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A LITERATE PROGRAM 

Last month‘s column introduced Don Knuth’s style of 
“Literate Programming” and his WEB system for building 
programs that are works of literature. This column pre- 
sents a literate program by Knuth (its origins are sketched 
in last month‘s column) and, as befits literature, a review. 
So without further ado, here is Knuth’s program, 
retypeset in Communications style. -Jon Bentley 
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1. Introduction. The purpose of this program is to 
solve the following problem posed by Jon Bentley: 

Given a text file and an integer k, print the k most 
common words in the file (and the number of 
their occurrences) in decreasing frequency. 

Jon intentionally left the problem somewhat 
vague, but he stated that “a user should be able to 
find the 100 most frequent words in a twenty-page 
technical paper (roughly a 50K byte file) without 
undue emotional trauma.” 

Let us agree that a word is a sequence of one or 
more contiguous letters; “Bentley” is a word, but 
“ain 1 t II isn’t. The sequence of letters should be 
maximal, in the sense that it cannot be lengthened 
without including a nonletter. Uppercase letters 
are considered equivalent to their lowercase 
counterparts, so that the words “Bentley” 
and “BENTLEY” and “bentley” are essentially 
identical. 

The given problem still isn’t well defined, for the 
file might contain more than k words, all of the same 
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frequency; or there might not even be as many as k 
words. Let’s be more precise: The most common 
words are to be printed in order of decreasing fre- 
quency, with words of equal frequency listed in al- 
phabetic order. Printing should stop after k words 
have been output, if more than k words are present. 

2. The input file is assumed to contain the given 
text. If it begins with a positive decimal number 
(preceded by optional blanks), that number will be 
the value of k; otherwise we shall assume that 
k = 100. Answers will be sent to the output file. 

define default-k = 100 (use this value if k isn’t 
otherwise specified) 

3. Besides solving the given problem, this program is 
supposed to be an example of the WEB system, for 
people who know some Pascal but who have never 
seen WEB before. Here is an outline of the program 
to be constructed: 

program common-words (input, output); 
type (Type declarations 17) 

var (Global variables 4) 
(Procedures for initialization 5) 
(Procedures for input and output a) 
(Procedures for data manipulation 20) 
begin (The main program 8); 

end. 

4. The main idea of the WEB approach is to let the 
program grow in natural stages, with its parts pre- 
sented in roughly the order that they might have 
been written by a programmer who isn’t especially 
clairvoyant. 

For example, each global variable will be intro- 
duced when we first know that it is necessary or 
desirable; the WEB system will take care of collecting 
these declarations into the proper place. We already 
know about one global variable, namely the number 
that Bentley called k. Let us give it the more descrip- 
tive name max-words-to-print. 
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(Global variables 4) = 

max.-words-to-print: integer; 
(at most this many words will be printed) 

See also sections 11, 13, 18, 22, 32, and 36. 
This code is used in section 3. 

5. As we introduce new global variables, we’ll often 
want to give them certain starting values, This will 
be done by the initialize procedure, whose body will 
consist of various pieces of code to be specified 
when we think of particular kinds of initialization, 

(Procedures for initialization 5) = 
procedure initialize; 

var i: integer; {all-purpose index for initializa- 
tions) 

begin (Set initial values 12) 
end; 

This code is used in section 3. 

6. The WEB system, which may be thought of as a 
preprocessor for Pascal, includes a macro definition 
facibty so that portable programs are easier to write. 
For example, we have already defined ‘default-k’ to 
be 100. Here are two more examples of WEB macros; 
they allow us to write, e.g., ‘incr(counf[ p])’ as a con- 
venient abbreviation for the statement ‘counf[ p] + 
counf[p] + 1’. 

define incr(#) = # c- # + 1 (increment a vari- 
able} 

define deer(#) = 4# t # - 1 {decrement a vari- 
able) 

7. Some of the procedures we shall be writing come 
to abrupt conclusions; hence it will be convenient to 
introduce a ‘return’ macro for the operation of 
jumping to the end of the procedure. A symbolic 
label ‘exit’ will be declared in all such procedures, 
and ‘exit:’ will be placed just before the final end. 
(No other labels or goto statements are used in the 
present program, but the author would find it pain- 
ful to eliminate these particular ones.) 

