());

}
}

Calling the method print with the result of doors, produces
the following output:

27



State Closed
open -> Opened
State Opened
close -> Closed

2.3 Extensible Modeling
The state machine schema defines a fixed structure for state
machine models, and the BasicDataManager provides a de-
fault semantics for data management. Here we illustrate how
state machine models can be extended in two dimensions:

• Data manager extension is used to instrument the con-
structed data for modifying its semantics. We illustrate
this by adding logging and locking behavior to the basic
data manager.

• Schema extension, is used to enrich the schema itself,
without having to rewrite the model creation code (such
as the doors method of Figure 3). We illustrate this feature
by extending the state machine schema with execution
semantics.

Data managers control the initialization and manipulation
of the managed data. Thus, by switching the implementation
of a manager, the behavior of the created objects can be al-
tered. We may want, for example, to use a different data man-
ager to log some operations when state machines are manipu-
lated. Such extensions can be implemented by subclassing the
BasicDataManager. The basic structure of BasicDataManager,
the base class provided by the MD4J framework, is as follows:

class BasicDataManager implements IDataManager {
...
@Override
public MObject createManagedObject(Klass c,
Object... xs) {
return new MObject(c, xs);

}
}

The createManagedObject (declared in IDataManager) method
returns a new instance of the MObject class, which represents
the basic behavior of a managed object. The MObject class im-
plements the M interface as well as the java.lang.reflect.Invo-
cationHandler interface. Thus, an instance of this class is able
to respond to dynamic method invocations on the dynamic
proxy, as we further elaborate in Section 3.

Data manager extensions are realized by overriding
this method, and returning a custom subclass of MObject.
For instance, a “logging data manager”, will override the
createManagedObject method in order to construct a specific
type of MObject which has the logging behavior, as shown
in Figure 4. The inner class Log overrides the _set method
of MObject, which is the the extension point for field assign-
ment. By having createManagedObject return a Log instead
of a plain MObject, all created objects will have the logging
behavior.

This data manager can now be used instead of the
BasicDataManager:

class LoggingDataManager extends BasicDataManager {
class Log extends MObject {
public Log(Klass klass, Object[] inits) {
super(klass, inits);

}
@Override
public void _set(String name, Object value) {
System.err.println("Setting " + name + " to " + value);
super._set(name, value);

}
}
@Override
public Log createManagedObject(Klass klass, Object... inits) {
return new Log(klass, inits);

}
}

Figure 4. Implementing a data manager that logs field as-
signments

stmFactory = new LoggingDataManager()
.factory(StateMachineFactory.class, stmSchema);

Passing stmFactory to the doors method of Figure 3 will
print out Setting <x> to ... to the console for every field
assignment.

In some cases, additional behavior may require additional
interfaces for managed objects. A simple example of this
scenario is “lockable objects”: after constructing an object, it
can be “locked” to prevent further modifications. To support
lockable behavior, the data manager must somehow “inject”
an interface into the managed objects to allow client code to
call lock() on objects. MD4J anticipates such scenarios, by
having the factory method accept extra interfaces. A subclass
of MObject can then provide the required implementation.

For instance, the code for the LockableDataManager is
shown in Figure 5. As in the case of the logging data manager,
the createManagedObject method is overridden in order to
create a more specific instance of MObject, in this case, one
that disallows changes after the lockable object is locked. The
factory method is overridden to add the Lockable interface to
the constructed objects.

