
Chapter 9

Modularity in the Design of

Complex Engineering Systems

Carliss Y. Baldwin

Kim B. Clark

Harvard Business School

Boston, MA 02163

1. Introduction

In the last decade, the concept of modularity has caught the attention of engineers,
management researchers and corporate strategists in a number of industries. When a
product or process is “modularized,” the elements of its design are split up and
assigned to modules according to a formal architecture or plan. From an engineering
perspective, a modularization generally has three purposes:

To make complexity manageable;
To enable parallel work; and
To accommodate future uncertainty.

Modularity accommodates uncertainty because the particular elements of a
modular design may be changed after the fact and in unforeseen ways as long as the
design rules are obeyed. Thus, within a modular architecture, new module designs
may be substituted for older ones easily and at low cost.

This chapter will make three basic points. First, we will show that modularity is a
financial force that can change the structure of an industry. Then, we will explore the
value and costs that are associated with constructing and exploiting a modular design.
Finally we will examine the ways in which modularity shapes organizations and the
risks that it poses for particular firms.1

1 Some of the arguments and figures in this paper are taken from Baldwin and Clark, 2000. The
figures are reprinted by permission.

176 Modularity in the Design of Complex Engineering Systems

2. The Financial Power of Modularity

To demonstrate the financial power of modularity, let us begin by looking at some
data from the computer industry. Figure 1 is a graph of the market values (in 2002
constant US dollars) of substantially all the U.S. based public corporations in the
computer industry from 1950 to 2002. The firms are aggregated into sixteen
subsectors by primary SIC code. The SIC codes included in the database and their
definitions are listed in Table 1. IBM, Intel and Microsoft are shown separately.

Figure 1. The Market Value of the U. S. Computer Industry By sector, 1950-2002 in constant
2002 US dollars

IB
M

0

100

200

300

400

$
bi

lli
on

500

600

700

800

35
70

 e
x

IB
M

35
71

35
72

35
75

35
76

35
77

36
70

36
72

In
te

l

36
74

 e
x

In
te

l

36
78

73
70

73
71

M
ic

ro
so

ft

73
72

 e
x

M
ic

ro
so

ft

73
73

73
74

73
77 50

54
58

62
66

70
74

78
82

86 90 94
98

02

Modularity in the Design of Complex Engineering Systems 177

Table 1. SIC Codes Included in the Database

Figure 1 tells a story of industry evolution that runs counter to conventional
wisdom. In economics the dominant theories of industry evolution describe a process
of pre-emptive investment by large, well-capitalized firms, leading to stable market
structures and high levels of concentration over long periods of time.2 These theories

2 The original theory of pre-emptive investment leading to industry concentration, with
supporting historical evidence, was put forward by Alfred Chandler [11, 12]. A complementary
theory of concentration following the emergence of a “dominant design” was put forward by
William Abernathy and James Utterback [1]. Modern formulations of these theories and some
large-scale empirical tests have been developed by John Sutton [46] and Steven Klepper [27].
Oliver Williamson (1985, Ch. 11) has interpreted the structures of modern corporations (unified
and multi-divisional) as responses to potential opportunism (the hazards of market contracting).
It is our position that the basic “task structures” and the economic incentives of modular design
(and production) systems are different from the task structures and incentives of classic large-
volume, high-flow-through production and distribution systems. Therefore the organizational
forms that arise to coordinate modular design (and production) may not ressemble the classic
structures of the modern corporation.

SIC

Code Category Definition Start Date (1)

3570 Computer and Office Equipment 1960

3670 Electronic Components and Accessories 1960

3674 Semiconductors and Related Devices 1960

3577 Computer Peripheral Devices, n.e.c. 1962

3678 Electronic Connectors 1965

7374 Computer Processing, Data Preparation and Processing 1968

3571 Electronic Computers 1970

3575 Computer Terminals 1970

7373 Computer Integrated Systems Design 1970

3572 Computer Storage Devices 1971

7372 Prepackaged Software (2) 1973

3576 Computer Communication Equipment 1974

3672 Printed Circuit Boards 1974

7370 Computer Programming, Data Processing, and Othe

Services

1974

7371 Computer Programming Services 1974

7377 Computer Leasing 1974

(1) Start date is the first year in which six or more are present in the categor

(2) This category had six firms in 1971, dipped to five in 1972, and back to

six in 1973.

178 Modularity in the Design of Complex Engineering Systems

are backed up by a great deal of supporting empirical evidence going back to the late
19th Century. The data in Figure 1, by contrast, show that while IBM dominated the
industry in the 1950s and 1960s, in the 1970s and 1980s the computer industry “got
away” from IBM. (IBM’s market value is the blue “mountain range” at the far left of
the chart.) In 1969, 71% of the market value of the computer industry was tied up in
IBM stock. By 2002, IBM was no longer dominant, and the largest firm (Microsoft)
accounted for less than 20% of the total value of the industry.

Underlying Figure 1 is a pattern of extreme turbulence at the level of firms. The
entire database spanning the years 1950 to 2002 contains about 2,700 firms. Of these,
only about 1,100 survived in 2002. Thus around 1,600 or 60% of the firms that
entered the computer industry over five decades no longer exist: they went bankrupt,
were acquired, or moved out of the industry. Not surprisingly (for those who lived
through it), much of this turnover occurred between 1997 and 2002, the years of the
Internet Bubble and Crash. Around 1,200 firms entered during these six years, while
1,100 failed or were acquired.

The figure also shows that market values were initially concentrated in a few
firms, but are now spread out over across sixteen industrial categories. Whole
industries have come and gone. For example, the original computer category, SIC
3570, “Office and Computer Equipment”, once included firms like Digital Equipment
Corporation, Sperry Corporation, Data General and NCR, as well as IBM. This
category has virtually disappeared: IBM has been reclassified into SIC 7370,
“Computer Programming and Data Processing,” and the other firms mentioned have
failed or been acquired. By 2002, Hewlett Packard was the only firm of any size
remaining in this once-pre-eminent category. Conversely, in 1970, SIC 7372,
“Packaged Software,” included only 7 firms with a combined market capitalization of
just over $1 billion. In 2002, this category had grown to 408 firms with a combined
market cap of almost half a trillion dollars ($490 billion).

Volatility and turbulence can be observed at the level of the whole industry as
well. Figure 2 shows the total market value of all firms in the industry for the sample
period 1950 – 2002. The chart is dominated by the Internet Bubble and Crash, which
created and then destroyed $2.5 trillion in the space of five years (1997 – 2002). Apart
from the Bubble, the industry as a whole has experienced significant value increases
over time. From 1960 to 1996, even as value was being dispersed and redistributed
over many, many firms, aggregate value kept pace. Then around 1997, the aggregate
value of this group of firms seemed to spin out of control. More value was created and
destroyed in a few years than the whole industry had managed to create over its entire
history. The causes of this remarkable pattern are the subject of ongoing research, but
we have no explanations for it as yet.

Modularity in the Design of Complex Engineering Systems 179

Figure 2. The Market Value of the Computer Industry Aggregated, 1950-2002, in constant
2002 US dollars

In summary, the computer industry presents us with a pattern of industry evolution
involving more firms, more products, and (mostly) increasing value created over time.
As a result of this pattern, the computer industry today consists of a large cluster of
over 1,000 firms, no one of which is very large relative to the whole. In addition, the
total market value of the industry is now spread widely but very unevenly across the
sixteen sub-industries. (See Figure 3.) We contend that modularity in the design of
complex computer systems is what allowed this creation of value, the dispersion of
value across so many firms, and finally new concentrations of value to take place. We
will expand on this argument in the sections that follow.