define exit = 30 (the end of a procedure} 
define return = goto exit {quick termination] 
format return = nil {typeset ‘return’ in boldface) 

8. Strategic considerations. What algorithms and 
data structures should be used for Bentley’s prob- 
lem? Clearly we need to be able to recognize differ- 
ent occurrences of the same word, so some sort of 
internal dictionary is necessary. There’s no obvious 
way to decide that a particular word of the input 
cannot possibly be in the final set, until we’ve gotten 
very near the end of the file; so we might as well 
remember every word that appears. 

There should be a frequency count associated 
with each word, and we will eventually want to run 
through the words in order of decreasing frequency. 
But there’s no need to keep these counts in order as 
we read through the input, since the order matters 
only at the end. 

Therefore it makes sense to structure our program 
as follows: 

(The main program a) = 
initialize; 
(Establish the value of max-words-to-print IO); 

(Input the text, maintaining a dictionary with 
frequency counts 34); 

(Sort the dictionary by frequency 39); 
(Output the results 41) 

This code is used in section 3. 

9. Basic input routines. Let’s switch to a bottom- 
up approach now, by writing some of the procedures 
that we know will be necessary sooner or later. 
Then we’ll have some confidence that our program 
is taking shape, even though we haven’t decided yet 
how to handle the searching or the sorting. It will be 
nice to get the messy details of Pascal input out of 
the way and off our minds. 

Here’s a function that reads an optional positive 
integer, returning zero if none is present at the be- 
ginning of the current line. 

(Procedures for input and output 9) = 
function read-inf: integer; 

var n: integer; {th e accumulated value) 
begin n c 0; 
if leaf then 

begin while (leoln) A (input t = Iu’) do 
gef(inpuf]; 

while (input 1 2 ‘0’) A (input 1 5 ‘9’) do 
begin n t lO*n + ord(inpuf7) - ord(‘0’); 
gef(inpuf); 
end; 

end; 
read-inf c n; 
end; 

See also sections 15, 35, and 40. 
This code is used in section 3. 

10. We invoke readht only once. 

(Establish the value of max-words-to-print IO) = 
max-words-to-print c read-inf; 
if max-words-to-prinf = 0 then 

max-words-to-print t default-k 

This code is used in section 8. 

11. To find words in the input file, we want a quick 
way to distinguish letters from nonletters. Pascal has 
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conspired to make this problem somewhat tricky, 13. Each new word found in the input will be 
because it leaves many details of the character set placed into a buffer array. We shall assume that no 
undefined. We shall define two arrays, lowercase and words are more than 60 letters long; if a longer word 
uppercase, that specify the letters of the alphabet. A appears, it will be truncated to 60 characters, and a 
third array, lettercode, maps arbitrary characters into warning message will be printed at the end of the 
the integers 0 . . 26. run. 

If c is a value of type char that represents the kth 
letter of the alphabet, then lettercode[ord(c)] = k; but 
if c is a nonletter, lettercode[ord(c)] = 0. We assume 
that 0 5 ord(c) 5 255 whenever c is of type char. 

define max-word-length = 60 
{words shouldn’t be longer than this] 

(Global variables 4) += 

(Global variables 4) += 

lowercase, uppercase: array [l . . 261 of char; 
(the letters) 

lettercode; array [0 . . 2551 of 0 . . 26; 
{the input conversion table) 

buffer: array [l . . max-word-length] of 1 . . 26; 
(the current word] 

word-length: 0 . . max-word-length; 
(the number of active letters currently in buffer] 

word-truncated: boolean; 
(was some word longer than max-word-length?] 

12. A somewhat tedious set of assignments is neces- 
sary for the definition of lowercase and uppercase, be- 
cause letters need not be consecutive in Pascal’s 

14. (Set initial values 12) += 
word-truncated t false; 

character set. 

