
Evolving Languages with Object Algebras
Pablo Inostroza

Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands

Email: pvaldera@cwi.nl

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)

Amsterdam, The Netherlands
Email: storm@cwi.nl

Abstract—Object Algebras are a programming technique for
the extensible implementation of recursive data types. This
extended abstract introduces Object Algebras and shows how
they could be used to develop highly evolvable software languages.
The paper is concluded with a discussin of directions for further
research.

I. INTRODUCTION

Object Algebras [4] are a solution to the expression prob-
lem [7]. This means they support the extension of a data type
along two dimensions: data type variants and the operations
over the data type. Since the abstract syntax of a language is
naturally described using recursive data types, this suggests
that Object Algebras are a viable technique for implementing
extensible language implementations.

Using Object Algebras, the abstract syntax of a language
is described using generic factory interfaces. The following
interface describes a simple language for expressions:

interface ExpAlg<E> {
E lit(int n);
E add(E l, E r);

}

Operations over the abstract syntax are represented by imple-
mentations of such generic interfaces, where the type parameter
(e.g., E) is bound to the type of the operation. For instance,
evaluation of expressions can be realized as follows (using
Java 8 closures):

interface IEval { int eval(); }

class Eval implements ExpAlg<IEval> {
IEval lit(int n) { return () -> n; }
IEval add(IEval l, IEval r) {

return () -> l.eval() + r.eval();
}

}

The functional interface IEval captures the type of the operation
we’re defining. The class Eval is a factory for interpreters of
expressions.

To evaluate an expression it should be created using the Eval

factory. As an example, the following generic method creates
the expression “1 + 2” over any algebra alg:

<X> X make(ExpAlg<X> alg) {
return alg.add(alg.lit(1), alg.lit(2));

}

To create evaluable expressions, one would call this method
with an instance of Eval.

II. ADDING SYNTAX

Any language operation is realized by (re)implementing the
generic factory interface. To add another language construct,
however, we need to extend the generic factory interface itself
first. For instance, the following interface could represent the
extension with multiplicative expressions:

interface MulAlg<E> extends ExpAlg<E> {
E mul(E l, E r);

}

Existing operations can then be extended by implementing
the extended interface and subclassing the class representing
the base operation. For instance, to extend the evaluator of
expressions to support multiplication, one would write the
following class:

class EvalMul extends Eval implements MulAlg<IEval> {
IEval mul(IEval l, IEval r) {

return () -> l.eval() * r.eval();
}

}

Expressions should now be created over the extended interface
IMulAlg using the factory EvalMul.

III. CHANGING SEMANTICS

Sometimes we do not want to add a new language construct,
but change the semantics of an existing construct, for instance,
to fix a bug. This can be achieved using plain inheritance.

Consider the contrived example of changing the behavior
of add to perform subtraction instead of addition. This can be
expressed by overriding the constructor method add of EvalMul:

class SubIsTheNewAdd extends EvalMul {
IEval add(IEval l, IEval r) {

return () -> l.eval() - r.eval();
}

}

IV. ADVICE

If it’s not needed to completely replace the semantics of a
construct, we can inherit from an operation and call super to
selectively add “advice” to language constructs, as a simple
form of Aspect-Oriented Programming (AOP) [3]. .

For instance, let’s say we decide that the add construct is
deprecated. In this case we want to keep the original behavior1

but issue warning message to the user:

1“Extend and deprecate” is a common language evolution pattern.

pvaldera@cwi.nl
storm@cwi.nl


class DeprecateAdd extends SubIsTheNewAdd {
IEval add(IEval l, IEval r) {

System.err.println("WARNING: + is deprecated");
return super.add(l, r);

}
}

Note that it is equally possible to additionally wrap l and r,
and capture the result of calling super.

V. DESUGARING

A common strategy to extend a language with a new
construct is by “desugaring” it to a combination of existing
constructs. Object Algebras in combination with Java 8 default
methods provide a natural way of specifying such extensions.

Consider the addition of unary negative expressions -x.
Semantically, this is equivalent to -1 * x:

interface NegAlg<E> extends MulAlg<E> {
default E neg(E e) {

return mul(lit(-1), e);
}

}

The default method provides a default implementation of the
neg constructor. This works for every operation implemented
over NegAlg (i.e., for every binding of E). If the desugaring is
undesired, for instance when pretty printing, neg can always
be overridden in the concrete implementation of the operation.

