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1. Introduction 

In the last decade, the concept of modularity has caught the attention of engineers, 
management researchers and corporate strategists in a number of industries. When a 
product or process is “modularized,” the elements of its design are split up and 
assigned to modules according to a formal architecture or plan. From an engineering 
perspective, a modularization generally has three purposes: 

To make complexity manageable; 
To enable parallel work; and 
To accommodate future uncertainty. 

Modularity accommodates uncertainty because the particular elements of a 
modular design may be changed after the fact and in unforeseen ways as long as the 
design rules are obeyed. Thus, within a modular architecture, new module designs 
may be substituted for older ones easily and at low cost.

This chapter will make three basic points.  First, we will show that modularity is a 
financial force that can change the structure of an industry. Then, we will explore the 
value and costs that are associated with constructing and exploiting a modular design. 
Finally we will examine the ways in which modularity shapes organizations and the 
risks that it poses for particular firms.1

                                                          

1 Some of the arguments and figures in this paper are taken from Baldwin and Clark, 2000. The 
figures are reprinted by permission. 
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2. The Financial Power of Modularity 

To demonstrate the financial power of modularity, let us begin by looking at some 
data from the computer industry. Figure 1 is a graph of the market values (in 2002 
constant US dollars) of substantially all the U.S. based public corporations in the 
computer industry from 1950 to 2002. The firms are aggregated into sixteen 
subsectors by primary SIC code. The SIC codes included in the database and their 
definitions are listed in Table 1. IBM, Intel and Microsoft are shown separately.

Figure 1. The Market Value of the U. S. Computer Industry By sector, 1950-2002 in constant 
2002 US dollars 
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Table 1. SIC Codes Included in the Database 

Figure 1 tells a story of industry evolution that runs counter to conventional 
wisdom. In economics the dominant theories of industry evolution describe a process 
of pre-emptive investment by large, well-capitalized firms, leading to stable market 
structures and high levels of concentration over long periods of time.2 These theories 

                                                          

2 The original theory of pre-emptive investment leading to industry concentration, with 
supporting historical evidence, was put forward by Alfred Chandler [11, 12]. A complementary 
theory of concentration following the emergence of a “dominant design” was put forward by 
William Abernathy and James Utterback [1]. Modern formulations of these theories and some 
large-scale empirical tests have been developed by John Sutton [46] and Steven Klepper [27]. 
Oliver Williamson (1985, Ch. 11) has interpreted the structures of modern corporations (unified 
and multi-divisional) as responses to potential opportunism (the hazards of market contracting). 
It is our position that the basic “task structures” and the economic incentives of modular design 
(and production) systems are different from the task structures and incentives of classic large-
volume, high-flow-through production and distribution systems. Therefore the organizational 
forms that arise to coordinate modular design (and production) may not ressemble the classic 
structures of the modern corporation. 

SIC

Code Category Definition Start Date (1)

3570 Computer and Office Equipment 1960

3670 Electronic Components and Accessories 1960

3674 Semiconductors and Related Devices 1960

3577 Computer Peripheral Devices, n.e.c. 1962

3678 Electronic Connectors 1965

7374 Computer Processing, Data Preparation and Processing 1968

3571 Electronic Computers 1970

3575 Computer Terminals 1970

7373 Computer Integrated Systems Design 1970

3572 Computer Storage Devices 1971

7372 Prepackaged Software (2) 1973

3576 Computer Communication Equipment 1974

3672 Printed Circuit Boards 1974

7370 Computer Programming, Data Processing, and Othe

Services

1974

7371 Computer Programming Services 1974

7377 Computer Leasing 1974

(1) Start date is the first year in which six or more are present in the categor

(2) This category had six firms in 1971, dipped to five in 1972, and back to

six in 1973.
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are backed up by a great deal of supporting empirical evidence going back to the late 
19th Century. The data in Figure 1, by contrast, show that while IBM dominated the 
industry in the 1950s and 1960s, in the 1970s and 1980s the computer industry “got 
away” from IBM. (IBM’s market value is the blue “mountain range” at the far left of 
the chart.) In 1969, 71% of the market value of the computer industry was tied up in 
IBM stock. By 2002, IBM was no longer dominant, and the largest firm (Microsoft) 
accounted for less than 20% of the total value of the industry.

Underlying Figure 1 is a pattern of extreme turbulence at the level of firms.  The 
entire database spanning the years 1950 to 2002 contains about 2,700 firms. Of these, 
only about 1,100 survived in 2002. Thus around 1,600 or 60% of the firms that 
entered the computer industry over five decades no longer exist: they went bankrupt, 
were acquired, or moved out of the industry. Not surprisingly (for those who lived 
through it), much of this turnover occurred between 1997 and 2002, the years of the 
Internet Bubble and Crash. Around 1,200 firms entered during these six years, while 
1,100 failed or were acquired.

The figure also shows that market values were initially concentrated in a few 
firms, but are now spread out over across sixteen industrial categories. Whole 
industries have come and gone. For example, the original computer category, SIC 
3570, “Office and Computer Equipment”, once included firms like Digital Equipment 
Corporation, Sperry Corporation, Data General and NCR, as well as IBM. This 
category has virtually disappeared: IBM has been reclassified into SIC 7370, 
“Computer Programming and Data Processing,” and the other firms mentioned have 
failed or been acquired. By 2002, Hewlett Packard was the only firm of any size 
remaining in this once-pre-eminent category. Conversely, in 1970, SIC 7372, 
“Packaged Software,” included only 7 firms with a combined market capitalization of 
just over $1 billion. In 2002, this category had grown to 408 firms with a combined 
market cap of almost half a trillion dollars ($490 billion). 

