TRINITY: An IDE for The Matrix

Jeroen van den Bos
Netherlands Forensic Institute (NFI)
The Hague, The Netherlands
Email: jeroen@infuse.org

Abstract—Digital forensics software often has to be changed to
cope with new variants and versions of file formats. Developers
have to reverse engineer the actual files, and then change the
source code of the analysis tools. This process is error-prone
and time consuming because the relation between the newly
encountered data and how the source code must be changed is
implicit. TRINITY is an integrated debugging environment which
makes this relation explicit using the DERRIC DSL for describing
file formats. TRINITY consists of three simultaneous views: 1)
the runtime state of an analysis, 2) a hexview of the actual data,
and 3) the code representing a file format description. Cross-view
traceability links allow developers to better understand how the
file format description should be modified. As a result, the process
of adapting digital forensics software becomes more effective and
efficient.

I. BACKGROUND
A. Maintenance Challenges in Digital Forensics

The storage capacity of digital devices continues to grow.
Forensic software is currently required to analyze data in
the terabyte range in very short time frames. This requires
perfective maintenance to optimize and tune analysis tools.
At the same time, corrective maintenance has to be perforemd
when new variants and versions of the file formats are encoun-
tered. Most of these variants are non-standard, so standards
documents can not be consulted for the required changes.
Moreover, the data is often created by proprietary firmware
(e.g., of digital cameras) or other types of closed-source
applications (e.g., word processors, photo-editing software). As
a result, the source code is generally unavailable for inspection.

Corrective maintenance then boils down to reverse engi-
neering the file format variant based on the binary data itself.
This process is quite cumbersome, since the structure of the
data is not a first class citizen in general purpose programming
languages. In hand-coded file processing software, the layout
of a binary file format like PNG [1f], for instance, is encoded
in complex control-flow and (inter dependent) data structures.
This means that debugging requires ad hoc decoding of values,
inspection of hexviews to check dependencies between values
and manually tracking structural layout and ordering.

Besides time consuming, these steps also tend to be error-
prone. For example, an off-by-one error in an offset calculation
causes a wrong value to be used, but also shifts interpretation
of all consecutive values and their dependencies. Unfortu-
nately, such small errors are hard to catch since there are
no explicit links between the flat hexview and how the code
interprets the data.

Tool and screencast are available at http://github.com/jvdb/trinity

Tijs van der Storm
Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands
Email: |storm @cwi.nl

When adapting existing implementations of file format val-
idators, interactive debuggers can be used, but they are agnostic
to the domain-specific aspects of file formats. Furthermore,
each file format may have its own conventions such as whether
length fields include or exclude marker values, and whether
indices are 0- or 1-based. As a result, data reverse engineers
have to mentally translate the information that is presented to
them.

TRINITY is an IDE for reverse engineering binary data
which automates this translation as much as possible. By
maintaining semantic links between data, runtime state and
code, it becomes possible to debug the data, instead of just
the code. The key enabler for this is representing file format
structure at a higher level of abstraction. DERRIC is a domain-
specific language (DSL) that precisely does that [2].

B. Declarative File Format Descriptions

DERRIC is a domain-specific language to declaratively
describe binary file formats. It allows the definition of the
components of a file format (called “structures”), their se-
quential arrangement, and the possible dependencies between
elements. For instance, a file format description may contain
structure definitions for headers, footers and data blocks. These
structures are arranged sequentially according to a (regular)
grammar, capturing the layout of a file format. An example
of a dependency is when the length of a certain sequence of
bytes is constrained by the value of certain bytes elsewhere in
the file. DERRIC provides a highly configurable language for
expressing these and other aspects of file formats.

A DERRIC description is divided in two main sections.
The first part of a DERRIC description is the sequence section,
which consists of a regular expression capturing the sequential
layout of a file format. For instance, the following example
presents an abridged version of the layout of PNG (where
ellipses indicate omitted details):

sequence
Signature IHDR
(...)* PLTE? (...)* IDAT IDAT* (...)*
bBPn? IEND?