VI. CONCRETE SYNTAX

The extension examples shown above all involved the
abstract syntax of a language as modeled by generic factory
interfaces. In a realistic language implementation, however, the
concrete syntax should be accounted for as well. A pragmatic
solution to this problem was presented in [2]. This solution is
based on using Java annotations on factory methods to specify
syntax productions. Using reflection all productions can be
collected and used to generate a parser for a concrete parser
generator (e.g., ANTLR4).

The syntax for the basic expression language is then specified
as follows:

interface ExpAlg<E> {
@Syntax("exp = NUM");
E lit(int n);

@Syntax("exp = exp ’+’ exp") @Level(10)
E add(E l, E r);

}

The @Level annotation specifies the expression’s precedence
level. This information can also be used to guide pretty printing.

VII. DISCUSSION

This extended abstract introduced Object Algebras as a
technique for evolving language implementations. However,
Object Algebras are very young; there’s not much experience
yet on how to apply them in realistic case studies (but see [2]).
In this section we discuss ongoing research and sketch out
directions for future work.

a) Morphing Operations: Object Algebras support the
extension of an operation to accomodate a new language
constructs. However, it seems impossible to change the type
of operations themselves. For instance, we cannot change the
return type or parameter list of eval in IEval. Such changes
would require reimplementing the evaluator for all cases.
Additional parameters can be sometimes simulated using side
effects in fields of in the concrete algebras. However, this might
require maintaining a stack to simulate parameter passing. This
is both tedious and error-prone. This problem is particular
relevant when a language is extended with additional effects
(e.g., state, continuations, backtracking, etc.).

b) Program Analysis: Object Algebras map syntactic
constructs to denotations (objects) that represent the desired
semantics. Often the result is simply an interpreter. Further
research is needed how to specify complex program analyses
(e.g., name resolution, type inference, data flow analysis, etc)
as Object Algebras in an extensible way. Recent work on
the relation between Object Algebras and attribute grammars
also shows promise in this regard [6]. Another approach to
investigate is the framework of abstract interpretation [1]. In
this case a the syntactic constructs are not mapped to a concrete
semantics, but to an abstract semantics (e.g., representing
types).

c) Cross-cutting Concerns: Language implementation is
full of cross-cutting concerns. Examples are: tracing, profiling,
unique identities for name analysis, origin tracking for error
messages, inserting hooks for debuggers. First steps towards
generic advice in the context of object algebras is presented
in [5]. Dynamic proxies are expected to be very valuable here,
since they allow us to implement any operation interface (e.g.,
IEval) dynamically. However, their applicability is hampered
if the signature of the operations needs to change (cf. previous
point).

VIII. CONCLUSION

Object Algebras show a lot of promise for the implemen-
tation of evolvable languages. However, more research is
needed to make their essential ingredients more modular and
composable. Finally, real-life case studies are required to go
beyond the stage of simple expression-oriented languages.

REFERENCES

[1] P. Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–328,
1996.

[2] M. Gouseti, C. Peters, and T. van der Storm. Extensible language
implementation with Object Algebras (short paper). In GPCE’14, pages
25–28. ACM, 2014.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. Springer, 1997.

[4] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses: practical
extensibility with Object Algebras. In ECOOP’12, pages 2–27. Springer,
2012.

[5] B. C. d. S. Oliveira, T. van der Storm, A. Loh, and W. R. Cook. Feature-
oriented programming with object algebras. In ECOOP’13, pages 27–51.
Springer, 2013.

[6] T. Rendel, J. I. Brachthäuser, and K. Ostermann. From Object Algebras
to Attribute Grammars. In OOPSLA’14, pages 377–395. ACM, 2014.

[7] P. Wadler. The expression problem. Online, November 1998. http:
//www.daimi.au.dk/~madst/tool/papers/expression.txt.

http://www.daimi.au.dk/~madst/tool/papers/expression.txt
http://www.daimi.au.dk/~madst/tool/papers/expression.txt

	Introduction
	Adding Syntax
	Changing Semantics
	Advice
	Desugaring
	Concrete Syntax
	Discussion
	Conclusion
	References