The following client code shows how the doors state
machine can be locked after construction, using a factory
created by the LockableDataManager:

stmFactory = new LockableDataManager()
.factory(StateMachineFactory.class, stmSchema);

Machine doors = doors(stmFactory);
((Lockable)doors).lock();

2.4 Schema Extension
A common strategy in model execution is to represent runtime
state as part of the model itself. MD4J supports schema
extension through interface inheritance. This allows us, for
instance, to extend the state machine schema with additional
fields and methods to be able to execute state machines. The

28



class LockableDataManager extends BasicDataManager {
interface Lockable { void lock(); }

@Override
public T factory(Class<T> f, Schema s, Class<?>... extra) {
return super.factory(f, s, Lockable.class);

}
@Override
public LockableObj createManagedObject(Klass klass,

Object... _inits) {
return new LockableObj(klass, _inits);

}

class LockableObj extends MObject implements Lockable {
private boolean isLocked = false;
public LockableObj(Klass klass, Object... inits) {

super(klass, inits);
}
public void lock() { isLocked = true; }

public void _set(String f, Object v) {
if (isLocked) throw new IllegalStateException();
super._set(f, v);

}
}

}

Figure 5. Data manager that constructs “lockable” objects

runtime state is represented by two new fields: current (in
Machine), which represents the current state of a machine,
and count (in State), which records the number of times a
state has been visited during execution.

Behavior can be added to MD4J interface via Java 8 default
methods. In this case it will be a single step method to execute
state machines. Given an event, the machine checks if there
is a corresponding transition from its current state. If so, it
changes its current state to the target state of the transition,
increasing the counter for the former current state and printing
the executed transition.

Figure 6 shows the extended interfaces. RMachine, which
extends Machine, represents “runtime” state machines. RState
extends State with the additional count field.

To use these extended model interfaces, the data manager
needs to be initialized with an extended schema and a refined
factory interface. This last step is required, since the (reified)
factory interface acts as the recipe for the data manager to
decide which interface(s) a freshly created managed object
needs to conform to. For executable state machines, the
factory interface is refined as follows:

interface RStateMachineFactory extends StateMachineFactory {
@Override RState State();
@Override RMachine Machine();

}

Notice that this factory will only produce the executable
versions of states and machines as it overrides the factory

interface RMachine extends Machine {
RState current(RState... current);

default void step(String event) {
for (Transition t: current().out())
if (t.event().equals(event)) {
current().count(current().count() + 1);
current((RState)t.to());
return;

}
}

}

interface RState extends State {
Integer count(Integer... count);

}

Figure 6. Extending the state machine schema with runtime
state and behavior

methods State and Machine. Such factory overrides are valid
due to Java’s covariant return types.

The extended schema can now be used as follows:

stmSchema = SchemaLoader.load(schemaFactory,
RMachine.class, RState.class, Transition.class);

stmFactory = new BasicDataManager()
.factory(RStateMachineFactory.class, schema);

RMachine runtimeDoors = (RMachine)doors(factory);
runtimeDoors.step("open");

The schema now needs to incorporate the new inter-
faces. As the factory instance is now created using this
new schema plus the extended factory definition from
RuntimeStateMachineFactory, it produces objects conform-
ing to RMachine. Calling the doors method with this factory,
produces an RMachine. Since doors was defined to return a
Machine, a downcast is needed if we want to execute it.

The code that was defined over the original schema re-
mains valid. We could for instance pass the runtimeDoors
object to the print method defined in Section 2, obtaining the
same output.

2.5 Summary
In this section we have shown how MD4J support extensible
modeling, using the example of state machines. The first two
extensions involved new data managers to add logging and
locking support. The third extension involved new schema
classes extending the base schema for state machines with
runtime state and behavior. In all three cases, code that
was written to create state machines (e.g., doors), or code
that traverses state machines (e.g., print), did not have to be
rewritten.

3. Implementation: MD4J

The original implementations of Managed Data were hosted
in dynamically-typed languages, using their reflective fea-

29



State Machine Metamodel

Basic
Data

Manager a 
Factory a 

Managed 
Object

proxy proxy

State
Machine
Factory

State

MObject

In
vo

ca
tio

n 
Ha

nd
le

r

im
pl

em
en

ts

im
pl

em
en

ts

Klass

factory creates

name

State creates
proxied

invocations

Figure 7. Two-tier proxies architecture of data managers

tures [7]. In turn, MD4J is the embodiment of Managed Data
in Java, a statically-typed language.