(Set initial values 12) = 

lowercase[l] t ‘a’; uppercase[l] t ‘A’; 

lowercase[2] + ‘b’; uppercase[2] c ‘B’; 

lowercase[3] .L ‘c’; uppercase[3] c ‘C’; 
lowercase[4] t ‘d’; uppeucase[4] t ‘D’; 

loweYcase[5] + ‘e’; uppercase[5] t ‘E’; 

lowercase[6] + ‘f’; uppercase[6] t ‘I?‘; 
lowercase[7] t ‘g’; uppercase[7] t ‘G’; 
lowercase[8] + ‘h’; uppercase[8] t ‘H’; 

lowercase[9] + ‘i’; uppercase[9] c ‘I’; 

lowercase[lO] + ’ j’; uppercase[lO] c ‘J’; 

~owercase[ll] t ‘k’; uppercase[ll] t ‘K’; 

lowercase[l2] c ‘1’; uppercase1121 c ‘L’; 

lowercase[l3] t ‘m’; uppercase[l3] c ‘M’; 

lowercase[l4] t ‘n’; uppercase[l4] t ‘N’; 
lowercase[l5] + ‘0’; uppercase[l5] c ‘0’; 
lowercase[l6] c ‘p’; uppercase[l6] c ‘P’; 
lowercase[l7] t ‘q’; uppercase[l7] t ‘Q’; 
loweucase[l8] c ‘r’; uppercase[l8] c ‘R’; 

lowercase[l9] c ‘s’; uppercase[l9] c ‘S’; 
loweYcase[20] + ‘t’; uppercase[20] c ‘T’; 
Zowercase[21] c ‘u’; uppercase[Zl] c ‘U’; 
lowercase[22] c ‘v’; uppercase[22] t ‘V’; 

lowercase[23] + ‘WI; uppercase[23] t ‘W’; 

lowercase[24] + ‘x’; uppercase[24] c ‘X’; 
lowercase[25] + ‘y’; uppercase[25] c ‘Y’; 
lowercase[26] c ‘2’; uppercase[26] c ‘z’; 
for i t 0 to 255 do lettercode [i] c 0; 
for i t 1 to 26 do 

15. We’re ready now for the main input routine, 
which puts the next word into the buffer. If no more 
words remain, word-length is set to zero; otherwise 
word-length is set to the length of the new word. 

(Procedures for input and output 9) += 
procedure get-word; 

label exit; {enable a quick return) 
begin word-length + 0; 

if leaf then 
begin while lettercode[ord(input t)] = 0 do 

if leoln then get(input) 
else begin read-ln; 

if eof then return; 
end; 

(Read a word into buffer 16); 

end; 
exit: end; 

16. At this point lettercode[ord(input t)] > 0, hence 
input T contains the first letter of a word. 

(Read a word into buffer 16) = 
repeat if word-length = max-word-length then 

word-truncated + true 
else begin incr(word-length); 

buffer[word-length] c lettercode[ord(input t)]; 
end; 

get(input); 
until lettercode[ord(input f)] = 0 

begin lettercode[ord(lowercase[i])] c i; 
lettercode[ord(uppercase[i])] c i; 
end; 

See also sections 14, 19, 23, and 33. 
This code is used in section 5. 

This code is used in section 15. 

17. Dictionary lookup. Given a word in the buffer, 
we will want to look for it in a dynamic dictionary 
of all words that have appeared so far. We expect 
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many words to occur often, so we want a search est child’s sibling pointer is link[ p]. Continuing our 
technique that will find existing words quickly. Fur- earlier example, if all words in the dictionary begin- 
thermore, the dictionary should accommodate words ning with “be*’ sl.art with either “hen” or “betl*, 
of variable length, and [ideally) it should also facili- then sibfing[2000] = 2021, sibling[2021] = 2015, and 
tate the task of alphabetic ordering. sibling[2015] = 2000. 

These constraints, suggest a variant of the data 
structure introduced by Frank M. Liang in his Ph.D. 
thesis [“Word Hy-p.hen-a-tion by Corn-pu-ter,” 
Stanford University, 19831. Liang’s structure, which 
we may call a hash Pie, requires comparatively few 
operations to find a word that is already present, 
although it may take somewhat longer to insert a 
new entry. Some space is sacrificed-we will need 
two pointers, a count, and another s-bit field for 
each character in the dictionary, plus extra space to 
keep the hash table from becoming congested-but 
relatively large memories are commonplace now- 
adays, so the method seems ideal for the present 
application. 