The regular operators * and 7 have the usual meaning of rep-
etition and optionality. The identifiers (e.g., Signature, I[HDR,
etc.) refer to specific components of PNG. These structures are
described in the second part of a DERRIC description. As an
example, the following snippet describes the IEND structure:

jeroen@infuse.org
storm@cwi.nl

IEND {
length: 0 size 4;
chunktype: "IEND";
crc: OxAE, 0x42, 0x60, 0x82
}

This declaration states that the IEND structure consists of a
length field of 4 bytes (containing zeros), followed by the
(Ascil encoded) string “IEND”, and terminated by a CRC code
consisting of 4 constant values. To factor out common fields in
structure definitions, DERRIC allows structures to inherit from
other structures. For instance, in PNG, most structures inherit
from an abstract Chunk structure which declares common fields
for length, type, data and CRC check; such fields can be
overridden if needed.

A DERRIC description is input to the DERRIC compiler
which generates executable validators. A validator tries to
match binary input streams against the file format definition
captured in DERRIC. One application are of these validators
is file carving: the process of recovering possibly damaged
or fragmented files from storage devices [3[], [4]. Previous
research has shown that the generated validators perform well,
both in terms of recovered files and runtime speed [2], and
that DERRIC descriptions can be automatically transformed to
improve runtime performance [5].

The benefits of DERRIC are only fully realized, however, if
the file format description can be considered correct. If files are
encountered that are not recognized, there are two possibilities:

e The binary data is not an instance of the file format
we are looking for, or the data is corrupted. In other
words, the data is at fault.

e The file format description is incorrect and has to be
changed to cope with this specific variation of the file
format.

Note that these situations may overlap. In fact, it is quite
common to relax a file format description to trade some
precision for a higher recall. Nevertheless, in both cases the
question remains: how to find out if a description should
be adapted to the new situation? And if so, how should
the description be changed? TRINITY helps to answer such
questions by providing debugger functionality at the level of
DERRIC itself. This way, both the data and the runtime state
of an analysis can be interpreted in terms of the sequential
layout and the structures and fields of the file format.

II. TRINITY
A. Integrated Data Debugging

TRINITY is an IDE which aims to leverage the domain-
specific information contained in DERRIC descriptions to bring
integrated data debugging support to the process of reverse
engineering binary file formats. A screen shot of TRINITY is
shown in Figure [I] The IDE consists of three synchronized
views:

e Data: A hexview showing the input data (top right).

e State: An outline view of the runtime state, with root
nodes for structures and child nodes for fields (left
column).

800 png.derric on logo.png results in: Validated!
File
Bl Signature Offser 00 01 0203 04/05 06 07 08 09 0A OB 0C 0D OE OF Ascii
Y marker 000A00AA 89 50 4E 47 0D DA 1A OA [0 0660 D) H9) 48 H41 52 .
= THOR pepa0010 B6) 6001 52166] 66161 551 08" 621001 66 861591 D91 78
00000020 E&J00 00 00 01 73 52 47 42 00 AE CE 1C E9 00 00
L ength 000O0D30 0O @9 70 48 59 73 0@ 0O OB 13 00 09 OB 13 01 00 ..pH:
| chunktype 000A0D4G 9A 9C 18 @O 0O 20 0@ 49 44 41 54 78 DA ED 7D 4D
Y width 000A0050 68 5D DI 76 E6 7E BA 34 88 4D SE 73 89 42 B7 82 hl.v.~.4.M"s.B..
4 height 000A0D6A C4 43 4E A2 54 4C 3B 8D EF 45 2A 5B 20 4D 6C 10 .CN.TL;..Ex[ML.
Y bitdepth P — =
Y colourtype ';;én;;um
) compression THDR
_ filter (bKGD cHRM gAMA iCCP SBIT SRGB pHYs SPLT tIME iTXt tEXt ZTXt pr
" interlace PLTE?
Sere (bKGD hIST tRNS pHYs sPLT tIME iTXt tEXt zTXt wpAg oFFs gIFg cm
i sRGB IDAT
| length IDAT*
S chunktype éé;‘:s iTXt tEXt zTXt cmOD cpIp meTa eXIF)w
) chunkdata TEND?
cre
(& ptivs structures
(3 10AT Signature {
(& 1DAT marker: 137, 8@, 78, 71, 13, 1@, 26, 10;
[1DAT b
[1END
Chunk {
length: lengthOf{chunkdata) size 4;
size 4;
size length;
cre: checksum(algorithm="crc32-ieee",
init="allone",
start="1sb",
end="invert",
store="msbfirst",
fields=chunktype+chunkdata)
size 4;
}
THDR = Chunk {

Fig. 1: Screenshot of TRINITY used on a PNG example file.

e Code: A syntax-highlighting editor for showing a
DERRIC description (bottom right).