Volatility and turbulence can be observed at the level of the whole industry as 
well. Figure 2 shows the total market value of all firms in the industry for the sample 
period 1950 – 2002. The chart is dominated by the Internet Bubble and Crash, which 
created and then destroyed $2.5 trillion in the space of five years (1997 – 2002). Apart 
from the Bubble, the industry as a whole has experienced significant value increases 
over time. From 1960 to 1996, even as value was being dispersed and redistributed 
over many, many firms, aggregate value kept pace. Then around 1997, the aggregate 
value of this group of firms seemed to spin out of control. More value was created and 
destroyed in a few years than the whole industry had managed to create over its entire 
history. The causes of this remarkable pattern are the subject of ongoing research, but 
we have no explanations for it as yet. 
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Figure 2. The Market Value of the Computer Industry Aggregated, 1950-2002, in constant 
2002 US dollars 

In summary, the computer industry presents us with a pattern of industry evolution 
involving more firms, more products, and (mostly) increasing value created over time. 
As a result of this pattern, the computer industry today consists of a large cluster of 
over 1,000 firms, no one of which is very large relative to the whole. In addition, the 
total market value of the industry is now spread widely but very unevenly across the 
sixteen sub-industries. (See Figure 3.) We contend that modularity in the design of 
complex computer systems is what allowed this creation of value, the dispersion of 
value across so many firms, and finally new concentrations of value to take place. We 
will expand on this argument in the sections that follow. 

Figure 3. The Distribution of Market Value in the U. S. Computer Industry as of 2002 By 
sector, in constant 2002 US dollars 
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3. The Modularity of Computer Designs 

Modularity-in-design is one of the things that has caused the computer industry to 
evolve to its present form. In brief, modularity in computer designs was first 
envisioned by pioneering computer scientists like Maurice Wilkes in the 1950s. Later 
the goal of a modular architecture was realized by architects like Fred Brook and 
Gerrit Blaauw, Gordon Bell and Allen Newell, and Carver Mead and Lynn Conway in 
the 1960s and 1970s.3 Modular architectures in turn enabled the computer industry to 
evolve to its present form, which we call a “modular cluster”.

The computer industry became a cluster in approximately 1980. This cluster has 
been extremely dynamic, displaying high rates of entry, growth and turnover in the 
population of firms over time. In addition, the connections among products and 
companies are quite complicated in the cluster. Firms do not design or make whole 
computer systems; instead, they design and/or make modules that are parts of larger 
systems. These modules include hardware components like computers, 
microprocessors and disk drives; software components like operating systems and 
application programs; as well as process components like fabrication, assembly, 
systems integration, and testing. 

Modules, in fact, are always distinct parts of a larger system. They are designed 
and produced independently of one another, but must function together as a whole. 
Modularity allows tasks—both design tasks and production tasks—to be divided 
among groups, which can work independently and do not have to be part of the same 
firm. Compatibility among modules is ensured by “design rules” that govern the 
architecture, the interfaces, and the standardized tests of the system. Thus 
“modularizing” a system involves specifying its architecture, that is, what its modules 
are; specifying its interfaces, i.e., how the modules interact; and specifying tests
which establish that the modules will work together and how well each module 
performs its job. 

From an engineering perspective, modularity does many things.  First, it makes the 
complexity of the system manageable by providing an effective “division of cognitive 
labor.”4 It also makes possible the graceful evolution of knowledge about the system.5

In this way, modular systems are “cognitively economic.” Second, modularity 
organizes and enables parallel work. Work on or in modules can go on 
simultaneously, hence the start-to-finish time needed to complete the job decreases. 
Thus modular systems are “temporally economic.” Finally, modularity in the design
of a complex system allows modules to be changed and improved over time without 
undercutting the functionality of the system as a whole. In this sense, as we indicated 
above, the modular design of a complex system is “tolerant of uncertainty” and 
“welcomes experimentation” in the modules. 

                                                          

3 See [4], Chapters 6-7 on the origins of modularity in early computer designs. 
4 O.E. Williamson, 1999, “Human Action and Economic Organization,” mimeo, University of 
California, Berkeley; quoted in M. Aoki, Towards a Comparative Institutional Analysis, 2001, 
MIT Press, Chapter 4. 
5 See [21]. 
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4. Modularity in Design, Production and Use 

Humans interact with artifacts in three basic ways: they design them; produce them; 
and use them. There are, as a result, three basic types of modularity: modularity-in-
design, modularity-in-production, and modularity-in-use. We will discuss these 
“modularities” in reverse order. 

A system of goods is modular-in-use if consumers can mix and match elements to 
come up with a final product that suits their taste and needs. For example, consumers 
often buy bed frames, mattresses, pillows, linens, and covers made by different 
manufacturers and distributed through different retailers. The parts all fit together 
because different manufacturers make the goods in standard sizes. These standard 
dimensions constitute design rules that are binding on manufacturers, wholesalers, 
retailers, and users. Modularity-in-use thus supports customization of the system to 
suit the needs and tastes of the end-user. 

Manufacturers have used modularity-in-production for a century or more. 
Carmakers, for example, routinely arrange to manufacture the components of an 
automobile at different sites and bring them together for final assembly. They can do 
so because they have completely and precisely specified how the parts will interact 
with the vehicle. The engineering specifications of a component (its dimensions, 
tolerances, functionality, etc.) constitute a set of design rules for the factories that 
supply the parts. Such process modularity is fundamental to mass production.  

However, the fact that, in a complex system, the elements of use or the tasks of 
production have been split up and assigned to separate modules does not mean that 
the design of the system is modular. Indeed systems that are modular-in-use or 
modular-in-production may rest on designs that are tightly coupled and centrally 
controlled. For example, Intel Corporation famously imposes a “copy exactly” rule on 
its fabrication plants. The production of chips can go on independently at separate 
sites because the layout of the plants and the work processes within the plants are the 
same. Thus Intel’s “copy exactly” plants are modular-in-production but not modular-
in-design. In a similar vein, a sectional sofa is a suite of furniture that is modular-in-
use. Purchasers can combine and recombine the elements of the suite at will. But 
those elements must be designed as one interdependent whole, or the patterns and 
shapes will not form a pleasing ensemble. Thus the sectional sofa suite is modular-in-
use, but not modular-in-design. 