Figure 3. The Distribution of Market Value in the U. S. Computer Industry as of 2002 By
sector, in constant 2002 US dollars

50

0

500

1000

1500

$
bi

lli
on

2000

2500

3000

3500

4000

4500
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02

$133

$49

$86

$26

$0

$110

$16
$5

$10

$102

$138

$8

$75

$1

$293

$197

$28

$76

$0
$0

$50

$100

$150

$200

$250

$300

I
MB

180 Modularity in the Design of Complex Engineering Systems

3. The Modularity of Computer Designs

Modularity-in-design is one of the things that has caused the computer industry to
evolve to its present form. In brief, modularity in computer designs was first
envisioned by pioneering computer scientists like Maurice Wilkes in the 1950s. Later
the goal of a modular architecture was realized by architects like Fred Brook and
Gerrit Blaauw, Gordon Bell and Allen Newell, and Carver Mead and Lynn Conway in
the 1960s and 1970s.3 Modular architectures in turn enabled the computer industry to
evolve to its present form, which we call a “modular cluster”.

The computer industry became a cluster in approximately 1980. This cluster has
been extremely dynamic, displaying high rates of entry, growth and turnover in the
population of firms over time. In addition, the connections among products and
companies are quite complicated in the cluster. Firms do not design or make whole
computer systems; instead, they design and/or make modules that are parts of larger
systems. These modules include hardware components like computers,
microprocessors and disk drives; software components like operating systems and
application programs; as well as process components like fabrication, assembly,
systems integration, and testing.

Modules, in fact, are always distinct parts of a larger system. They are designed
and produced independently of one another, but must function together as a whole.
Modularity allows tasks—both design tasks and production tasks—to be divided
among groups, which can work independently and do not have to be part of the same
firm. Compatibility among modules is ensured by “design rules” that govern the
architecture, the interfaces, and the standardized tests of the system. Thus
“modularizing” a system involves specifying its architecture, that is, what its modules
are; specifying its interfaces, i.e., how the modules interact; and specifying tests
which establish that the modules will work together and how well each module
performs its job.

From an engineering perspective, modularity does many things. First, it makes the
complexity of the system manageable by providing an effective “division of cognitive
labor.”4 It also makes possible the graceful evolution of knowledge about the system.5

In this way, modular systems are “cognitively economic.” Second, modularity
organizes and enables parallel work. Work on or in modules can go on
simultaneously, hence the start-to-finish time needed to complete the job decreases.
Thus modular systems are “temporally economic.” Finally, modularity in the design
of a complex system allows modules to be changed and improved over time without
undercutting the functionality of the system as a whole. In this sense, as we indicated
above, the modular design of a complex system is “tolerant of uncertainty” and
“welcomes experimentation” in the modules.

3 See [4], Chapters 6-7 on the origins of modularity in early computer designs.
4 O.E. Williamson, 1999, “Human Action and Economic Organization,” mimeo, University of
California, Berkeley; quoted in M. Aoki, Towards a Comparative Institutional Analysis, 2001,
MIT Press, Chapter 4.
5 See [21].

Modularity in the Design of Complex Engineering Systems 181

4. Modularity in Design, Production and Use

Humans interact with artifacts in three basic ways: they design them; produce them;
and use them. There are, as a result, three basic types of modularity: modularity-in-
design, modularity-in-production, and modularity-in-use. We will discuss these
“modularities” in reverse order.

A system of goods is modular-in-use if consumers can mix and match elements to
come up with a final product that suits their taste and needs. For example, consumers
often buy bed frames, mattresses, pillows, linens, and covers made by different
manufacturers and distributed through different retailers. The parts all fit together
because different manufacturers make the goods in standard sizes. These standard
dimensions constitute design rules that are binding on manufacturers, wholesalers,
retailers, and users. Modularity-in-use thus supports customization of the system to
suit the needs and tastes of the end-user.

Manufacturers have used modularity-in-production for a century or more.
Carmakers, for example, routinely arrange to manufacture the components of an
automobile at different sites and bring them together for final assembly. They can do
so because they have completely and precisely specified how the parts will interact
with the vehicle. The engineering specifications of a component (its dimensions,
tolerances, functionality, etc.) constitute a set of design rules for the factories that
supply the parts. Such process modularity is fundamental to mass production.

However, the fact that, in a complex system, the elements of use or the tasks of
production have been split up and assigned to separate modules does not mean that
the design of the system is modular. Indeed systems that are modular-in-use or
modular-in-production may rest on designs that are tightly coupled and centrally
controlled. For example, Intel Corporation famously imposes a “copy exactly” rule on
its fabrication plants. The production of chips can go on independently at separate
sites because the layout of the plants and the work processes within the plants are the
same. Thus Intel’s “copy exactly” plants are modular-in-production but not modular-
in-design. In a similar vein, a sectional sofa is a suite of furniture that is modular-in-
use. Purchasers can combine and recombine the elements of the suite at will. But
those elements must be designed as one interdependent whole, or the patterns and
shapes will not form a pleasing ensemble. Thus the sectional sofa suite is modular-in-
use, but not modular-in-design.

A complex engineering system is modular-in-design if (and only if) the process of
designing it can be split up and distributed across separate modules, that are
coordinated by design rules, not by ongoing consultations amongst the designers. Of
all the “modularities”, modularity-in-design is the least well understood and has the
most interesting economic consequences. This is because new designs are
fundamentally options with associated economic option value. Modularity-in-design
multiplies the options inherent in a complex system. This in turn both increases the
total economic value of the system and changes the ways in which the system can
evolve. In the rest of this chapter, we will explain how to map and measure the option
value of modularity-in-design.

182 Modularity in the Design of Complex Engineering Systems

5. Designs as Options

A fundamental property of designs is that at the start of any design process, the final
outcome is uncertain. Once the full design has been specified and is certain, then the
development process for that design is over.

Uncertainty about the final design translates into uncertainty about the design’s
eventual value. How well will the end-product of the design process perform its
intended functions? And what will it be worth to users? These questions can never be
answered with certainty at the beginning of any substantive development process.
Thus the ultimate value of a design is unknown when the development process begins.

Uncertainty about final value in turn causes new designs to have “option-like”
properties. In finance, an option is “the right but not the obligation” to choose a course
of action and obtain an associated payoff. In engineering, a new design creates the
ability but not the necessity—the right but not the obligation—to do something in a
different way. In general (if the designers are rational), the new design will be adopted
only if it is better that its alternatives. Thus the economic value of a new design is
properly modeled as an option using the methods of modern finance theory.

The option-like structure of designs has three important but counterintuitive
consequences. In the first place, when payoffs take the form of options, taking more
risk creates more value.6 Risk here is defined as the ex ante dispersion of potential
outcomes. Intuitively, a risky design is one with high technical potential but no
guarantee of success. “Taking more risk” means accepting the prospect of a greater ex
ante dispersion. Thus a risky design process is one that has a very high potential value
conditional on success but, symmetrically, a very low, perhaps negative, value
conditional on failure.