The key ingredient behind MD4J’s implementation are
Java Dynamic Proxies. Proxies provide a simple mechanism
to support type-safe reflective behavior. Whilst in a dynamic
language no assumptions about types are needed, a dynamic
proxy needs to declare the interfaces that the proxied object
conforms to, being up to the developer to provide the runtime
behavior that meet these contracts.

In this section, we elaborate on this proxy-based architec-
ture, exposing the criteria behind the main design decisions
we made in order to bring Managed Data to a statically-typed
language. We also discuss the implementation of our schema
metamodel as Managed Data itself.

3.1 Data Managers
In MD4J, the design of data managers is based on a two-
tier proxy architecture. The first proxy tier is in charge of
reflectively creating factories, and the second tier corresponds
to the proxies behind a call to the factory, that end up creating
the custom semantics for the managed objects themselves.
Figure 7 shows the two-tier proxy architecture of MD4J data
managers, the core of our implementation. In order to make
the architecture more concrete, the figure refers to the objects
involved in the following client code:

StateMachineFactory =
new BasicDataManager().factory(
StateMachineFactory.class, schema);

State s1 = factory.State();
s1.name("OPEN");

The data manager creates a first-level proxy for the factory,
in this case conforming to the StateMachineFactory definition.

1 class BasicDataManager implements IDataManager {
2 ...
3 @Override
4 public T factory(Class<T> factoryClass, Schema schema,
5 Class<?>... additionalInterfaces) {
6 List<Class<?>> ifaces = interfacesForSchema(schema);
7 ifaces.addAll(Arrays.asList(additionalInterfaces));
8
9 return (T) Proxy.newProxyInstance(

10 factoryClass.getClassLoader(),
11 new Class<?>[]{factoryClass},
12 (proxy, method, args) ->
13 createManagedObjectProxy(factoryClass, schema,
14 ifaces, method, args));
15 }
16 private Object createManagedObjectProxy(
17 Class<?> factoryClass, Schema schema,
18 Method schemaFactoryCallingMethod, Object... inits) {
19 Klass schemaKlass =
20 klassForMethod(schemaFactoryCallingMethod, schema);
21
22 return Proxy.newProxyInstance(
23 factoryClass.getClassLoader(),
24 additionalIfaces.toArray(new Class[additionalIfaces.size()]),
25 createManagedObject(schemaKlass, inits));
26 }
27 @Override
28 public MObject createManagedObject(
29 Klass klass, Object... inits) {
30 return new MObject(klass, inits);
31 }
32 }

Figure 8. Code for BasicDataManager

The implementation of this factory creates yet another proxy
when a “creation” method is invoked. In the figure, the State
method is invoked and therefore the second-level proxy’s
MObject is an invocation handler backed by a schema’s meta-
class (Klass) that refers to the original State interface. On
this second-level proxy, the invocation of method name needs
access to this data definition.

As discussed in Section 2, the BasicDataManager class is
provided by the MD4J framework as a base implementation
for data managers. Figure 8 shows the relevant code of its
implementation. The factory method creates the first-level
proxy, the one in charge of creating managed objects by
analyzing the method that was called on the factory. This
proxy exposes the interface corresponding to the factoryClass
parameter. When a creation method is called on the fac-
tory proxy, the invocation handler (represented by the three-
parameter closure) creates a new managed object by in-
voking the createManagedObjectProxy method. This method
creates the second-level proxy, that represents a managed
object. Notice that the invocation handler in this case is
created by the method createManagedObject, which returns

30



interface Type extends M {
@Key String name(String... name);
@Inverse(other=Schema.class, field="types")
Schema schema(Schema... schema);
Class<?> javaClass(Class<?>... javaClass);

}

interface Klass extends Type {
@Contain Set<Field> fields(Field... field);
Set<Klass> supers(Klass... supers);
@Inverse(other=Klass.class, field="supers")
Set<Klass> subKlasses(Klass... subKlasses);
@Optional Field key(Field... key);