A complex engineering system is modular-in-design if (and only if) the process of 
designing it can be split up and distributed across separate modules, that are 
coordinated by design rules, not by ongoing consultations amongst the designers. Of 
all the “modularities”, modularity-in-design is the least well understood and has the 
most interesting economic consequences. This is because new designs are 
fundamentally options with associated economic option value. Modularity-in-design 
multiplies the options inherent in a complex system. This in turn both increases the 
total economic value of the system and changes the ways in which the system can 
evolve. In the rest of this chapter, we will explain how to map and measure the option 
value of modularity-in-design.
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5. Designs as Options 

A fundamental property of designs is that at the start of any design process, the final 
outcome is uncertain. Once the full design has been specified and is certain, then the 
development process for that design is over.

Uncertainty about the final design translates into uncertainty about the design’s 
eventual value. How well will the end-product of the design process perform its 
intended functions? And what will it be worth to users? These questions can never be 
answered with certainty at the beginning of any substantive development process. 
Thus the ultimate value of a design is unknown when the development process begins. 

Uncertainty about final value in turn causes new designs to have “option-like” 
properties. In finance, an option is “the right but not the obligation” to choose a course 
of action and obtain an associated payoff. In engineering, a new design creates the 
ability but not the necessity—the right but not the obligation—to do something in a 
different way. In general (if the designers are rational), the new design will be adopted 
only if it is better that its alternatives. Thus the economic value of a new design is 
properly modeled as an option using the methods of modern finance theory. 

The option-like structure of designs has three important but counterintuitive 
consequences. In the first place, when payoffs take the form of options, taking more 
risk creates more value.6 Risk here is defined as the ex ante dispersion of potential 
outcomes. Intuitively, a risky design is one with high technical potential but no 
guarantee of success. “Taking more risk” means accepting the prospect of a greater ex
ante dispersion. Thus a risky design process is one that has a very high potential value 
conditional on success but, symmetrically, a very low, perhaps negative, value 
conditional on failure.

What makes the design an option, however, is that the low-valued outcomes do not 
have to be passively accepted. As we said, the new design does not have to be 
adopted; rationally, it will be adopted only if it is better than the alternatives, 
including the status quo alternative. In effect, then, the downside potential of a risky 
design is limited by the option to reject it after the fact. This means that “risk” creates 
only upside potential. More risk, in turn, means more upside potential, hence more 
value.7

The second counterintuitive result is that when payoffs take the form of options, 
seemingly redundant efforts may be value-increasing. Two attempts to create a new 
design may arrive at different endpoints. In that case, the designers will have the 
option to take the better of the two. The option to take the better of two or best of 
several outcomes is valuable.8 Thus when faced with a risky design process, which  

                                                          

6 This is a basic property of options (See [34]). 
7 It follows, of course, that if a risky design is “hardwired” into a system so that it must be 
implemented regardless of its value, then the design process loses its option-like properties. In 
such cases, “taking more risk” in the sense defined above, will not increase, and may decrease 
value.
8 Stulz, 1982, first analyzed the option to take the higher-valued of two risky assets. Sanchez 
[40] worked out the real option value of parallel design effort in product development. 
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has a wide range of potential outcomes, it is often desirable to run multiple “design 
experiments” with the same functional goal. These experiments may take place in 
parallel or in sequence, or in a combination of both modes.9 But whatever the mode, 
more risk calls for more experimentation. 

The third result is that options interact with modularity in a powerful way. By 
definition, a modular architecture allows module designs to be changed and improved 
over time without undercutting the functionality of the system as a whole. This is 
what it means to be “tolerant of uncertainty” and to “welcome experiments” in the 
design of modules. As a result, modules and design experiments are economic 
complements: an increase in one makes the other more valuable.10 (Below we will 
derive this result in the context of a formal model.) 

The effect of modularity-in-design on options and option value is depicted in 
Figure 4. Here we envision a system that is making the transition from being one 
interdependent whole to being a set of modules governed by design rules.  The system 
goes from having one large design option (i.e., to take the whole design or leave it) to 
having many smaller options—one per module.  Thus the act of splitting a complex 
engineering system into modules multiplies the valuable design options in the system.  
At the same time, this modularization moves decisions from a central point of control 
to the individual modules. The newly decentralized system can then evolve in new 
ways.

Notice, however, that by modularizing, one barrier to entry by competitors, the 
high costs of developing an entire complex engineering system (like an automobile, a 
computer, or a large software package) are reduced to the costs of developing 
individual modules. Thus the modularization of a large, complex system, even as it 
creates options and option value, also sows the seeds of increased competition focused 
on the modules. We shall revisit this issue at the end of the chapter. 

                                                          

9 See [30]. 
10 This is the definition of economic complementarity used by Milgrom and Roberts [35] and 
Topkis [47]. The complementarity of modularity and experimentation was first demonstrated 
by Baldwin and Clark [2; 4, Chapter 10]. 
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Figure 4.  Modularity Creates Design Options

6.  Mapping the Design of a Complex Engineering System  

We will now look at modularity-in-design more carefully. To help us do so, we will 
represent the design of a complex system using the methods of Design Structure 
Matrix (DSM) Mapping. In this mapping technique, the system is first characterized 
by listing a set of design parameters for the system. The design parameters are then 
arrayed along the rows and columns of a square matrix. The matrix is filled in by 
checking—for each parameter—which other parameters affect it and which are 
affected by it.  For example, if Parameter A affects the choice of Parameter B, then we 
will put a mark “x” in the cell where the column of A and the row of B intersect. We 
repeat this process until we have recorded all parameter interactions. The result is a 
map of the dependencies that affect the detailed structure of the artifact. For example, 
Figure 5 is a DSM map of the dependencies in the design for a laptop computer 
system circa 1993.11

DSM maps are well known in the engineering professions. They can be 
constructed for any artifact or complex system, whether it is tangible or intangible. 
Thus there are DSM maps of products, like computers and automobiles, and DSM 
maps of both production processes and design processes. Many such maps have been 
constructed by Steven Eppinger and his colleagues at MIT. 