What makes the design an option, however, is that the low-valued outcomes do not
have to be passively accepted. As we said, the new design does not have to be
adopted; rationally, it will be adopted only if it is better than the alternatives,
including the status quo alternative. In effect, then, the downside potential of a risky
design is limited by the option to reject it after the fact. This means that “risk” creates
only upside potential. More risk, in turn, means more upside potential, hence more
value.7

The second counterintuitive result is that when payoffs take the form of options,
seemingly redundant efforts may be value-increasing. Two attempts to create a new
design may arrive at different endpoints. In that case, the designers will have the
option to take the better of the two. The option to take the better of two or best of
several outcomes is valuable.8 Thus when faced with a risky design process, which

6 This is a basic property of options (See [34]).
7 It follows, of course, that if a risky design is “hardwired” into a system so that it must be
implemented regardless of its value, then the design process loses its option-like properties. In
such cases, “taking more risk” in the sense defined above, will not increase, and may decrease
value.
8 Stulz, 1982, first analyzed the option to take the higher-valued of two risky assets. Sanchez
[40] worked out the real option value of parallel design effort in product development.

Modularity in the Design of Complex Engineering Systems 183

has a wide range of potential outcomes, it is often desirable to run multiple “design
experiments” with the same functional goal. These experiments may take place in
parallel or in sequence, or in a combination of both modes.9 But whatever the mode,
more risk calls for more experimentation.

The third result is that options interact with modularity in a powerful way. By
definition, a modular architecture allows module designs to be changed and improved
over time without undercutting the functionality of the system as a whole. This is
what it means to be “tolerant of uncertainty” and to “welcome experiments” in the
design of modules. As a result, modules and design experiments are economic
complements: an increase in one makes the other more valuable.10 (Below we will
derive this result in the context of a formal model.)

The effect of modularity-in-design on options and option value is depicted in
Figure 4. Here we envision a system that is making the transition from being one
interdependent whole to being a set of modules governed by design rules. The system
goes from having one large design option (i.e., to take the whole design or leave it) to
having many smaller options—one per module. Thus the act of splitting a complex
engineering system into modules multiplies the valuable design options in the system.
At the same time, this modularization moves decisions from a central point of control
to the individual modules. The newly decentralized system can then evolve in new
ways.

Notice, however, that by modularizing, one barrier to entry by competitors, the
high costs of developing an entire complex engineering system (like an automobile, a
computer, or a large software package) are reduced to the costs of developing
individual modules. Thus the modularization of a large, complex system, even as it
creates options and option value, also sows the seeds of increased competition focused
on the modules. We shall revisit this issue at the end of the chapter.

9 See [30].
10 This is the definition of economic complementarity used by Milgrom and Roberts [35] and
Topkis [47]. The complementarity of modularity and experimentation was first demonstrated
by Baldwin and Clark [2; 4, Chapter 10].

184 Modularity in the Design of Complex Engineering Systems

Figure 4. Modularity Creates Design Options

6. Mapping the Design of a Complex Engineering System

We will now look at modularity-in-design more carefully. To help us do so, we will
represent the design of a complex system using the methods of Design Structure
Matrix (DSM) Mapping. In this mapping technique, the system is first characterized
by listing a set of design parameters for the system. The design parameters are then
arrayed along the rows and columns of a square matrix. The matrix is filled in by
checking—for each parameter—which other parameters affect it and which are
affected by it. For example, if Parameter A affects the choice of Parameter B, then we
will put a mark “x” in the cell where the column of A and the row of B intersect. We
repeat this process until we have recorded all parameter interactions. The result is a
map of the dependencies that affect the detailed structure of the artifact. For example,
Figure 5 is a DSM map of the dependencies in the design for a laptop computer
system circa 1993.11

DSM maps are well known in the engineering professions. They can be
constructed for any artifact or complex system, whether it is tangible or intangible.
Thus there are DSM maps of products, like computers and automobiles, and DSM
maps of both production processes and design processes. Many such maps have been
constructed by Steven Eppinger and his colleagues at MIT.

The DSM map in Figure 5 indicates that the laptop computer design has four
blocks of very tightly interrelated design parameters corresponding to the (Disk)
Drive System, the Main Board, the LCD Screen, and the Packaging of the machine.
There is also a scattering of dependencies (“x’s”) outside the blocks. The
dependencies arise both above and below the main diagonal blocks, thus the blocks
are interdependent.

11 The DSM methodology was invented by Donald Steward. The DSM map shown in Figure 5
was prepared by Kent McCord and published in McCord and Eppinger [32]. Reprinted by
permission.

Modularity in the Design of Complex Engineering Systems 185

Figure 5. Design Structure Matrix Map of a Laptop Computer

Cycling and iteration are needed to resolve design interdependencies. For
example, as shown in the figure, the location of the computer’s graphics controller
creates dependencies between the Main Board and the LCD Screen and vice versa.

Because of these dependencies, there will be ramifications of any choice made at
this particular point: these are indicated by the arrows in the diagram. If two teams
were working on the different components, they would have to confer about the
location of the graphics controller in order to coordinate their design choices. But
unforeseen consequences might arise later, causing the initial choice to be revisited.
There would then be further consequences: new arrows would arise, which, through
the chain of dependencies, might wander all over the map. Such cycling is the
inevitable consequence of an interdependent design structure.

186 Modularity in the Design of Complex Engineering Systems

However, it is important to note that the DSM map for a product or process need
not be set in stone forever. Dependencies and interdependencies can be modified by a
process of design rationalization, which works in the following way. Suppose that the
designers of the laptop computer system wished to eliminate the interdependencies
between the Main Board and the Screen that were due to the graphics controller
location. They could do so by setting a design rule that located the graphics controller
on the Board (for example). By this action the two design teams would have restricted
their alternatives, but they would also have eliminated a source of cycling between
two of the blocks of the design.

Figure 6 shows the new DSM map obtained by turning the graphics control
location into a design rule. Two dependencies, one above the diagonal and one below,
which were present before, now do not exist: they are absent from the circled areas in
the map. Instead there is a design rule that is known (hence “visible”) to both sets of
designers, which they must obey.

Modularity in the Design of Complex Engineering Systems 187

Figure 6. Eliminating Interdependencies by Creating a Design Rule

Carrying this process through to its logical conclusion results in a radically
different structure: a modular structure as shown in Figure 7. Here we have the same
highly interdependent blocks as before: the Drive System, the Main Board, the LCD
Screen, and Packaging. And within those blocks essentially nothing has changed, the
pattern of interdependency is the same. But the out-of-block dependencies both above
and below the main diagonal have all disappeared.

188 Modularity in the Design of Complex Engineering Systems

Figure 7. Modularization of a Laptop Computer Design

How does that happen? First, in the new structure, each of the former out-of-block
dependencies has been addressed by a design rule. Thus, there is now a new “Design
Rules” block (not drawn to scale), whose parameters affect many of the parameters in
the component blocks. Those dependencies are indicated by the “x”s in the vertical
column below the Design Rules block. (Design rule parameters are often called
“standards.”)

By obeying the design rules, teams working on the designs of each of the
component blocks—which are now modules—can maintain conformity with the other
parts of the system. But note that there has been another, earlier stage in the process in
which the design rules were established.