}

interface Primitive extends Type {}

interface Field extends M {
@Key String name(String... name);
Boolean many(Boolean... many);
Boolean optional(Boolean... optional);
Boolean key(Boolean... key);
Boolean contain(Boolean... contain);
Type type(Type... type);
@Inverse(other=Field.class, field="inverse")
@Optional Field inverse(Field... field);
@Inverse(other=Klass.class, field="fields")
Klass owner(Klass... owner);

}

interface Schema extends M {
@Contain Set<Type> types(Type... type);

}

Figure 9. Schema schema

an MObject. This object is responsible for interpreting the
schema in order to implement the custom behavior. Note
too that createManagedObject could be overridden by data
manager extensions to extend the functionality of the basic
MObject.

Consider again the client code that assigns the name
"OPEN" to an instance of State:

1 State s1 = factory.State();
2 s1.name("OPEN");

Based on the listing of BasicDataManager, we can step
into this snippet:

1. The method State is called on factory, so s1 is bound to
a proxy whose invocation handler is an MObject. This
managed object is built with a “klass” that encodes its
schema, in this case, the one that corresponds to State
(line 30, Figure 8). Notice that in order to obtain such
“klass”, the factory proxy has to match the invoked factory
method StateMachineFactory.State() against the schema
that the factory itself received (line 20, Figure 8).

2. The method name is called on s1 with the argument
"OPEN", so the proxy’s MObject responds to this invoca-
tion. First, it tries to find the field name in the klass that
encodes State. Then, it checks the number of arguments.
As in this case the number is one, it interprets the call as a
setter. It first type-checks the argument, and then assigns
the new value to the internal representation of the field.

3.2 Schema of Schemas
We have seen that in order to create factories, we need an
instance of Schema that encapsulates the schema definition.
This Schema itself is defined as managed data, defined by
the Schema schema shown in Figure 9. Since we represent
schemas as managed objects, we benefit from uniform access,
being able to inspect reflective metadata in the same manner

as ordinary managed objects. The Schema acts then as a
mirror [2] of the Java interfaces that constitute the metamodel.

In the figure, we can see that the Schema consists of a set of
Types, which can be either primitive (Primitive) or reference
type (Klass). Primitives represent object that are not managed
by MD4J. The structure of the annotated interface methods
is encoded in the Field class. When this schema is loaded
with a (bootstrapped version of) itself, the schema becomes
self-describing.

The mechanism to represent Java interfaces in MD4J is
used by the interface M, discussed earlier. This interface, that
every metamodel element inherits from, ensures that every
managed object points to the meta-information about the
schema that defines itself, being this description encoded as
an MD4J “klass”:

interface M {
Klass schemaKlass(Klass... schemaKlass);

}

Summary We have presented how to implement the con-
cept of Managed Data in Java using a two-tier proxy archi-
tecture: the first level exposes a factory interface, and im-
plements the creation methods delegating to second-layer
proxies. The latter represent the managed objects backed by
the schema. These schemas are Managed Data themselves,
providing a simple mirroring architecture.

4. Evaluation
We have evaluated MD4J in two case-studies. First, the ex-
tensibilitiy of models in MD4J is exercised in an implementa-
tion of UML Activity Diagrams [12]. The second case-study
shows how the extensibility of data managers can be used to
do aspect-oriented programming, if parts of an application are
modeled using MD4J; this case-study is based on a refactored
version of JHotDraw [1].

31



Figure 10. UML Activity Diagram metamodel

4.1 Executing Activity Diagrams
Execution of UML Activity Diagrams has been recently pro-
posed as one of the challenges of the 8th Transformation
Tool Contest (TTC’15) [11]1. The goal is to extend a (simpli-
fied) metamodel of UML Activity Diagrams with additional
classes, relations and attributes for representing the dynamic
execution of Activities. Additionally, execution of an activity
model can be seen as transforming this model at runtime,
and the “output” of execution is captured by attributes in
the model itself. The reference implementation realizes the
behavior as ordinary methods in Java classes generated from
an extended ECore metamodel 2.