The DSM map in Figure 5 indicates that the laptop computer design has four 
blocks of very tightly interrelated design parameters corresponding to the (Disk) 
Drive System, the Main Board, the LCD Screen, and the Packaging of the machine. 
There is also a scattering of dependencies (“x’s”) outside the blocks. The 
dependencies arise both above and below the main diagonal blocks, thus the blocks 
are interdependent.

                                                          

11 The DSM methodology was invented by Donald Steward. The DSM map shown in Figure 5 
was prepared by Kent McCord and published in McCord and Eppinger [32]. Reprinted by 
permission.
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Figure 5. Design Structure Matrix Map of a Laptop Computer 

Cycling and iteration are needed to resolve design interdependencies. For 
example, as shown in the figure, the location of the computer’s graphics controller 
creates dependencies between the Main Board and the LCD Screen and vice versa.

Because of these dependencies, there will be ramifications of any choice made at 
this particular point: these are indicated by the arrows in the diagram. If two teams 
were working on the different components, they would have to confer about the 
location of the graphics controller in order to coordinate their design choices. But 
unforeseen consequences might arise later, causing the initial choice to be revisited. 
There would then be further consequences: new arrows would arise, which, through 
the chain of dependencies, might wander all over the map. Such cycling is the 
inevitable consequence of an interdependent design structure.



186 Modularity in the Design of Complex Engineering Systems 

However, it is important to note that the DSM map for a product or process need 
not be set in stone forever. Dependencies and interdependencies can be modified by a 
process of design rationalization, which works in the following way. Suppose that the 
designers of the laptop computer system wished to eliminate the interdependencies 
between the Main Board and the Screen that were due to the graphics controller 
location.  They could do so by setting a design rule that located the graphics controller 
on the Board (for example). By this action the two design teams would have restricted 
their alternatives, but they would also have eliminated a source of cycling between 
two of the blocks of the design.

Figure 6 shows the new DSM map obtained by turning the graphics control 
location into a design rule. Two dependencies, one above the diagonal and one below, 
which were present before, now do not exist: they are absent from the circled areas in 
the map. Instead there is a design rule that is known (hence “visible”) to both sets of 
designers, which they must obey. 
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Figure 6. Eliminating Interdependencies by Creating a Design Rule 

Carrying this process through to its logical conclusion results in a radically 
different structure: a modular structure as shown in Figure 7.  Here we have the same 
highly interdependent blocks as before: the Drive System, the Main Board, the LCD 
Screen, and Packaging.  And within those blocks essentially nothing has changed, the 
pattern of interdependency is the same.  But the out-of-block dependencies both above 
and below the main diagonal have all disappeared. 
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Figure 7. Modularization of a Laptop Computer Design

How does that happen? First, in the new structure, each of the former out-of-block 
dependencies has been addressed by a design rule. Thus, there is now a new “Design 
Rules” block (not drawn to scale), whose parameters affect many of the parameters in 
the component blocks. Those dependencies are indicated by the “x”s in the vertical 
column below the Design Rules block. (Design rule parameters are often called 
“standards.”)

By obeying the design rules, teams working on the designs of each of the 
component blocks—which are now modules—can maintain conformity with the other 
parts of the system. But note that there has been another, earlier stage in the process in 
which the design rules were established.

Furthermore, the new process, as shown in Figure 7, delivers four separate items,
which must still be integrated into a functioning whole system.  No set of design rules 
is perfect, and unforeseen compatibility problems are often revealed in the latter 
stages of a modular design process. For these reasons, a “System Integration and 
Testing” (SIT) block appears in the lower right corner of the modular DSM.  This 
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block is affected by the design rules and by some parameters of the hidden modules.  
But decisions taken in the SIT block, by definition, will not affect choices in the prior 
blocks. (If they do, then the structure is no longer modular).

Therefore, a modular design structure has three characteristic parts: 

design rules, which are known and obeyed by teams responsible for 
individual modules; 

so-called hidden modules that “look to” the design rules, but are 
independent of one another as work is proceeding; and 

a systems integration and testing module in which the hidden modules are 
assembled into a system, and any remaining, minor problems of 
incompatibility are resolved. 

A complex system design may go from being interdependent to being modular in 
the following way.  The “architects” of the system must first identify the 
dependencies between the distinct components and address them via a set of design 
rules. Second, they must create encapsulated or “hidden” modules corresponding to 
the components of the system. And third, they must establish a separate system 
integration and testing activity that will assemble the modular components and 
resolve unforeseen incompatibilities. 

7.  The Design Hierarchy Representation 

A DSM map is one way to represent a modular system: a design hierarchy is 
another.12  A design hierarchy shows which modules are affected by which other 
modules. (See Figure 8.) At the very top of the design hierarchy are the system-wide 
design rules: these must be obeyed (hence “are visible to”) all modules in the system.

Figure 8. A Two-level Modular Design Hierarchy 

Below the system-wide design rules, there may be “architectural modules,” which 
establish design rules for certain subsystems. There are no architectural modules in 
Figure 8, but in most complex engineering systems there are one or two layers of 

                                                          

12 See [13, 31]. 
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architectural modules. For example, operating systems like Microsoft Windows and 
Unix are architectural modules in a computer system.