Furthermore, the new process, as shown in Figure 7, delivers four separate items,
which must still be integrated into a functioning whole system. No set of design rules
is perfect, and unforeseen compatibility problems are often revealed in the latter
stages of a modular design process. For these reasons, a “System Integration and
Testing” (SIT) block appears in the lower right corner of the modular DSM. This

Modularity in the Design of Complex Engineering Systems 189

block is affected by the design rules and by some parameters of the hidden modules.
But decisions taken in the SIT block, by definition, will not affect choices in the prior
blocks. (If they do, then the structure is no longer modular).

Therefore, a modular design structure has three characteristic parts:

design rules, which are known and obeyed by teams responsible for
individual modules;

so-called hidden modules that “look to” the design rules, but are
independent of one another as work is proceeding; and

a systems integration and testing module in which the hidden modules are
assembled into a system, and any remaining, minor problems of
incompatibility are resolved.

A complex system design may go from being interdependent to being modular in
the following way. The “architects” of the system must first identify the
dependencies between the distinct components and address them via a set of design
rules. Second, they must create encapsulated or “hidden” modules corresponding to
the components of the system. And third, they must establish a separate system
integration and testing activity that will assemble the modular components and
resolve unforeseen incompatibilities.

7. The Design Hierarchy Representation

A DSM map is one way to represent a modular system: a design hierarchy is
another.12 A design hierarchy shows which modules are affected by which other
modules. (See Figure 8.) At the very top of the design hierarchy are the system-wide
design rules: these must be obeyed (hence “are visible to”) all modules in the system.

Figure 8. A Two-level Modular Design Hierarchy

Below the system-wide design rules, there may be “architectural modules,” which
establish design rules for certain subsystems. There are no architectural modules in
Figure 8, but in most complex engineering systems there are one or two layers of

12 See [13, 31].

190 Modularity in the Design of Complex Engineering Systems

architectural modules. For example, operating systems like Microsoft Windows and
Unix are architectural modules in a computer system.

Finally, at the bottom of the design hierarchy are the hidden modules of the
system: these must obey the design rules, hence “look to” them. But the hidden
modules’ own parameters are “encapsulated”: they do not affect, and hence do not
need to be known to those working on other modules. Hidden modules are thus the
primary source of option value in a modular system. (Even so, depending on the rules
governing intellectual property, much of the value created in the hidden modules may
be captured by the companies that control architectural modules and/or design rules.)

8. Modular Organizations

The “modularized” architectures depicted in Figures 7 and 8 lead naturally to a
“modularized” organizational structures.13 In a recent paper which addressed the
nature of transactions we postulated that the activities represented by the x’s in
Figures 5 and 6 naturally map onto organizations since each interaction captured on
the DSM represents a transfer of material or information or both.14 In this way it is
natural to look at Figure 6 and see a ‘traditional’ organization structured around
specific technologies or disciplines. The within-block interactions represent
interactions that are internal to each organizational unit while the out-of-block
interactions can be viewed as interactions that require coordination across units. In
this system, each organizational unit would have liaison personnel whose function
was to assure that activities in each unit of the overall endeavor remained
synchronized and coordinated.

In the modularized design of Figures 7 and 8 however, many of the cross-unit
liaison and coordination functions have been eliminated. This is done in two ways:
through design rules and through encapsulation. Design rules (standards) ensure that
decisions that affect multiple units are fixed and communicated ahead of time, and not
changed along the way. Encapsulation means that all activities associated with
specific aspects of the product are conducted within one organizational unit – even if
that organizational unit embodies multiple skillsets, disciplines or activities. This
may lead to duplication of skillsets – for example the Main Board and Packaging
groups may both need people who are skilled in understanding interconnections – but,
if they are to be encapsulated, these groups must be scaled and staffed to their own
needs without calling on shared resources, and without requiring extensive cross-unit
coordination activities.

Similarly note that the transfers of material and information between groups have
been simplified to a simple handoff from each module task group to a final systems
integration and testing group. If these handoffs as well as the design rules can be
standardized and codified, then there is no need for the various groups to reside in the

13 See [41].
14 See [5].

Modularity in the Design of Complex Engineering Systems 191

same company: armslength transactions betweens several firms can cost-effectively
replace complex coordinating flows of information within a single firm.

An educational analogy might be useful here. Instead of a laptop computer, Figure
6 might as easily represent the traditional departmental or discipline-based
organizational structure of a university (like Harvard). A discipline-based
organizational structure is well-suited to teaching courses, but it is ill-suited to
carrying out broadly-based research initiatives that cut across many disciplines.
Indeed, in order to conduct interdisciplinary research, the traditional departmental
structure requires many cross-unit interactions as shown in Figure 6. These
interactions are generally time-consuming and prone to cycling. In addition, many
task-relevant interactions may get lost in the shuffle and not take place at all.

By contrast, a center-based or project-based collaborative structure gathers
participants from multiple disciplines and organizes them into self-contained teams as
in Figure 7. Even though some interactions are lost, and there may be duplication of
resources across centers, the new organizational structure imposes a much smaller
coordination burden on the overall research endeavor. The reduced coordination costs
in turn can offset the opportunity losses and costs of implementing the more modular,
team-based structure. If the coordination cost savings are large, then a “more
modular” organization is a good idea. But there is always a tradeoff—some things are
lost while other things are gained.

9. Modular Operators

A key benefit of systems with modular designs is that, especially at the lower levels of
the design hierarchy, such systems can evolve. The information that is encapsulated in
the hidden modules can change, as long as the design rules are obeyed. Therefore, as
we said earlier, modular systems are “tolerant of uncertainty” and “welcome
experimentation” in their modules. In contrast, the design rules of a modular system,
once established, tend to be both rigid and long lasting.

There are certain generic design actions one can apply to a modular system.
Following the lead of John Holland of the University of Michigan,15 we have labeled
such actions “operators.” In our prior work, we identified six modular operators, and
analyzed the sources of their economic value. In particular, given a modular structure,
one can:

split any module;

substitute a newer module design for an older one;

exclude a module;

augment the system by adding a module that was not there before;

15 See [23].

192 Modularity in the Design of Complex Engineering Systems

collect common elements across several modules and organize them as a
new level in the hierarchy (modular inversion); and

create a “shell” around a module so that it works in systems other than one
for which it was initially designed (modular porting).

Figure 9 shows how each of these operators affects the structure of a modular
system.

We must emphasize that we regard our list of six operators as the beginning of a
useful taxonomy. The list is by no means exhaustive. Indeed three other operators
have been identified in empirical investigations of design evolution. These are:

the linking of two pre-existing modules;16

the recombining of two previously separate modules (this is the opposite
of splitting); and

embracing and extending a pre-existing module (this operator was
famously used by Microsoft on Sun’s version of Java).

The important thing to understand is that operators correspond to search paths in
the design space of a complex engineering system. These search paths in turn are
options in the so-called “value landscape” of the complex system. As options, the
operator/search paths can be valued using fairly standard analytic techniques from
finance. Thus, for example, the decision to split a complex system (or subsystem) into
several modules can be valued. The decision to augment the system by designing
several variants of a module customized for different users or purchasers can also be
valued. In the next section, we will describe the economic structure of option values
for the modules of a complex engineering system.

16 Bala Iyer, 2003, private communication.

 Modularity in the Design of Complex Engineering Systems 193

Figure 9. The Effect of the Six Operators on a Modular System

10. Option Values in a Complex Engineering System

We begin this section by introducing some notation. We assume that the total
economic value of a complex engineering system can be expressed as the sum of a
minimal system value, S0, plus the incremental value added by the performance of
each of J modules. Equation 1 thus denotes the ex post value that will be realized once
the system’s design is complete:

 Economic Value of the system = (1)
J

1j

;
1

j
X0S

We started with a generic two-level modular design structure, as shown in Figure 8, but

with six modules (A, B, C, D, E, F) instead of four. (To display the porting operator, we

moved the “System Integration & Testing Module” to the left-hand side of the figure.) We

then applied each operator to a different set of modules.