The UML activity diagram metamodel is presented in
Figure 10. This metamodel has been modeled using MD4J,
in a similar style to how the state machine metamodel
was defined in Section 2. Then in a separate package, the
metamodel is extended in the following way:

• New classes for defining runtime concepts, such as tokens,
activity trace, input values.

• New fields on existing entities. For instance, the type
Activity is extended with a field containing the trace of
execution.

• Methods defining the execution semantics. For instance,
all activity node types get a method fire(List<Token>),
triggering the execution of a node.

As a result, the execution semantics of UML Activity dia-
grams is defined in a completely modular way. In contrast, the
reference implementation is realized by adding the execution
methods to the generated code from the ECore metamodel.

The two separate activity diagram schemas are concise
as well. The static schema takes up 363 source lines of code

1 http://www.transformation-tool-contest.eu/2015/
2 https://github.com/moliz/moliz.ttc2015

Test Reference MD4J

TestPerformanceVariant_1 2.41 45.53
TestPerformanceVariant_2 2.70 34.39
TestPerformanceVariant_3_1 7.38 30.79
TestPerformanceVariant_3_2 0.17 4.57

Table 1. Comparing the performance of MD4J Activity Di-
agram execution to the reference implementation of the
TTC’15 model execution challenge [11] (in seconds)

(SLOC). The runtime extension requires an additional 491
SLOC. The implementation classes (excluding generated in-
terfaces) of the reference implementation consist of 3704
lines of code, but this includes some boilerplate code gener-
ated by EMF to deal with bidirectional associations. In MD4J
this logic is encapsulated by the data manager code. However,
the main benefit of MD4J is that the base activity schema
remains open for extension: it is easy to add new interpreta-
tions, in addition to execution, without having to change the
original code.

Performance The TTC’15 Activity Execution challenge
provided 3 test cases to evaluate performance. They consist
of pathologically large activity diagrams. We have used these
test cases to compare the performance of the MD4J solution to
that of the reference implementation. The measured execution
times for each test activity for both versions are presented in
Table 1.

The results show that the MD4J implementation is between
19 and 27 times slower than the reference implementation.
Since MD4J has been implemented using a large amount of
Java Reflection and Dynamic Proxies, it is unfavorable for
applications that need performance to use it. Data managers
dynamically analyze the schemas through reflection, which
makes it a lot harder for the compiler to optimize. More
specifically, even though the HotSpot JVM has one of the
best just-in-time compilers, Java’s dynamic proxies introduce
significant overhead [10]. In particular, the activity execution
also creates model objects at runtime, which involves query-
ing the schema. On the other hand, we expect that there are
sufficiently many use cases where raw performance is not a
requirement, and where modularity and extensibility is more
important.

4.2 Aspect-Oriented Refactoring of JHotDraw
The Activity Diagram case study illustrated how schemas
could be extended with additional data fields and behavior.
In this section we present a case study exercising the other
axis of extension: data managers. We show that by modeling
parts of a regular software application using MD4J schemas,
custom data managers can be used to encapsulate aspects [5].

The case study is based on JHotDraw, a Java drawing
framework and application, which has been used to showcase
the use of design patterns [1]. Earlier work has identified parts
of the code that are candidates of aspect-oriented refactoring:

32

http://www.transformation-tool-contest.eu/2015/
https://github.com/moliz/moliz.ttc2015


public void execute() {

setUndoActivity(createUndoActivity());

getUndoActivity().setAffectedFigures(view().selection());

FigureEnumeration fe =

getUndoActivity().getAffectedFigures() ;

while (fe.hasNextFigure()) {
fe.nextFigure().setAttribute(fAttribute, fValue); }

view().checkDamage();
}

Figure 11. Refactoring the undo-related concerns from Com-
mand classes in JHotDraw: the boxed code is moved into a
data manager in the refactored version of JHotDraw

concerns which resist traditional forms of modularization [9].
This analysis has been the basis of a refactoring of JHotDraw
where such aspects have been specified separately using As-
pectJ [8]. In this case study we perform a similar refactoring,
but using MD4J to encapsulate the aspects as part of custom
data managers.