Finally, at the bottom of the design hierarchy are the hidden modules of the 
system: these must obey the design rules, hence “look to” them. But the hidden 
modules’ own parameters are “encapsulated”: they do not affect, and hence do not 
need to be known to those working on other modules. Hidden modules are thus the 
primary source of option value in a modular system. (Even so, depending on the rules 
governing intellectual property, much of the value created in the hidden modules may 
be captured by the companies that control architectural modules and/or design rules.) 

8. Modular Organizations 

The “modularized” architectures depicted in Figures 7 and 8 lead naturally to a 
“modularized” organizational structures.13  In a recent paper which addressed the 
nature of transactions we postulated that the activities represented by the x’s in 
Figures 5 and 6 naturally map onto organizations since each interaction captured on 
the DSM represents a transfer of material or information or both.14  In this way it is 
natural to look at Figure 6 and see a ‘traditional’ organization structured around 
specific technologies or disciplines.  The within-block interactions represent 
interactions that are internal to each organizational unit while the out-of-block 
interactions can be viewed as interactions that require coordination across units. In 
this system, each organizational unit would have liaison personnel whose function 
was to assure that activities in each unit of the overall endeavor remained 
synchronized and coordinated. 

In the modularized design of Figures 7 and 8 however, many of the cross-unit 
liaison and coordination functions have been eliminated. This is done in two ways: 
through design rules and through encapsulation. Design rules (standards) ensure that 
decisions that affect multiple units are fixed and communicated ahead of time, and not 
changed along the way. Encapsulation means that all activities associated with 
specific aspects of the product are conducted within one organizational unit – even if 
that organizational unit embodies multiple skillsets, disciplines or activities.  This 
may lead to duplication of skillsets – for example the Main Board and Packaging 
groups may both need people who are skilled in understanding interconnections – but, 
if they are to be encapsulated, these groups must be scaled and staffed to their own 
needs without calling on shared resources, and without requiring extensive cross-unit 
coordination activities.

Similarly note that the transfers of material and information between groups have 
been simplified to a simple handoff from each module task group to a final systems 
integration and testing group. If these handoffs as well as the design rules can be 
standardized and codified, then there is no need for the various groups to reside in the  

                                                          

13 See [41]. 
14 See [5]. 
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same company: armslength transactions betweens several firms can cost-effectively 
replace complex coordinating flows of information within a single firm. 

An educational analogy might be useful here. Instead of a laptop computer, Figure 
6 might as easily represent the traditional departmental or discipline-based 
organizational structure of a university (like Harvard). A discipline-based 
organizational structure is well-suited to teaching courses, but it is ill-suited to 
carrying out broadly-based research initiatives that cut across many disciplines. 
Indeed, in order to conduct interdisciplinary research, the traditional departmental 
structure requires many cross-unit interactions as shown in Figure 6. These 
interactions are generally time-consuming and prone to cycling. In addition, many 
task-relevant interactions may get lost in the shuffle and not take place at all.

By contrast, a center-based or project-based collaborative structure gathers 
participants from multiple disciplines and organizes them into self-contained teams as 
in Figure 7. Even though some interactions are lost, and there may be duplication of 
resources across centers, the new organizational structure imposes a much smaller 
coordination burden on the overall research endeavor. The reduced coordination costs 
in turn can offset the opportunity losses and costs of implementing the more modular, 
team-based structure. If the coordination cost savings are large, then a “more 
modular” organization is a good idea. But there is always a tradeoff—some things are 
lost while other things are gained. 

9. Modular Operators 

A key benefit of systems with modular designs is that, especially at the lower levels of 
the design hierarchy, such systems can evolve. The information that is encapsulated in 
the hidden modules can change, as long as the design rules are obeyed. Therefore, as 
we said earlier, modular systems are “tolerant of uncertainty” and “welcome 
experimentation” in their modules.  In contrast, the design rules of a modular system, 
once established, tend to be both rigid and long lasting.

There are certain generic design actions one can apply to a modular system. 
Following the lead of John Holland of the University of Michigan,15 we have labeled 
such actions “operators.” In our prior work, we identified six modular operators, and 
analyzed the sources of their economic value. In particular, given a modular structure, 
one can:

split any module; 

substitute a newer module design for an older one; 

exclude a module; 

augment the system by adding a module that was not there before; 

                                                          

15 See [23]. 
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collect common elements across several modules and organize them as a 
new level in the hierarchy (modular inversion); and 

create a “shell” around a module so that it works in systems other than one 
for which it was initially designed (modular porting).

Figure 9 shows how each of these operators affects the structure of a modular 
system.

We must emphasize that we regard our list of six operators as the beginning of a 
useful taxonomy.  The list is by no means exhaustive. Indeed three other operators 
have been identified in empirical investigations of design evolution. These are: 

the linking of two pre-existing modules;16

the recombining of two previously separate modules (this is the opposite 
of splitting); and 

embracing and extending a pre-existing module (this operator was 
famously used by Microsoft on Sun’s version of Java). 

The important thing to understand is that operators correspond to search paths in 
the design space of a complex engineering system. These search paths in turn are
options in the so-called “value landscape” of the complex system. As options, the 
operator/search paths can be valued using fairly standard analytic techniques from 
finance. Thus, for example, the decision to split a complex system (or subsystem) into 
several modules can be valued. The decision to augment the system by designing 
several variants of a module customized for different users or purchasers can also be 
valued. In the next section, we will describe the economic structure of option values 
for the modules of a complex engineering system. 