Notice that children of different parents might ap- 
pear next to each other. For example, we might 
have ch[2020] = 6, for the child of some word such 
that link[p] = 2014. 

If link[ p] # 0, the table entry in position link[ p] is 
called the “header” of p’s children. The special code 
value header appears in the ch field of each header 
entry. 

If p represents a word, count [p] is the number of 
times that the word has occurred in the input so far. 
The count field in a header entry is undefined. 

Unused positions p have ch[p] = empty-slot: In this 
case link[ p], sibling[ p], and count [ p] are undefined. 

A trie represents a set of words and all prefixes of 
those words [cf. I<nuth, Sorting and Searching, Section 
6.31. For convenience, we shall say that all non- 
empty prefixes of the words in our dictionary are 
also words, even though they may not occur as 
“words” in the inpu.t file. Each word (in this general- 
ized sense) is represented by a pointer, which is an 
index into four large arrays called link, sibling, count, 
and ch. 

define empfy-slot = 0 
define header = 27 
define move-to-prefix(#) = # c link[# - ch[#]] 
define move-to-last-suffix(#) = 

while link[#] # 0 do # t sibling[link[#]] 

(Global variables 4) += 
link, sibling: array [pointer] of pointer; 
ch: array [pointer] of empty-slot . . header; 

define frie-size = 32767 (the largest pointer value) 

(Type declarations 17) = 

pointer = 0 . . trie.size; 
This code is used in section 3. 

19. (Set initial values 12) += 
for i c 27 to trie-size do ch[i] t empty-slot; 
foritl to26do 

begin ch[i] c i; link[i] c 0; count[i] t 0; 
sibling[i] c i - 1; 
end; 

18. One-letter words are represented by the pointers 
1 through 26. The representation of longer words is 
defined recursively: If p represents word w and if 
1 5 c % 26, then the word w followed by the cth 
letter of the alphabet is represented by Iink[ p] + c. 

For example, suppose that link[2] = 1000, 
link[1005] = 2000, a.nd link[2015] = 3000. Then the 
word vlb*l is represented by the pointer value 2; 
“be” is represented by Zink[2] + 5 = 1005; “hen” is 
represented by 2015; and “bent” by 3021. If no 
longer word beginning with “bent ‘I appears in the 
dictionary, Iink[3021] will be zero. 

The hash trie also contains redundant information 
to facilitate traversal and updating. If link[ p] is non- 
zero, then link[Zink[ p]] = p. Furthermore if 4 = 
link[ p] + c is a “child” of p, we have ch[q] = c; this 
makes it possible to’ go from child to parent, since 
link[q - ch[q]] = link[link[p]] = p. 

Children of the same parent are linked by sibling 
pointers: The largest child of p is sibling]link[ p]], and 
the next largest is sibling[sibling[link[ p]]]; the small- 

ch[O] c header; link[O] c 0; sibling[O] t 26; 

20. Here’s the basic subroutine that finds a given 
word in the dictionary. The word will be inserted 
(with a count of zero) if it isn’t already present. 

More precisely, the find-buffer function looks for 
the contents of buffer, and returns a pointer to the 
appropriate dictionary location. If the dictionary is 
so full that a new word cannot be inserted, the 
pointer 0 is returned. 

define abort-find = 
begin find-buffer c 0; return; end 

(Procedures for data manipulation zo) = 
function find-buffer: pointer; 

label exit; (enable a quick return) 
vari:l.. max-word-length; (index into buffer) 

p: pointer; (the current word position) 
q: pointer; (the next word position) 
c: 1 . . 26; {current letter code) 
(Other local variables of find-buffer 26) 
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begin i t 1; p t buffer[l]; 
while i < word-length do 

begin incr(i); c + buffer[i]; 
(Advance p to its child number c 21); 
end; 

find-buffer c p; 
exit: end ; 

See also section 37. 
This code is used in section 3. 