The aspects we have refactored are instances of the Ob-
server pattern [3] and an instance of “Undo” behavior. The
Observer pattern is realized by the StandardDrawingView
class, which implements a FigureSelectionListener, to handle
changes to the figure selection. The undo functionality is
implemented in JHotDraw with the Command design pat-
tern: when a command is executed, an undo activity is cre-
ated. The logic of undo is thus tangled with the execution
logic of the command itself. In our case study we elimi-
nate this tangling from the ChangeAttributeCommand class,
which deals with changes to visual attributes (e.g., color,
font, line style, etc.). Figure 11 shows the execute method of
ChangeAttributeCommand. The undo-related code is boxed.
In the refactored version of JHotDraw this code is moved
completely to a custom data manager.

Extracting FigureSelectionListener Code The particular
instance of the Observer pattern is realized through the
FigureSelectionListener interface. It is used to notify a subject
for changes in the current figure selection in the DrawingView
of JHotDraw. Accordingly, the class StandardDrawingView
realizes the Observable role, providing methods for adding
and removing figure selection listeners. The concern spe-
cific code is scattered though a number of places of the
StandardDrawingView class, and includes fields to store the
listeners, and methods to add, remove, and notify listeners.

To extract this logic from the StandardDrawingView, we
have modeled it using a schema, with default methods for the
core functionality of the class. The code that is concerned
with the listeners is extracted into a separate interface, which
is passed as an extra interface to the custom data manager
which implements the logic by means of subclassing the
MD4J MObject class. The refactoring thus follows the pattern
of making managed object “lockable” (Section 2.3).

Extracting Undo Logic To extract the undo logic from
the ChangeAttributeCommand, we again have modeled it as
managed data. A custom data manager then enriches it with
an interface that supports creating the Undo activity required
for this particular command. It furthermore intercepts the
execute method, to first register the undo activity, before
actually executing the command itself.

After the aspect refactoring, all of the undo related func-
tionality of the command has been removed from the com-
mand’s code and are externally attached by the data manager.
Following the original design, the creation of an UndoActivity
instance is defined inside a nested class, but now resides in-
side the command-specific subclass of MObject. The original
execute method of the command is unaware of the attached
undo functionality.

Effect on Scattering and Tangling To assess the effect of
the aspect-oriented refactoring of JHotDraw, we computed
a number of metrics designed to measure the amount of tan-
gling and scattering in code [13]. We then compare the met-
rics from the original JHotDraw and our refactored version
(“MDJHotDraw”). The metrics have been manually com-
puted on the parts of the code that make up the two concerns.
This is determined using the Vocabulary Size metric, which
counts the participant components of a concern [13].

The metrics are the following: Concern Diffusion over
Components (CDC) counts the number of primary compo-
nents whose main purpose is to contribute to the implementa-
tion of a concern. This metric counts the degree of concern
scattering at the level of classes. Concern Diffusion over Oper-
ations (CDO) counts the number of primary operations whose
main purpose is to assist the implementation of a concern.
This metric counts the degree of concern scattering at the level
of methods. Concern Diffusion over LOC (CDLOC), counts
the number of transition points for each concern through the
lines of code. The higher the metric, the more intermingled
is the concern code within the implementation; the lower the
metric, the more localized is the concern code. This metric
aims to compute the degree of concern tangling. In the case of
MDJHotDraw, the abstract and reusable data manager classes
have not been taken into consideration, since they represent
generic components which can be reused in other concern
refactorings (e.g., other instances of the Observer pattern).