The user can navigate between views using hyper links
which connect all three views. For instance, after selecting the
byte at offset 8 in the Data view at the top right, the contextual
structure and field of this byte are highlighted. Similarly, the
IHDR structure and its length field are highlighted in the
State view on the left, which provides the dynamic execution
context to this byte. In the Code view at bottom right, the IHDR
structure is highlighted in both the sequence and structures
sections. Finally, the length field is highlighted in the Code
view as well, where it is defined not directly in the IHDR
structure, but in the Chunk structure it inherits from.

It is also possible to go the other way. For instance,
clicking on a field in the code view will highlight all the
bytes in the input stream that have been successfully matched
using that very field. Similarly, clicking on an element in
the sequence section highlights all bytes in the input stream
captured by that syntactic element. Because syntactic elements
in the sequence may occur multiple times (through the use
of the regular operator x*), clicking on a source element may
highlight multiple parts of the input data.

Figure [illustrates the relationships between the three
views in more detail. On the left (Data) is a hexview of
the input data (between offsets 16 (6x0010) and 48 (0x002C
+ 4). In the center (State) the trace of interpreting the input
data (showing matches for structures named Header, Config
and Data, of which only Config is expanded and showing its
fields). On the right (Code) the text editor view of the DERRIC
description (showing the definition of the Config structure). In
all three views, the dotted line marks the Config structure and

Data State Code
0x0010 02 FF FF 7F Header (offset=0x000E, size=14) structures
0x0014 22 C4 00 FF Config (offset=0x001C, size=8) : Block { marker:0xFF, 10; }
0x0018 A@ AF 15 BE : marker =OXFF, 0x07 Config = Block {
owoo1c {FF o7 B8’} - Sioretyng | H0r Siretpes Ay 3178 3)
0x0020 ;02 04 AA 7B packtype =0x02 packtype:1|2|4; :
0x0024 FF 10 00 FF tabletype =0x04 { tabletype: !0;
0x0028 S4FE3E23) reference =OXMATB | reference:size 2;
0x002C BB 32 3F 1B Data (offset=0x0024, size=259) }

Fig. 2: The relationship between Data view (left, hexview), State view (center, outline) and Code view (right, text editor).

the dashed line its storetype field.

By making the links between data, runtime state and
code explicit, TRINITY simplifies the reverse engineering and
maintenance tasks in dealing with binary file formats. The
developer can interactively explore the original file format
description in DERRIC directly in the context of the actual
bytes in the input data. Below we describe how TRINITY can
be used in digital forensics practice.

B. A File Format Reverse Engineering Scenario

The design of TRINITY is informed by more than a decade
of experience in reverse engineering file formats. Additionally,
in previous research we have performed a case-study which
required corrective maintenance of DERRIC descriptions [6]] ﬂ
The evolution scenarios for “fixing” the descriptions all repre-
sent typical cases where TRINITY could be used. In fact, the
research of [6]] would have been much less time consuming if
TRINITY had been available at the time.

The use of TRINITY starts when a file is encountered that
is expected to validate, but fails to do so. The following steps
describe the expected work flow using TRINITY:

1) Initial Run: The file and the DERRIC description of its
expected file format are loaded into TRINITY and interpreter
halts at the first byte where validation fails. The file’s contents
is shown in the Data view, the DERRIC description in the Code
view and the generated trace after an initial run in the State
View.

2) Locate Area of Interest: The user clicks on the last data
structure listed in the trace, automatically showing the relevant
child nodes. The Data view is automatically scrolled to the
corresponding bytes. The cursor in the Code view is positioned
on the structure where validation failed.

3) Inspect Structure: The user clicks the last field below
the structure in the trace. This keeps the existing highlighting
but adds additional ones of the fields’ bytes in the Data view
and its description in the Code view.