 - Module A was Split into three sub-modules.

 - Three different Substitutes were developed for module B.

 - Module C was Excluded.

 - A new Module G was created to Augment the system.

 - Common elements of Modules D and E were Inverted. Subsystem design rules

and an architectural module were developed to allow the inversion.

 - Module F was Ported. First it was split; then its “interior” modules were grouped

within a shell; then translator modules were developed.

The ending system is a three-level system, with two modular subsystems performing the

functions of Modules A, D, and E in the old system. In addition to the standard hidden

modules, there are three kinds of special modules, which are indicated by heavy black

borders and shaded interiors:

 - System Integration & Testing Module

 - Architectural Module

 - Translator(s) Module(s)

System I Global Design Rules

System
Integration
& Testing

Splitting Substitution Exclusion Augmenting Inversion Porting

System I
Module F
Translator

Architectural
Module

System II
Module F
Translator

A - 1

F - 1

F - 2

F - 3

A - 2 A - 3

Module B

Module A
Design Rules

Module C

Module G

Module D Module E

D-E Design Rules

Module F
Design Rules

System II Design Rules

System II Modules ...

194 Modularity in the Design of Complex Engineering Systems

At the beginning of our analysis, we assume that the minimal system exists and its
economic value is known. Without loss of generality, we normalize that value to zero.
At the same time, we assume that the modules of the system have not yet been
realized; hence their eventual economic payoffs (the Xj

1) are uncertain.
As long as economic payoffs can be expressed in terms of money (e.g., a present

value), module values can be modeled as one-dimensional random variables. We use
superscripts to denote the realizations of random variables, and subscripts to denote
the distributions of random variables with different distributions. Thus Xj

1 should be
read as “the economic value of a single realization of the random variable Xj”. Total
system value is a sum of realizations over a set of J random variables, with different
distributions, indexed by j.

The realization of a module design is the outcome of a development effort targeted
at that module. The realization in turn can have positive or negative value. A design
with negative value is not worth incorporating into the system: it subtracts more
functionality than it adds. At the end of a design interval, the developers can observe
the realization for each module and compare that value to zero. If the new module
design has positive value, it will be added to the system, and the system’s value will
increase by that amount. If the new module design has zero or negative value, it can
be discarded, and the developers can try again. In this fashion, the developers can mix
and match old and new module designs. The ability to accept or reject a particular
realization is the developers’ basic option and the focus of our analysis.

For simplicity, we assume that the firm or firms developing the complex system
are risk-neutral expected-value maximizers, and that design intervals are short enough
that we can ignore the time value of money. In that case, the ex ante economic value
of the entire system (whose ex post value is given by equation 1) can be expressed as
follows:

VJ = S0 + Emax(X1

1, 0) + Emax(X2

1, 0) + ... + Emax(XJ

1, 0) ; (2)

Equation 2 indicates that each module's realized value will be compared to a
benchmark equal to zero. If the new module design has value greater than the
benchmark, the new design will be incorporated into the system, otherwise it will be
rejected. Thus the expectation of the value of the new design is the maximum of its
realization and zero. The expectation of the maximum of a random variable and a
scalar is larger than the expectation of the random variable alone, thus the option to
reject module designs adds to the economic value of the system.

Equation 2 is very general. We can gain further insight by specializing the
assumptions. For example, as a thought experiment, consider a system with a total of
N design parameters, and think of allocating the parameters into J distinct modules of
different sizes. Let X denote the economic value of a module of size N where is
less than (or equal to) one and the set of s sums to one:

 Modularity in the Design of Complex Engineering Systems 195

For purposes of illustration, assume that X is a normally distributed random variable
with mean zero and variance 2 N: X ~ N(0, 2 N). In this case, the variance of a
module’s value will be proportional to the number of design parameters in the
module. Roughly speaking, the dispersion of outcomes increases as a module’s
“complexity” measured by N goes up.

Define z as:

z is a standard normal variant with mean zero and variance one: z • ~ N(0, 1).
Substituting for the Xs in terms of z in equation 2, suppressing S0, and collecting

terms, we have:

 (3)
Here Emax(z, 0) is the expectation of the right half of a truncated standard normal
distribution and equals .3989. Note that the system value depends on the elements of
the vector of (1, …, J) as well as the system parameters and N. This underscores
the fact that impact of modularity cannot be captured by a single summary measure or
statistic (e.g., the average degree of modularity). The details of the modular structure
(i.e., the elements of the vector•) affect the system’s option value in important and
nonlinear ways.

Several results follow directly from equation 3. For example, we can compare the
value of a modularized system to the value of the corresponding unmodularized
system:

Proposition 1. Under the assumptions given above, let an engineering system of
complexity N be partitioned into J independent modules of complexity (1N, 2N,…,

JN) respectively. The modularized system has value:

 (4)

relative to V1, the value of the corresponding unmodularized system.

1

J

1j

j

21
(N)

X
z

)Emax(z,0)
21

J...
21

2

21

1(
21

NN),;J,...,1V(V

1
)V

21

J...
21

2

21

1(V

196 Modularity in the Design of Complex Engineering Systems

Proof.
By definition, a one-module design has both J and J equal to one. Thus V1 = N1/2

Emax(z, 0). Collecting terms and substituting in equation (3) yields the result. QED.

From the fact that < 1N, 2N,…, JN > are fractions that sum to one, it follows
that the sum of their square roots is greater than one. Thus, as expected, under these
very specialized assumptions, a modular design is “always” more valuable than the
corresponding non-modular design. Moreover, additional modularization (the
splitting) increases value: if a module of size is split into sub-modules of size and
, such that + = , then the two modules’ contribution to overall value will rise

because 1/2 + 1/2 > 1/2.
In this fashion, higher degrees of modularity can increase the value of a complex

design through option value. This result is a special case of a well-known theorem,
first stated by Robert Merton in 1973.17 For general probability distributions,
assuming aggregate value is conserved, Merton showed that a “portfolio of options” is
more valuable than an “option on a portfolio.”

Up to this point in our thought experiment, we have assumed that designers will
create only one new design per module. However, as we indicated above, an
important fact about options is that “duplication of effort,” in the sense of mounting
several design experiments aimed at the same target, may be desirable. Pursuing
several experimental designs gives developers the opportunity to select the best
outcome after the fact. How much economic value does this does this option create? Is
it worth the cost? The answer to this question, it turns out, depends on both the
modular structure of the overall system and the technical potential inherent in each
module.

To quantify the value of parallel experimentation, let us suppose that in each of J
modules, the designers initiate kj independent design efforts. When the designs are
complete, the designers then have the option in each module to select the best of the kj

outcomes for the final design. Thus let Q(kj) denote the expected value of the highest
realization of k independent draws from a standard normal distribution as long as the
realization is greater than zero. Formally:

where N(z) and n(z) are respectively the standard normal distribution and density
functions.18

17 See [34].
18 This distribution of the best of k realizations is well known in statistics: it is the distribution
of the "maximum order statistic of a sample of size k." Our expectation differs from the
standard one, however, because it is taken only over the range of values above zero. See
Lindgren, 1968, on order statistics in general.