The results are shown in Figure 12. As can be seen the
MDJHotDraw implementations scores lower on all metrics,
which indicates that the refactoring indeed reduced the scatter-
ing and tangling of the application, leading to more cohesive
application classes.

4.3 Discussion
The case studies show that MD4J can be used to address
realistic software development challenges, without heavy-
weight tools, and without losing the standard IDE support that
developers are accustomed to. First of all, the extensibility
of schemas supports a powerful way to modularly enrich

33



Figure 12. Metrics-based comparison of separation of con-
cerns between vanilla JHotDraw and MDJHotDraw

models with additional data or behavior. Furthermore, the
intermediate step of data managers – sitting in between the
declaration of data and its manipulation – represents a flexible
hook to inject generic behavior into managed objects. The
JHotDraw refactoring shows that this can be used to do aspect-
oriented programming.

A limitation in using MD4J is that methods are declared
as part of interfaces. For instance, all methods are necessarily
public, and there is no support for additional, non-managed
fields. Finally, since all invocations on a managed object
are handled by proxies, debugging MD4J models can be
quite a challenge. These proxies also present a signficant
performance overhead, as shown in the Activity execution
case study. Note however, that recent work on reflective
meta programming could elminate this overhead almost
completely [10].

5. Related Work
Managed Data Managed Data [7] is a general approach to
data abstraction in which developers control the mechanisms
for creating and manipulating data without leaving the host
programming language. The original paper [7] implements
the concept using the dynamic OO language Ruby. Data is
described using a custom schema definition that is interpreted
at runtime by a managed object. MD4J brings this idea to Java
but in a fully hosted manner. The schema language is thus a
subset of Java, corresponding to annotated interfaces.

Other traditional techniques than can be considered Man-
aged Data include Lisp macros and Meta Object Protocols
(MOPs).

In the context of the Lisp family, macros have been
used to support custom data abstraction mechanisms, e.g.,
defstruct [15] and define-type [6]. Unlike MD4J, the data
management is encoded in the transformation logic of a
macro, and therefore is more rigid and less suitable for
extensions.

MOPs [4] were introduced for CLOS (Common Lisp Ob-
ject System) to inspect and modify the behavior of object and
classes, conceiving a protocol with specific hooks to allow

the customization of runtime semantics in a programmatic
way. MOPs are a more general approach that Managed Data,
as they allow reflection on the behavior of objects as well.
In turn, MD4J focuses only on the data aspect. Even so, the
design of the appropriate “hooks” methods in a MD4J man-
aged object (class MObject) is analogous to the design of a
data-centric MOP.

Metamodeling Modeling frameworks provide tooling sup-
port to do model-driven development in a particular platform,
enabling thus the integration of the model development life-
cycle into the traditional software development workflow.
For example, EMF ECore [16] is a widely-known model-
ing framework for the Java and Eclipse ecosystem. In EMF
ECore models are defined in a custom high-level language
(either in a textual or graphical concrete syntax), and from
these models, Java code is generated for common scaffold-
ings, such as persistence and logging. While in MD4J, data
management is configurable programmatically, in EMF this
is possible only as part of the tool.

Proxies Dynamic proxies have a long tradition in imple-
menting dynamic behavior in dynamic languages. Exam-
ples of this are Smalltalk and, more recently, Javascript. In
statically-typed languages like Java, a proxy object needs to
anticipate the interfaces the object implement, limiting flexi-
bility. Although focused on a dynamic language, in [17] the
authors present a series of principles to design reflective APIs
using proxies. As future work, MD4J could incorporate some
of these guidelines.

6. Conclusion
We have presented MD4J, an approach to extensible modeling
in Java based on managed data. Models are defined in Java,
using schemas, which consist of ordinary Java interfaces.
This provides a direct embedding of models in a mainstream
programming language, without losing host language support
(e.g., type checking, code completion, etc.).