4) Make Corrections: Based on whether that field is the
source of the validation error, the user will either make a
modification or move up to the previous field, back tracking
until a field or structure is encountered which accounts for the
failure. Finally, the validation is rerun, and the process repeats
if there are (new) failures.

The changes can be reviewed online at http:/github.com/jvdb/derric-eval/,

Fig. 3: The TRINITY architecture. The dashed arrows
indicate the information sources of the three views in the IDE.

III. IMPLEMENTATION

DERRIC is implemented as an external DSL in the metapro-
gramming language Rascal [7]]. Rascal provides built-in gram-
mars for describing syntax, powerful primitives for trans-
forming source code, and provides hooks into the Eclipse
IDE to obtain editor services (e.g., syntax coloring, outlining,
hyperlinking etc.).

The DERRIC compiler operates in three steps. First the
DERRIC description is desugared (e.g., flattening inheritance,
constant propagation). Second, a DERRIC description is trans-
formed to an intermediate representation called Validator,
which is an imperative but platform-independent model of the
final validator. Finally, the Validator model resulting from the
previous step is transformed to Java source code.

An overview of the architecture of TRINITY is shown in
Figure [3] TRINITY reuses the front-end part of the DER-
RIC compiler, up to and including the transformation to the
Validator model. Instead of generating Java code however,
the Java foreign-function interface of Rascal is used to build
an in-memory model in Java of the Validator. Following the
Interpreter design pattern, the classes representing the model
contain evaluation methods to execute the validator. This
interpreter is then hooked up to the TRINITY IDE.

To realize the fine-grained cross-linking of views in TRIN-
ITY, origin tracking is used [[8]. This means that the original
source locations of syntactic elements in a DERRIC description
are maintained throughout all phases of the compiler and
interpreter. The DERRIC parser generated by Rascal initially

http://github.com/jvdb/derric-eval/

Data

7/ \

State ——— Code

Fig. 4: The trinity of debugging in TRINITY

annotates the parse tree with such origins. During desugaring
and the transformation to the Validator model, the origins are
propagated. Finally, the in-memory model in Java is decorated
so that, when the interpreter is stopped, the TRINITY runtime
environment knows exactly where in the DERRIC description
execution is taking place. The same technique is used to
maintain a mapping from the runtime state (i.e. the values
of the matched structures and fields), to the source code, and
from the source code to the data.

IV. RELATED WORK

The key idea of TRINITY is to integrate the input data into
the activity of debugging and to provide bidirectional cross-
links among code, state and data. Moreover, the integration
is domain-specific: DERRIC descriptions capture file formats
at a level that can be understood by forensic investigators. In
TRINITY this understandability extends to the data and the
runtime state of the validator. As a result, TRINITY provides
debugging for reverse engineering file formats at higher level
of abstraction.

Using TRINITY the user can navigate from the source code
to the data and vice versa, but also from the runtime state to
the data and vice versa, and finally, it is possible to go from
the data to the runtime state and the source code. We have
depicted these 6 types of cross links in Figure f] Traditional
debuggers, on the other hand, provide only two of such links:
1) from the runtime state (e.g. stack trace) to the source code,
and 2) from the data to the code (e.g., from a variables view
to declaration sites). Although specialized visualizations for
general purpose debuggers are quite common (e.g., [9]], [10]),
these do not provide the same level of integration realized by
TRINITY.

TRINITY is most related to domain-specific debuggers in
other domains. For instance, ANTLRWorks [[11] is an IDE which
provides support for debugging ANTLR grammars. The user can
inspect the runtime state of the parser, the part of the input that
has been parsed successfully, and there are active links from
these views to the grammar. Similar tools exist for debugging
regular expressions. A recent example is Debuggex [12], which
features coloring of the (matched) input data, and visualization
of the finite-state automaton.

