
Reflections on Feature Oriented Software Engineering

Paul Klint (paulk@cwi.nl ) & Tijs van der Storm (storm@cwi.nl )
Centrum voor Wiskunde en Informatica (CWI)

Kruislaan 413, NL-1098 SJ, Amsterdam

August 27, 2004

Introduction

Feature Oriented Software Engineeringis an emerg-
ing discipline in which feature models [2] are used
to model the commonality and variability in a prod-
uct family. It is our that view product family engi-
neering of very large and highly variable systems
cannot do without adequate tool support. When
the number of variants that have to be delivered
and maintained is exponential, automatization is not
only desirable, but inevitable.

In this position paper we address two problems
that stand in the way of wide adoption of feature
oriented software engineering:

• Feature models don’t scale for application to
very large systems.

• The “white-board distance” between feature
models and source code is too large.

The rest of this paper is organized as follows.
First we present solutions to the problem that feature
models with exponentially many variants are hard
to prove consistent. Additionally we present work
in progress on an interactive environment for fea-
ture models. Both can help in scaling feature mod-
els for highly variable systems. The second part ad-
dresses traceability issues in an very broad context.
We present areas of future work by discussing the
relation between feature models and source code.

Scaleability

For feature models of highly variable systems, we
identify two problems of scaleability:

• Proving a feature model consistent by enumer-
ating all variants is infeasible (the configuration
space is exponential).

• Maintenance of large feature models is hard
(especially if they are specified graphically and
informally).

This section presents tools and techniques im-
plementing solutions to these problems. All tools
operate onfeature descriptions[6]. Feature de-
scriptions are a textual analog of feature diagrams,
and are therefore more amenable to formal analysis
and transformation. Moreover, they are much more
compact than graphical diagrams.

Binary Decision Diagrams

We have tackled the first problem by transforming
feature descriptions to Binary Decision Diagrams
(BDDs) [1, 5]. BDDs originate from modelcheck-
ing and can be used to efficiently represent boolean
functions.

The consistency problem of a feature description
can be cast as asatisfiability problem for boolean
sentences. Satisfiability is obtained by transforming
a proposition to a BDD. A BDD is an if-then-else
tree, with logical variables (atomic features) as con-
ditions. If common subtrees are shared, one obtains
a directed acyclic graph. A boolean sentence is sat-
isfiable,iff such a graph can be constructed and this
graph is different from falsum.

Checking the consistency of a selection of fea-
tures is equivalent to thesatisfactionproblem for
boolean sentences. This amounts to finding a path
to the uniquetrue leaf in the associated BDD.

Experiments show that the reduction in size ob-
tained by representing the configuration space as
BDDs is enormous.

Feature Analysis and Manipulation Environment

For maintenance of large feature models we pro-
pose an interactive Feature Analysis and Manipula-
tion Environment (FAME). FAME provides explicit
support for evolving and refactoring feature descrip-
tions.

Modifying large graphical feature models by hand
is unpractical and error-prone. Therefore, FAME is

1



based on textual feature descriptions. FAME sup-
ports systematic editing of feature models through
evolution operators. These evolution operators
range from simple edit steps to semantics preserv-
ing refactorings such as fold/unfold or permute ar-
guments.

To inform the user as much as possible about the
effect of her modifications, FAME includes a well-
formedness checker. For presentation purposes, fea-
ture descriptions can be pretty printed, or displayed
as a graphical diagram. FAME can also provide a
number of statistics about feature descriptions, such
as, the number of variants, the number of atomic fea-
ture, the maximum feature expression fan out etc.

In addition to evolving and analyzing a feature de-
scription, FAME can be used to check the descrip-
tion for inconsistencies with the derived BDD. This
BDD is also used to validate feature selections.

Traceability

One of the key challenges for feature oriented soft-
ware engineering is bridging the gap between prob-
lem domain (feature description) and solution do-
main (implementation). The question is: how
can we guarantee that every valid feature selection
corresponds to an implementation variant that is
also valid (e.g., type-correct, executable, functional
etc.)? Since it is likely that feature model and im-
plementation are maintained separately, that is, they
co-evolve, it is imperative to keep feature model and
implementation in sync. For highly variable sys-
tems, manual maintenance of this relation is not an
option.

The above analysis suggests two major ap-
proaches to close the gap between feature descrip-
tions and source code.

In a bottom-up approach, all signs of variability in
existing source code are spotted semi-automatically
and are used to infer a feature model for that code.
Certain design patterns and programming conven-
tions can be used as indicators for variability. The
resulting feature model can be used to better under-
stand and manage the variability of existing code.
This approach mainly raises research questions aim-
ing atvariation point recognition.

In a top-down approach, each atomic feature in
a given feature model is associated with code frag-
ments that implement that feature. After selecting
a specific variant of the description, the code frag-
ments of all selected features as merged into an im-
plementation. This approach is much more ambi-
tious but also raises many more research questions:

• How are code fragments expressed (in a dedi-
cated language or in an extended existing lan-
guage)?

• How do code fragments interact with their en-
vironment?

• How do code fragments interact with each
other?

• How are these code fragments type-checked
compositionally (i.e. without having to check
all valid combinations)?

• How is the generated implementation tested?

Going from aspects [3], via concerns [4], to fea-
ture diagrams we observe an increasing level of
structure and expressivity at the level of describing
variability. This should be matched by increased ex-
pressivity at the level of code composition.

Both approaches just sketched and the tools that
are needed to support them will be essential to make
progress in the emerging discipline ofFeature Ori-
ented Software Engineering.

References
[1] R. E. Bryant. Symbolic Boolean manipulation with

ordered binary-decision diagrams.ACM Computing
Surveys, 24(3):293–318, Sept. 1992.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-oriented domain analysis (FODA) fea-
sibility study. Technical Report CMU/SEI-90-TR-21,
SEI, CMU, Pittsburgh, PA, Nov. 1990.

[3] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In M. Akşit and S. Mat-
suoka, editors,Proceedings European Conference on
Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, 1997.

[4] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr.N
degrees of separation: Multi-dimensional separation
of concerns. InProceedings ICSE’99, 1999.

[5] T. van der Storm. Variability and component compo-
sition. In J. Bosch and C. Krueger, editors,Software
Reuse: Methods, Techniques and Tools: 8th Interna-
tional Conference (ICSR-8), volume 3107 ofLecture
Notes in Computer Science, pages 86–100. Springer,
June 2004.

[6] A. van Deursen and P. Klint. Domain-specific lan-
guage design requires feature descriptions.Journal
of Computing and Information Technology, 10(1):1–
18, March 2002.

2