We show how MD4J supports two kinds of extensibility:
extending the schemas that describe the structure of mod-
els, and extending the internal data managers that interpret a
schema. The two dimensions have been exercised in two case-
studies, one based on executing UML Activity diagrams, and
one consisting of an aspect-oriented refactoring of JHotDraw.
The results show that MD4J presents a very flexible architec-
ture to address realistic software development challenges.

The implementation of MD4J is based on an two-tiered
architecture of dynamic proxies, which provides generic
implementations for the types defined in MD4J schemas, as
well as for factory interfaces to create objects. One aspect that
needs future work is improving the performance of the data
managers. Nevertheless, MD4J presents a simple framework
for extensible modeling in Java, where both the structure of
the data as well as its semantics can be modularly extended.

34



References
[1] JHotDraw. Online, 2007. http://www.jhotdraw.org/.

[2] G. Bracha and D. Ungar. Mirrors: Design principles for meta-
level facilities of object-oriented programming languages. In
Proceedings of the 19th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’04, pages 331–344, New York, NY,
USA, 2004. ACM.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: elements of reusable object-oriented software. Pearson
Education, 1994.

[4] G. Kiczales, J. Des Rivieres, and D. G. Bobrow. The art of the
metaobject protocol. MIT press, 1991.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In ECOOP’97 - Object-oriented programming, pages 220–242.
Springer, 1997.

[6] S. Krishnamurthi. Programming languages: Application and
Interpretation. 2007.

[7] A. Loh, T. van der Storm, and W. R. Cook. Managed data:
modular strategies for data abstraction. In Proceedings of the
ACM international symposium on New ideas, new paradigms,
and reflections on programming and software (Onward!’12),
pages 179–194. ACM, 2012.

[8] M. Marin. Refactoring JHotDraw’s undo concern to aspectj.
In Proceedings of the 1st Workshop on Aspect Reverse Engi-
neering (WARE 2004), 2004.

[9] M. Marin, A. Van Deursen, and L. Moonen. Identifying
aspects using fan-in analysis. In Reverse Engineering, 2004.

Proceedings. 11th Working Conference on, pages 132–141.
IEEE, 2004.

[10] S. Marr, C. Seaton, and S. Ducasse. Zero-overhead metapro-
gramming: Reflection and metaobject protocols fast and with-
out compromises. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, pages 545–554. ACM, 2015.

[11] T. Mayerhofer and M. Wimmer. The TTC 2015 model
execution case. In TTC’15, pages 2–18, 2015.

[12] Object Management Group. OMG unified modeling language.
version 2.5. Online, March 2015. http://www.omg.org/
spec/UML/2.5/PDF.

[13] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and
A. Von Staa. On the reuse and maintenance of aspect-oriented
software: An assessment framework. In Proceedings of Brazil-
ian symposium on software engineering, pages 19–34, 2003.

[14] D. C. Schmidt. Guest editor’s introduction: Model-driven
engineering. Computer, 39(2):25–31, 2006.

[15] G. Steele. Common LISP: the language. Elsevier, 1990.

[16] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF:
Eclipse Modeling Framework. Pearson Education, 2008.

[17] T. Van Cutsem and M. S. Miller. Proxies: Design principles
for robust object-oriented intercession APIs. In Proceedings of
the 6th Symposium on Dynamic Languages, DLS ’10, pages
59–72, New York, NY, USA, 2010. ACM.

[18] T. Van Der Storm, W. R. Cook, and A. Loh. The design and
implementation of object grammars. Science of Computer
Programming, 96:460–487, 2014.

35

http://www.jhotdraw.org/
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF

	Introduction
	md4j: Managed Data for Java
	Overview
	Example: State Machines
	Creation of Managed Objects

	Extensible Modeling
	Schema Extension
	Summary

	Implementation: md4j
	Data Managers
	Schema of Schemas

	Evaluation
	Executing Activity Diagrams
	Aspect-Oriented Refactoring of JHotDraw
	Discussion

	Related Work
	Conclusion