                                                          

16 Bala Iyer, 2003, private communication. 
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Figure 9. The Effect of the Six Operators on a Modular System

10.  Option Values in a Complex Engineering System 

We begin this section by introducing some notation. We assume that the total 
economic value of a complex engineering system can be expressed as the sum of a 
minimal system value, S0, plus the incremental value added by the performance of 
each of J modules. Equation 1 thus denotes the ex post value that will be realized once 
the system’s design is complete: 

 Economic Value of the system =   (1) 
J

1j

;
1

j
X0S
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moved the “System Integration & Testing Module” to the left-hand side of the figure.) We

then applied each operator to a different set of modules. 
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At the beginning of our analysis, we assume that the minimal system exists and its 
economic value is known. Without loss of generality, we normalize that value to zero.  
At the same time, we assume that the modules of the system have not yet been 
realized; hence their eventual economic payoffs (the Xj

1) are uncertain.
As long as economic payoffs can be expressed in terms of money (e.g., a present 

value), module values can be modeled as one-dimensional random variables. We use 
superscripts to denote the realizations of random variables, and subscripts to denote 
the distributions of random variables with different distributions. Thus Xj

1 should be 
read as “the economic value of a single realization of the random variable Xj”. Total 
system value is a sum of realizations over a set of J random variables, with different 
distributions, indexed by j.

The realization of a module design is the outcome of a development effort targeted 
at that module. The realization in turn can have positive or negative value. A design 
with negative value is not worth incorporating into the system: it subtracts more 
functionality than it adds. At the end of a design interval, the developers can observe 
the realization for each module and compare that value to zero. If the new module 
design has positive value, it will be added to the system, and the system’s value will 
increase by that amount. If the new module design has zero or negative value, it can 
be discarded, and the developers can try again. In this fashion, the developers can mix 
and match old and new module designs. The ability to accept or reject a particular 
realization is the developers’ basic option and the focus of our analysis. 

For simplicity, we assume that the firm or firms developing the complex system 
are risk-neutral expected-value maximizers, and that design intervals are short enough 
that we can ignore the time value of money. In that case, the ex ante economic value 
of the entire system (whose ex post value is given by equation 1) can be expressed as 
follows:

VJ   =   S0  +  Emax(X1

1, 0) + Emax(X2

1, 0) + ... + Emax(XJ

1, 0) ; (2) 

Equation 2 indicates that each module's realized value will be compared to a 
benchmark equal to zero. If the new module design has value greater than the 
benchmark, the new design will be incorporated into the system, otherwise it will be 
rejected. Thus the expectation of the value of the new design is the maximum of its 
realization and zero. The expectation of the maximum of a random variable and a 
scalar is larger than the expectation of the random variable alone, thus the option to 
reject module designs adds to the economic value of the system. 

Equation 2 is very general. We can gain further insight by specializing the 
assumptions. For example, as a thought experiment, consider a system with a total of 
N design parameters, and think of allocating the parameters into J distinct modules of 
different sizes. Let X  denote the economic value of a module of size N where  is 
less than (or equal to) one and the set of s sums to one: 



                Modularity in the Design of Complex Engineering Systems 195

For purposes of illustration, assume that X  is a normally distributed random variable 
with mean zero and variance 2 N: X  ~ N(0, 2 N). In this case, the variance of a 
module’s value will be proportional to the number of design parameters in the 
module. Roughly speaking, the dispersion of outcomes increases as a module’s 
“complexity” measured by N goes up.

Define z  as: 

z  is a standard normal variant with mean zero and variance one: z • ~ N(0, 1). 
Substituting for the Xs in terms of z in equation 2, suppressing S0, and collecting 

terms, we have: 

 (3) 
Here Emax(z, 0) is the expectation of the right half of a truncated standard normal 
distribution and equals .3989. Note that the system value depends on the elements of
the vector of ( 1, …, J) as well as the system parameters  and N. This underscores 
the fact that impact of modularity cannot be captured by a single summary measure or 
statistic (e.g., the average degree of modularity). The details of the modular structure 
(i.e., the elements of the vector• ) affect the system’s option value in important and 
nonlinear ways.

Several results follow directly from equation 3. For example, we can compare the 
value of a modularized system to the value of the corresponding unmodularized 
system:

Proposition 1. Under the assumptions given above, let an engineering system of 
complexity N be partitioned into J independent modules of complexity ( 1N, 2N,…,

JN) respectively. The modularized system has value: 

 (4) 

relative to V1, the value of the corresponding unmodularized system. 
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Proof.
By definition, a one-module design has both J and J equal to one. Thus V1 =  N1/2 

Emax(z, 0). Collecting terms and substituting in equation (3) yields the result. QED. 

From the fact that  < 1N, 2N,…, JN > are fractions that sum to one, it follows 
that the sum of their square roots is greater than one.  Thus, as expected, under these 
very specialized assumptions, a modular design is “always” more valuable than the 
corresponding non-modular design. Moreover, additional modularization (the 
splitting) increases value:  if a module of size  is split into sub-modules of size  and 
, such that   +   = , then the two modules’ contribution to overall value will rise 

because 1/2 + 1/2 > 1/2.
In this fashion, higher degrees of modularity can increase the value of a complex 

design through option value. This result is a special case of a well-known theorem, 
first stated by Robert Merton in 1973.17 For general probability distributions, 
assuming aggregate value is conserved, Merton showed that a “portfolio of options” is 
more valuable than an “option on a portfolio.” 

Up to this point in our thought experiment, we have assumed that designers will 
create only one new design per module. However, as we indicated above, an 
important fact about options is that “duplication of effort,” in the sense of mounting 
several design experiments aimed at the same target, may be desirable. Pursuing 
several experimental designs gives developers the opportunity to select the best 
outcome after the fact. How much economic value does this does this option create? Is 
it worth the cost? The answer to this question, it turns out, depends on both the 
modular structure of the overall system and the technical potential inherent in each 
module.