0

n(z)dz
1k

z[N(z)]kQ(k)

 Modularity in the Design of Complex Engineering Systems 197

 By similar reasoning as above, the total value of a system with J modules and kj
experiments on the jth module is:

 (5)

The rightmost expression simply notes that the option value of each module is the
product of the module’s dispersion parameter, j, times a “highest draw expectation”
for a standard normal variate. We have tabulated Q(k) for values of k up to 50: the
results are shown in Table 2. Using the tabulated values it is straightforward to
operationalize this valuation methodology.

Table 2. Tabulated Values of Q(k) for k = 1, …, 50

Equation 5 applies to systems wherein the modules are asymmetric. If modules are
symmetric, then it will be optimal to run the same number of experiments on each
module. The 2J arguments in equation 5 then collapse to two, and the value of the
system as a whole, denoted V(j,k), becomes:

(6)

Figure 10 graphs this function for different values of j and k. The way to read this
chart is as follows. The vertical axis shows system value as a function of two
variables. The first variable, on the right-hand axis, is the number of modules in the
system. In the figure, this variable ranges from 1 to 25. The second variable, on the
left axis, is the number of design experiments, i.e. R&D projects, per module. This
variable also ranges from 1 to 25. The surface shown on the vertical axis indicates the
value of different combinations of modules and experiments. As we go out along the
middle of this surface, we see the value of running one experiment on one module,

k Q(k) k Q(k) k Q(k) k Q(k) k Q(k)

1 0.3989 11 1.5865 21 1.8892 31 2.0565 41 2.1707

2 0.681 12 1.6293 22 1.9097 32 2.0697 42 2.1803

3 0.8881 13 1.668 23 1.9292 33 2.0824 43 2.1897

4 1.0458 14 1.7034 24 1.9477 34 2.0947 44 2.1988

5 1.1697 15 1.7359 25 1.9653 35 2.1066 45 2.2077

6 1.2701 16 1.766 26 1.9822 36 2.1181 46 2.2164

7 1.3534 17 1.7939 27 1.9983 37 2.1293 47 2.2249

8 1.4242 18 1.82 28 2.0137 38 2.1401 48 2.2331

9 1.4853 19 1.8445 29 2.0285 39 2.1506 49 2.2412

10 1.5389 20 1.8675 30 2.0428 40 2.1608 50 2.2491

)jQ(k

J

1j
j)jQ(k

J

1j

21

j

21
NN),;k,V(

V(j,k) = (Nj)1/2 Q(k)

198 Modularity in the Design of Complex Engineering Systems

two experiments on each of two modules, and so on, until at the far corner, we have
25 experiments on each of 25 individual modules in the system.

Figure 10. The Value of Splitting and Substitution

The figure shows that there is strong complementarity between design modularity
and experimentation. More modules make more experiments more valuable, and vice
versa. The two things go together.

Although this function is the result of a thought experiment (and no real system is
symmetrical to this degree), the result is nevertheless compelling. The amount of
economic value being created by the combination of modules and experiments is
really very large. The values are calculated relative to the value of a single experiment
in a non-modular system; we see, in effect, that a complex project organized as 25
modules with 25 experiments per module can obtain approximately 25 times the value
of the same project organized as a single, interdependent whole. These values are
hypothetical, and do not recognize the costs of creating a modular architecture,
running experiments, or integrating and testing the modular system. But a value
multiple of 25 will pay for a lot of engineering costs! In other words, the incentives
afforded by the combination of modularity and experimentation are so great that in a
free-market economy, if it is possible to modularize, someone will do so in order to
capture this value.

1
5

9
13

17
21

25
0

5

10

15

20

25

30

7
13

19
25

 Modularity in the Design of Complex Engineering Systems 199

The graph is also surprising in the way the factors interact. Modules and
experiments work together, and therefore, as one increases modularity, and one
should experimentation, that is, R&D, as well, in order to get the best outcome. This
is costly, as we shall see. But there is another kind of “cost” involved: the cost of
potential innovation ignored. Often engineers with the encouragement of managers
will modularize a complex engineering system in order to reduce its cognitive
complexity or shorten its development time. Neither group may understand what the
modularization implies for the value of innovation and experimentation within the
system. Yet if the firm that initially modularizes the system ignores this value, there
will be strong incentives for other firms to enter the market offering their own new
module designs.

Something like that happened to IBM after the company introduced the first
modular computer, System/360, in the mid-1960s. System/360 was a powerful and
popular modular system, a tour de force in terms of product design, marketing, and
manufacturing. However, IBM’s top managers did not understand the value of the
options that had been created by its own new modular design. They did not increase
inhouse design efforts, and as a result, left profitable opportunities “on the table.”
Before long, new firms moved in and seized these opportunities. This was the start of
the pattern of industry evolution and value migration depicted at the beginning of this
chapter.

Many of the new firms that entered the computer industry in the wake of
System/360 were staffed by former IBM engineers. Engineers who had worked on
System/360 and its successors could see the module options very well, and knew the
design rules of the system. Thus when IBM’s top managers did not fund their
projects, they took those projects elsewhere. Beginning in the early 1970s, scores and
then hundreds of engineers left IBM and joined others in founding companies that
supplied “plug-compatible” modules for IBM’s System/360 and 370. As it happens,
one of IBM’s main R&D labs was located in San Jose, California, and the exodus of
engineers from the San Jose labs was one of the key factors that contributed to the
emergence of what we now call Silicon Valley.

11. The Costs of Modularity

We have yet to address the costs of modularity. In fact, the costs of creating and
exploiting a modular system can be a significant offset to the value that is created.

There are, first of all, the costs of making an interdependent system modular: the
cost of creating and disseminating design rules. The DSM mapping techniques,
discussed above, show how painstaking the process of modularization must be, if it is
to succeed in creating truly independent modules. Every important cross-module
dependency must be understood and addressed via a design rule. Obviously the
density of the dependencies matters here. Modular breakpoints (interfaces) need to go
at the “thin crossing points” of the interdependency graph. Some systems are naturally
more “loosely-coupled” than others: they have more thin crossing points hence
relatively more potential modules.

For example, circuits, the physical system on which computers are based, are one-
and two-dimensional; whereas mechanical solids are three-dimensional. Clearly it is

200 Modularity in the Design of Complex Engineering Systems

harder to split up complex, curved, 3-dimensional designs, and to create flexible
interfaces for them: there are more dependencies to manage, and the tolerances are
much tighter. Thus modularizing an automobile’s design is a tougher engineering
problem than modularizing a circuit design: the cost of creating a modular
architecture and related interfaces will be higher. This has led some scholars, like
Daniel Whitney at MIT, to predict that autos and airplanes will achieve only limited
modularity in practice.19 The option values inherent in these tightly coupled systems
will be low relative to systems that can more easily be modularized.

 It is also costly to run the experiments needed to realize the potential value of a
modular system and to design the tests needed to determine if particular modules are
compatible with the system, and which one performs best. Indeed figuring out how
many and what kind of experiments to run and how to test the results are important
sub-problems within the overall option valuation problem. The interaction of option
value and the costs of experimentation and testing modules causes each module in a
large system to have a unique value profile. For example, Figure 11 shows how value
profiles may differ across modules as a function of the number of experiments. Some
modules (those that are hidden and have high technical potential) can support a lot of
experiments; others (those that are visible and/or have low technical potential) can
support few or none.