V. CONCLUSION AND FUTURE WORK

Reverse engineering binary file formats is a time-
consuming and error-prone activity. One of the reasons is that
the relation between the structure of the data and how software
processes that data is obscured by low-level implementation
details and has to be mentally reconstructed. In this paper
we have presented TRINITY, an IDE that brings integrated

data debugging support to the DERRIC IDE for file format
description. It consists of three views, which display the input
data, the runtime state of a file format validator and the
DERRIC source code respectively. Each view is related to the
other. Clicking in any of the views highlights corresponding
(contextual) elements in the others. If a file fails to validate,
the three integrated views allow the developer to assess the
situation: why does validation fail? What changes are needed to
the file format description? As a result, the effort of performing
corrective maintenance of digital forensics software can be
significantly reduced.

There are ample opportunities for further improving TRIN-
ITY. For instance, the way elements are highlighted in the
different views is mostly syntactic. One extension would be to
add more semantics to the visualization. For instance, clicking
a field that has a dependency on another field in its length or
content specification, could also highlight the bytes that were
captured by those dependency fields. Conversely, clicking on
a byte in the data view could also trigger highlighting of all
expressions affected by it. Such data flow visualization could
further increase understanding of what happens at runtime and
help diagnosing failures.

Another direction for further work is increasing the “live-
ness” of TRINITY [13]. Currently, TRINITY allows the dy-
namic inspection of state and data. However, changes to the
DERRIC description still requires a full rerun of the validator.
The benefits presented by TRINITY would be even larger if
a change to the format description is instantly reflected in
the other views. One way to approach this is to incrementally
update the runtime state of the interpreter based on the changes
to the code (see, e.g., [14]).

REFERENCES

[11 W3C, “PNG Specification,” 2003, http://www.w3.org/TR/PNG/.

[2] J. van den Bos and T. van der Storm, “Bringing Domain-Specific
Languages to Digital Forensics,” in ICSE’11 SEIP. ACM, 2011, pp.
671-680.

[3] M. I. Cohen, “Advanced Carving Techniques,” Digital Investigation,
vol. 4, no. 3-4, pp. 119-128, 2007.

[4] A. Pal and N. Memon, “The Evolution of File Carving,” Signal
Processing Magazine, vol. 26, no. 2, pp. 59-71, 2009.

[5] J. van den Bos and T. van der Storm, “Domain-Specific Optimization in
Digital Forensics,” in 5th International Conference on Model Transfor-
mation (ICMT’12), ser. LNCS, vol. 7307. Springer, 2012, pp. 121-136.

[6] ——, “A Case Study in Evidence-Based DSL Evolution,” in
ECMFA’13, ser. LNCS, vol. 7949. Springer, 2013, pp. 207-219.

[7]1 P Klint, T. van der Storm, and J. Vinju, “Rascal: A Domain Specific
Language for Source Code Analysis and Manipulation,” in SCAM’09.
IEEE, 2009, pp. 168-177.

[8] A. v. Deursen, P. Klint, and F. Tip, “Origin tracking,” Journal of
Symbolic Computation, vol. 15, pp. 523-545, 1993.

[9] A. Zeller and D. Liitkehaus, “DDD - A Free Graphical Front-End for
UNIX Debuggers,” SIGPLAN Notices, vol. 31, no. 1, pp. 22-27, 1996.

[10] Hex Rays, “IDA,” https://www.hex-rays.com/products/ida/index.shtml.

[11] J. Bovet and T. Parr, “ANTLRWorks: an ANTLR grammar development
environment,” Softw., Pract. Exper.,, vol. 38, no. 12, pp. 1305-1332,
2008.

[12] S. Toarca, “Debuggex,” http://www.debuggex.com/.

[13] H. Lieberman and C. Fry, “Bridging the Gulf between Code and
Behavior in Programming,” in CHI’95. ACM, 1995, pp. 480-486.

[14] T. van der Storm, “Semantic deltas for live DSL environments,” in
LIVE’13. 1IEEE, 2013, pp. 35-38.

http://www.w3.org/TR/PNG/
https://www.hex-rays.com/products/ida/index.shtml
http://www.debuggex.com/

	Background
	Maintenance Challenges in Digital Forensics
	Declarative File Format Descriptions

	Trinity
	Integrated Data Debugging
	A File Format Reverse Engineering Scenario
	Initial Run
	Locate Area of Interest
	Inspect Structure
	Make Corrections

	Implementation
	Related work
	Conclusion and Future Work
	References