To quantify the value of parallel experimentation, let us suppose that in each of J 
modules, the designers initiate kj independent design efforts. When the designs are 
complete, the designers then have the option in each module to select the best of the kj

outcomes for the final design. Thus let Q(kj) denote the expected value of the highest 
realization of k independent draws from a standard normal distribution as long as the 
realization is greater than zero. Formally: 

      

where N(z) and n(z) are respectively the standard normal distribution and density 
functions.18

                                                          

17 See [34]. 
18 This distribution of the best of k realizations is well known in statistics: it is the distribution 
of the "maximum order statistic of a sample of size k." Our expectation differs from the 
standard one, however, because it is taken only over the range of values above zero. See 
Lindgren, 1968, on order statistics in general. 

0

n(z)dz
1k

z[N(z)]kQ(k)
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 By similar reasoning as above, the total value of a system with J modules and kj
experiments on the jth module is: 

 (5) 

The rightmost expression simply notes that the option value of each module is the 
product of the module’s dispersion parameter, j, times a “highest draw expectation” 
for a standard normal variate. We have tabulated Q(k) for values of k up to 50: the 
results are shown in Table 2. Using the tabulated values it is straightforward to 
operationalize this valuation methodology. 

Table 2. Tabulated Values of Q(k) for k =  1, …, 50

Equation 5 applies to systems wherein the modules are asymmetric. If modules are 
symmetric, then it will be optimal to run the same number of experiments on each 
module. The 2J arguments in equation 5 then collapse to two, and the value of the 
system as a whole, denoted V(j,k), becomes: 

(6) 

Figure 10 graphs this function for different values of j and k. The way to read this 
chart is as follows. The vertical axis shows system value as a function of two 
variables.  The first variable, on the right-hand axis, is the number of modules in the 
system.  In the figure, this variable ranges from 1 to 25. The second variable, on the 
left axis, is the number of design experiments, i.e. R&D projects, per module. This 
variable also ranges from 1 to 25. The surface shown on the vertical axis indicates the 
value of different combinations of modules and experiments. As we go out along the 
middle of this surface, we see the value of running one experiment on one module, 

k Q(k) k Q(k) k Q(k) k Q(k) k Q(k)

1 0.3989 11 1.5865 21 1.8892 31 2.0565 41 2.1707

2 0.681 12 1.6293 22 1.9097 32 2.0697 42 2.1803

3 0.8881 13 1.668 23 1.9292 33 2.0824 43 2.1897

4 1.0458 14 1.7034 24 1.9477 34 2.0947 44 2.1988

5 1.1697 15 1.7359 25 1.9653 35 2.1066 45 2.2077

6 1.2701 16 1.766 26 1.9822 36 2.1181 46 2.2164

7 1.3534 17 1.7939 27 1.9983 37 2.1293 47 2.2249

8 1.4242 18 1.82 28 2.0137 38 2.1401 48 2.2331

9 1.4853 19 1.8445 29 2.0285 39 2.1506 49 2.2412

10 1.5389 20 1.8675 30 2.0428 40 2.1608 50 2.2491
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two experiments on each of two modules, and so on, until at the far corner, we have 
25 experiments on each of 25 individual modules in the system. 

Figure 10. The Value of Splitting and Substitution 

The figure shows that there is strong complementarity between design modularity 
and experimentation.  More modules make more experiments more valuable, and vice 
versa.  The two things go together.

Although this function is the result of a thought experiment  (and no real system is 
symmetrical to this degree), the result is nevertheless compelling. The amount of 
economic value being created by the combination of modules and experiments is 
really very large. The values are calculated relative to the value of a single experiment 
in a non-modular system; we see, in effect, that a complex project organized as 25 
modules with 25 experiments per module can obtain approximately 25 times the value 
of the same project organized as a single, interdependent whole. These values are 
hypothetical, and do not recognize the costs of creating a modular architecture, 
running experiments, or integrating and testing the modular system.  But a value 
multiple of 25 will pay for a lot of engineering costs!  In other words, the incentives 
afforded by the combination of modularity and experimentation are so great that in a 
free-market economy, if it is possible to modularize, someone will do so in order to 
capture this value.
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The graph is also surprising in the way the factors interact.  Modules and 
experiments work together, and therefore, as one increases modularity, and one 
should experimentation, that is, R&D, as well, in order to get the best outcome.  This 
is costly, as we shall see.  But there is another kind of “cost” involved: the cost of 
potential innovation ignored. Often engineers with the encouragement of managers 
will modularize a complex engineering system in order to reduce its cognitive 
complexity or shorten its development time. Neither group may understand what the 
modularization implies for the value of innovation and experimentation within the 
system.  Yet if the firm that initially modularizes the system ignores this value, there
will be strong incentives for other firms to enter the market offering their own new 
module designs.

Something like that happened to IBM after the company introduced the first 
modular computer, System/360, in the mid-1960s. System/360 was a powerful and 
popular modular system, a tour de force in terms of product design, marketing, and 
manufacturing. However, IBM’s top managers did not understand the value of the 
options that had been created by its own new modular design. They did not increase 
inhouse design efforts, and as a result, left profitable opportunities “on the table.” 
Before long, new firms moved in and seized these opportunities. This was the start of 
the pattern of industry evolution and value migration depicted at the beginning of this 
chapter.

Many of the new firms that entered the computer industry in the wake of 
System/360 were staffed by former IBM engineers. Engineers who had worked on 
System/360 and its successors could see the module options very well, and knew the 
design rules of the system. Thus when IBM’s top managers did not fund their 
projects, they took those projects elsewhere. Beginning in the early 1970s, scores and 
then hundreds of engineers left IBM and joined others in founding companies that 
supplied “plug-compatible” modules for IBM’s System/360 and 370. As it happens, 
one of IBM’s main R&D labs was located in San Jose, California, and the exodus of 
engineers from the San Jose labs was one of the key factors that contributed to the 
emergence of what we now call Silicon Valley.

11. The Costs of Modularity 

We have yet to address the costs of modularity. In fact, the costs of creating and 
exploiting a modular system can be a significant offset to the value that is created.