Figure 11. The Value Profiles for Different Modules of a Computer System

19 See [50]

 Modularity in the Design of Complex Engineering Systems 201

12. Conclusion

We conclude this brief excursion into the realm of modularity by returning to the
question of industry evolution, and commenting on the perils of modularity for
incumbent firms. Modularity in the design of a complex engineering system with
high technical potential (high s in the modules) is likely to be highly disruptive to
the pre-existing industry structure. Modularity-in-design allows users or system
integrators to mix and match of the best designs within each module category and to
incorporate new and improved module designs as they become available. Thus a
modular system design requires that a company operate all aspects of its business
more efficiently than its competitors. If it is not “the best” in a given module, then
competitors will flock to that point of vulnerability.

For example, consider IBM’s introduction of the personal computer (PC) in the
early 1980s.20 By this time, IBM had learned the basic lessons of modularity inherent
in System/360. Its managers understood how modularity encouraged both innovation
and entry on modules. Indeed, the PC was extremely modular-in-design, and IBM
leveraged this modularity by outsourcing most of its hardware and software
components. But IBM’s managers also understood that they needed to protect the
company’s privileged position within the modular architecture. Thus IBM retained
control of what were thought to be the key design and process modules—a chip called
the BIOS (Basic Input Output System) and the manufacturing process of the PC itself.
By exercising control of these critical and essential “architectural modules,” IBM’s
managers believed that they could manage the rate of innovation in PC’s. Their goal
was to obtain maximum return from each generation of PC, before going on to the
next.

However, the founders of Compaq had a different idea. First, they independently
and legally replicated IBM’s technical control element, the BIOS. Then they designed
a machine that was fully compatible with IBM’s published and non-proprietary
specifications. They bought the key modules of the PC — the chip and the operating
system — and all the other parts they needed from IBM’s own suppliers. And they
went to market with an IBM-compatible PC built around the newer, faster Intel 386
chip while IBM was still marketing 286 machines. Within a year Compaq had sales of
$100 million; by 1990, its revenues were $3 billion and climbing, and IBM was
looking to exit from its unprofitable PC business.

However, as everyone knows, the leading player in the PC market today is not
Compaq but Dell.21 In a nutshell, Dell did to Compaq what Compaq did to IBM: it
took advantage of the benefits of modularity and designed a line of technologically
competitive, yet compatible, and lower-priced PCs. In fact, Dell used modularity-in-
the-design-of-production-processes more effectively than Compaq in order to arrive at
a more efficient, less-asset-intensive business model. Dell outsourced even more of its
manufacturing activities than Compaq. It designed its assembly processes to build
machines to order (BTO), thereby cutting out most of its inventory. And it sold its

20 This history is recounted in [16].
21 For detailed comparisons of Compaq’s and Dell’s business models, see [6, 49].

202 Modularity in the Design of Complex Engineering Systems

products directly to consumers, thereby cutting out dealers’ margins and more
inventory. Compaq simply could not compete. When its top managers saw the
handwriting on the wall in PCs in early 1998, they tried to move the company into
higher-margin “enterprise computing” through the acquisition of Digital Equipment
Corporation, but the transition was not successful. Today, Compaq no longer exists as
a separate company—it was acquired by Hewlett Packard Corporation in 2002.

In conclusion, the widespread adoption of modularity-in-design in complex
engineering systems with high technical potential can set in motion an uncontrollable
process of design and industry evolution. The economic consequences of this
process—for good and bad—are depicted in the charts and turnover rates described at
the beginning of this chapter. Thus modularity-in-design can open the door to an
exciting, innovative, but very Darwinian world in which no one really knows which
firms or business models will ultimately prevail. This can be a world of growth,
innovation and opportunity. But, as the Internet Bubble and Crash taught us, this
world can also fall into periods of extreme value destruction, chaos and inefficiency.
Thus in the last analysis, modularity-in-design is neither good or bad. Rather, it is
potentially powerful and disruptive, and therefore dangerous to ignore.

Acknowledgments

Our thanks to Datta Kulkarni and Robin Stevenson for many conversations that have informed
our work over the past several years, as well as comments and suggestions that greatly
improved this paper. Thanks also to Barbara Feinberg, who over many years and countless
discussions helped us to develop and refine our ideas.

An earlier version of this talk was prepared as the keynote address for the Opening
Conference of the Research Institute of Economy, Trade and Industry (RIETI), “Modularity—
Impacts to Japan’s Industry,” Tokyo, Japan, July 12-13, 2001. Our thanks to the sponsors and
participants of the conference, especially Masahiko Aoki and Sozaburo Okamatsu, Nobuo
Ikeda, Takahiro Fujimoto, Hiroyuki Chuma, Jiro Kokuryo, Noriyuki Yanagawa, Nobuo Okubo,
Shuzo Fujimura, Hiroshi Hashimoto, Hiroshi Kuwahara, and Keiichi Enoki for extremely
stimulating discussion and pertinent critiques.

Finally we would like to thank Sarah Woolverton, Joanne Lim and James Schorr for their
assistance in compiling our industry database.

We alone are responsible for errors, oversights and faulty reasoning.

References

[1] Abernathy, William and James Utterback (1978) “Patterns of Industrial
Innovation,” Technology Review 80:41-47.

[2] Baldwin, Carliss Y. and Kim B. Clark (1992) "Modularity and Real Options:
An Exploratory Analysis" Harvard Business School Working Paper #93-026,
October.

[3] Baldwin, Carliss Y. and Kim B. Clark (1997) “Managing in the Age of
Modularity,” Harvard Business Review Sept/Oct: 81-93.

[4] Baldwin, Carliss Y. and Kim B. Clark (2000). Design Rules, Volume 1, The
Power of Modularity, MIT Press, Cambridge MA.

 Modularity in the Design of Complex Engineering Systems 203

[5] Baldwin, Carliss Y. and Kim B. Clark (2002) “Where Do Transactions Come
From? A Perspective from Engineering Design,” Harvard Business School
Working Paper 03-031, Boston, MA.

[6] Baldwin Carliss Y. and Barbara Feinberg, (1999) “Compaq: The DEC
Acquisition,” 9-800-199, Harvard Business School Publishing Company,
Boston, MA.

[7] Braha, Dan (2002) “Partitioning Tasks to Product Development Teams,”
Proceedings of ASME 2002 International Design Engineering Technical
Conferences, Montreal CN, October.

[8] Browning, Tyson R. (2001) “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions,”
IEEE Transactions in Engineering Management 48(3):292-306.

[9] Browning, Tyson R. (2002) “Process Integration Using the Design Structure
Matrix,” Systems Engineering, 5(3):180-193.

[10] Browning, Tyson R. and Steven D. Eppinger (2002) “Modeling Impacts of
Process Architecture on the Cost and Schedule Risk in Product Development,”
forthcoming in IEEE Transactions in Engineering Management.

[11] Chandler, Alfred D. (1962) Strategy and Structure, MIT Press, Cambridge,
MA.

[12] Chandler, Alfred D. (1977) The Visible Hand: The Managerial Revolution in
American Business, Harvard University Press, Cambridge, MA.

[13] Clark, Kim B. (1985) “The Interaction of Design Hierarchies and Market
Concepts in Technological Evolution,” Research Policy, 14(5):235-251.