There are, first of all, the costs of making an interdependent system modular: the 
cost of creating and disseminating design rules.  The DSM mapping techniques, 
discussed above, show how painstaking the process of modularization must be, if it is 
to succeed in creating truly independent modules.  Every important cross-module 
dependency must be understood and addressed via a design rule.  Obviously the 
density of the dependencies matters here. Modular breakpoints (interfaces) need to go 
at the “thin crossing points” of the interdependency graph. Some systems are naturally 
more “loosely-coupled” than others: they have more thin crossing points hence 
relatively more potential modules.

For example, circuits, the physical system on which computers are based, are one- 
and two-dimensional; whereas mechanical solids are three-dimensional. Clearly it is 
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harder to split up complex, curved, 3-dimensional designs, and to create flexible 
interfaces for them: there are more dependencies to manage, and the tolerances are 
much tighter. Thus modularizing an automobile’s design is a tougher engineering 
problem than modularizing a circuit design: the cost of creating a modular 
architecture and related interfaces will be higher. This has led some scholars, like 
Daniel Whitney at MIT, to predict that autos and airplanes will achieve only limited 
modularity in practice.19 The option values inherent in these tightly coupled systems 
will be low relative to systems that can more easily be modularized. 

 It is also costly to run the experiments needed to realize the potential value of a 
modular system and to design the tests needed to determine if particular modules are 
compatible with the system, and which one performs best. Indeed figuring out how 
many and what kind of experiments to run and how to test the results are important 
sub-problems within the overall option valuation problem. The interaction of option 
value and the costs of experimentation and testing modules causes each module in a 
large system to have a unique value profile. For example, Figure 11 shows how value 
profiles may differ across modules as a function of the number of experiments. Some 
modules (those that are hidden and have high technical potential) can support a lot of 
experiments; others (those that are visible and/or have low technical potential) can 
support few or none. 

Figure 11. The Value Profiles for Different Modules of a Computer System

                                                          

19 See [50] 
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12. Conclusion 

We conclude this brief excursion into the realm of modularity by returning to the 
question of industry evolution, and commenting on the perils of modularity for 
incumbent firms.   Modularity in the design of a complex engineering system with 
high technical potential (high s in the modules) is likely to be highly disruptive to 
the pre-existing industry structure. Modularity-in-design allows users or system 
integrators to mix and match of the best designs within each module category and to 
incorporate new and improved module designs as they become available. Thus a 
modular system design requires that a company operate all aspects of its business 
more efficiently than its competitors. If it is not “the best” in a given module, then 
competitors will flock to that point of vulnerability.

For example, consider IBM’s introduction of the personal computer (PC) in the 
early 1980s.20 By this time, IBM had learned the basic lessons of modularity inherent 
in System/360. Its managers understood how modularity encouraged both innovation 
and entry on modules. Indeed, the PC was extremely modular-in-design, and IBM 
leveraged this modularity by outsourcing most of its hardware and software 
components. But IBM’s managers also understood that they needed to protect the 
company’s privileged position within the modular architecture. Thus IBM retained 
control of what were thought to be the key design and process modules—a chip called 
the BIOS (Basic Input Output System) and the manufacturing process of the PC itself. 
By exercising control of these critical and essential “architectural modules,” IBM’s 
managers believed that they could manage the rate of innovation in PC’s. Their goal 
was to obtain maximum return from each generation of PC, before going on to the 
next.

However, the founders of Compaq had a different idea. First, they independently 
and legally replicated IBM’s technical control element, the BIOS. Then they designed 
a machine that was fully compatible with IBM’s published and non-proprietary 
specifications.  They bought the key modules of the PC — the chip and the operating 
system — and all the other parts they needed from IBM’s own suppliers. And they 
went to market with an IBM-compatible PC built around the newer, faster Intel 386 
chip while IBM was still marketing 286 machines. Within a year Compaq had sales of 
$100 million; by 1990, its revenues were $3 billion and climbing, and IBM was 
looking to exit from its unprofitable PC business.

However, as everyone knows, the leading player in the PC market today is not 
Compaq but Dell.21 In a nutshell, Dell did to Compaq what Compaq did to IBM: it 
took advantage of the benefits of modularity and designed a line of technologically 
competitive, yet compatible, and lower-priced PCs. In fact, Dell used modularity-in-
the-design-of-production-processes more effectively than Compaq in order to arrive at 
a more efficient, less-asset-intensive business model. Dell outsourced even more of its 
manufacturing activities than Compaq. It designed its assembly processes to build 
machines to order (BTO), thereby cutting out most of its inventory. And it sold its 

                                                          

20 This history is recounted in [16]. 
21 For detailed comparisons of Compaq’s and Dell’s business models, see [6, 49]. 
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products directly to consumers, thereby cutting out dealers’ margins and more 
inventory. Compaq simply could not compete. When its top managers saw the 
handwriting on the wall in PCs in early 1998, they tried to move the company into  
higher-margin “enterprise computing” through the acquisition of Digital Equipment 
Corporation, but the transition was not successful. Today, Compaq no longer exists as 
a separate company—it was acquired by Hewlett Packard Corporation in 2002.

In conclusion, the widespread adoption of modularity-in-design in complex 
engineering systems with high technical potential can set in motion an uncontrollable 
process of design and industry evolution. The economic consequences of this 
process—for good and bad—are depicted in the charts and turnover rates described at 
the beginning of this chapter. Thus modularity-in-design can open the door to an 
exciting, innovative, but very Darwinian world in which no one really knows which 
firms or business models will ultimately prevail. This can be a world of growth, 
innovation and opportunity. But, as the Internet Bubble and Crash taught us, this 
world can also fall into periods of extreme value destruction, chaos and inefficiency. 
Thus in the last analysis, modularity-in-design is neither good or bad.  Rather, it is 
potentially powerful and disruptive, and therefore dangerous to ignore. 
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