[14] Eppinger, Steven D. (1991) "Model-based Approaches to Managing Concurrent
Engineering" Journal of Engineering Design, 2: 283-290.

[15] Eppinger, S. D., D.E. Whitney, R.P. Smith, and D.A. Gebala, 1994, "A Model-
Based Method for Organizing Tasks in Product Development," Research in
Engineering Design 6(1):1-13

[16] Ferguson, Charles H. and Charles R. Morris, Computer Wars: The Fall of IBM
and the Future of Global Technology, Times Books, NY, 1994.

[17] Fixson, Sebastian and Mari Sako (2001) “Modularity in Product Architecture:
Will the Auto Industry Follow the Computer Industry?” Paper presented at the
Fall Meeting of the International Motor Vehicle Program (IVMP).

[18] Fujimoto, Takahiro (1999) The Evolution of a Manufacturing System at Toyota,
Oxford University Press, Oxford, UK.

[19] Fujimoto, Takahiro and Akira Takeishi (2001) Modularization in the Auto
Industry: Interlinked Multiple Hierarchies of Product, Production and Supplier
Systems, Tokyo University Discussion Paper, CIRJE-F-107, Tokyo, Japan.

[20] Fujimoto, Takahiro (2002) “Architecture, Capability and Competitiveness of
Firms and Industries,” presented at the Saint-Gobain Centre for Economic
Research 5th Conference, Paris, FR, November.

204 Modularity in the Design of Complex Engineering Systems

[21] Garud Raghu and Arun Kumaraswamy (1995) “Technological and
Organizational Designs to Achieve Economies of Substitution,” Strategic
Management Journal, 17:63-76, reprinted in Managing in the Modular Age:
Architectures, Networks, and Organizations, (G. Raghu, A. Kumaraswamy, and
R.N. Langlois, eds.) Blackwell, Oxford/Malden, MA.

[22] Gomes, Paulo J. and Nitin R. Joglekar (2003) “The Costs of Organizing
Distributed Product Development Processes,” Boston University School of
Management Working Paper #2002-06, Boston, MA, January.

[23] Holland, John H. (1992) Adaptation in Natural and Artificial Systems, 2nd Ed.
MIT Press, Cambridge, MA.

[24] Holland, John H. (1996) Hidden Order: How Adaptation Builds Complexity,
Addison-Wesley Publishing Company, Reading, MA.

[25] Holland, John H. (1999) Emergence: From Chaos to Order, Perseus Books,
Reading, MA.

[26] Joglekar, Nitin and Steven Rosenthal (2003) “Coordination of Design Supply
Chains for Bundling Physical and Software Products,” Journal for Product
Innovation Management, forthcoming.

[27] Klepper, Steven (1996) “Entry, Exit, Growth and Innovation over the Product
Life Cycle, American Economic Review, 86(30):562-583.

[28] Kusiak, Andrew (1995) Engineering Design, Academic Press, New York, NY.
[29] Lindgren, Bernard W. (1968) Statistical Theory, Macmillan Publishing Co.,

New York, NY.
[30] Loch, Christoph H., Christian Terwiesch and Stefan Thomke (2001) “Parallel

and Sequential Testing of Design Alternatives,” Management Science,
45(5):663-678.

[31] Marples, D.L. 1961, “The Decisions of Engineering Design,” IEEE
Transactions in Engineering Management, 2: 55-81

[32] McCord, Kent R. and Steven D. Eppinger, 1993, "Managing the Integration
Problem in Concurrent Engineering," MIT Sloan School of Management
Working Paper, no. 3594, August.

[33] Mead, Carver and Lynn Conway (1980) Introduction to VLSI Systems,
Addison-Wesley, Reading, MA.

[34] Merton, Robert C. (1973) “Theory of Rational Option Pricing,” Bell Journal of
Economics and Management Science, 4(Spring): 141-183; reprinted in
Continuous Time Finance, Basil Blackwell, Oxford, UK, 1990.

[35] Milgrom, Paul and John Roberts (1990) “The Economics of Modern
Manufacturing: Technology, Strategy and Organization,” American Economic
Review, 80:511-528.

[36] Parnas, David L. (1972a) "A Technique for Software Module Specification
with Examples," Communications of the ACM 15(May): 330-36.

[37] Parnas, David L. (1972b) "On the Criteria to Be Used in Decomposing Systems
into Modules," Communications of the ACM 15(December): 1053-58.

[38] Parnas, David L., P.C. Clements, and D.M. Weiss (1985) "The Modular
Structure of Complex Systems," IEEE Transactions on Software Engineering,
SE-11(March): 259-66.

 Modularity in the Design of Complex Engineering Systems 205

[39] Sako, Mari (2002) “Modularity and Outsourcing: The Nature of Co-Evolution
of Product Architecture and Organization Architecture in the Global
Automotive Industry, forthcoming in The Business of Systems Integration (A.
Prencipe, A. Davies and M. Hobday, eds.) Oxford University Press, Oxford,
UK.

[40] Sanchez, Ron (1991) “Strategic Flexibility, Real Options and Product-based
Strategy,” Ph.D dissertation, Massachusetts Institute of Technology,
Cambridge, MA.

[41] Sanchez, R. and Mahoney, J. T. (1996) “Modularity, flexibility and knowledge
management in product and organizational design”. Strategic Management
Journal, 17: 63-76, reprinted in Managing in the Modular Age: Architectures,
Networks, and Organizations, (G. Raghu, A. Kumaraswamy, and R.N.
Langlois, eds.) Blackwell, Oxford/Malden, MA.

[42] Sharman, David M., Ali A. Yassine, and Paul Carlile (2002) “Characterizing
Modular Architectures,” Proceedings of DETC ’02, Design Theory &
Methodology Conference, Montreal, Canada, September.

[43] Sturgeon, Timothy (2002) “Modular Production Networks: A New American
Model of Industrial Organization,” Industrial and Corporate Change,
11(3):451-496.

[44] Sturgeon, Timothy (2003) “Exploring the Benefits, Risks, and Evolution of
Value-Chain Modularity in Product-level Electronics,” draft, Industrial
Performance Center, MIT, February.

[45] Sullivan, Kevin J., William G. Griswold, Yuanfang Cai and Ben Hallen, "The
Structure and Value of Modularity in Software Design," University of Virginia
Department of Computer Science Technical Report CS-2001-13, submitted for
publication to ESEC/FSE 2001.

[46] Sutton, John (1992) Sunk Costs and Market Structure, MIT Press, Cambridge,
MA.

[47] Topkis, Donald M. (1998) Supermodularity and Complementarity, Princeton
University Press, Princeton, NJ.

[48] Ulrich, Karl (1995) “The Role of Product Architecture in the Manufacturing
Firm,” Research Policy, 24:419-440, reprinted in Managing in the Modular
Age: Architectures, Networks, and Organizations, (G. Raghu, A.
Kumaraswamy, and R.N. Langlois, eds.) Blackwell, Oxford/Malden, MA.

[49] Wheelwright, Stephen C. and Matt Verlinden, 1998 “Compaq Computer
Corporation,” 9-698-094, Harvard Business School Publishing Company,
Boston, MA

[50] Whitney, Daniel E. (1996) “Why Mechanical Design Cannot Be Like VLSI
Design,”http://web.mit.edu/ctpid/www/Whitney/morepapers/design.pdf, viewed
April 9, 2001.