21. (Advance p to its child number c 21) = 
if link[ p] = 0 then (Insert the firstborn child of p 

and move to it, or abort-find 27) 

else begin 9 c link[ p] + c; 
if ch[9] # c then 

begin if ch[q] # empty-slot then 
(Move p’s family to a place where child c 
will fit, or abort-find 29); 

(Insert child c into p’s family 28); 

end; 

P+9; 
end 

This code is used in section 20. 

22. Each “family” in the trie has a header location 
h = link[ p] such that child c is in location h + c. We 
want these values to be spread out in the trie, so 
that families don’t often interfere with each other. 
Furthermore we will need to have 

26 < h 5 trie-size - 26 

if the search algorithm is going to work properly. 
One of the main tasks of the insertion algorithm is 

to find a place for a new header. The theory of hash- 
ing tells us that it is advantageous to put the nth 
header near the location x,, = con mod t, where t = 
trie-size - 52 and where (Y is an integer relatively 
prime to t such that a/t is approximately equal to 
(& - 1)/2 = .61803. [These locations X, are about as 
“spread out” as you can get; see Sorting and Searching, 
pp. 510-511.1 

define alpha = 20219 (- .61803trie_size) 

(Global variables 4) += 

x: pointer; (an mod (trie-size - 52)) 

23. (Set initial values 12) += 
xt 0; 

24. We will give up trying to find a vacancy if 1000 
trials have been made without success. This will 
happen only if the table is quite full, at which time 
the most common words will probably already ap- 
pear in the dictionary. 

define tolerance = 1000 

(Get set for computing header locations 24) = 

if x < trie-size - 52 - alpha then x t x + alpha 
else x t x + alpha - trie-size + 52; 
h + x + 27; {now 26 < h 6 trie-size - 26) 
if h 5 trie-size - 26 - tolerance then 

lust-h t h + tolerance 
else lust-h c h + tolerance - trie-size + 52; 

This code is used in sections 27 and 31. 

25. (Compute the next trial header location h, 
or abort-find 25) = 

if h = last-h then abort-find; 
if h = trie-size - 26 then h + 27 
else incr(h) 

This code is used in sections 27 and 31. 

26. (Other local variables of find-buffer 26) = 

h: pointer; (trial header location) 
last-h: integer; lthe final one to try) 

See also section 30. 
This code is used in section 20. 

27. (Insert the firstborn child of p and move to it, 
or abort-find 27) = 

begin (Get set for computing header locations 24); 

repeat (Compute the next trial header location h, 
or abort-find 25); 

until (ch[h] = empty-slot) A 
(ch[h + c] = empty-slot); 

link[ p] c h; link[h] t p; p t h + c; 
ch[h] c header; ch[ p] t c; 
sibling[h] c p; sibling[ p] c h; count[ p] t 0; 
link[ p] t 0; 
end 

This code is used in section 21. 

28. The decreasing order of sibling pointers is pre- 
served here. We assume that 9 = link[p] + c. 

(Insert child c into p’s family 28) = 

begin h t link[ p]; 
while sibling[h] > 9 do h t sibling[h]; 
sibling[q] t sibling[h]; sibling[h] + 9; 
ch[q] c c; count[q] c 0; link[q] c 0; 
end 

This code is used in section 21. 

29. There’s one complicated case, which we have 
left for last. Fortunately this step doesn’t need to be 
done very often in practice, and the families that 
need to be moved are generally small. 

he 1986 Volume 29 Number 6 Communications of the ACM 475 



Programming Pearls 

(Move p’s family to a place w:here child c will fit, 
or abort-find 29) = 

begin (Find a suitable place h to move, 
or abort-find 31); 

q c h + c; r c link[ p]; delta c h - r; 
repeat sibling[r + delta] t sibling[r] + delta; 

ch[r + delta] c ch[r]; ch[r] t empty-slot; 
count[r + delta] c count[r]; 
link[r + delta] t- link[r]; 
if link[r] # 0 then link[link[r]] t r + delta; 
r c sibling[rI]; 

until ch [ r] = empty-slot ; 
end 

This code is used in section 21. 

30. (Other local va.riables of find-buffer 26) += 
r: pointer; (family member to be moved] 
delta: integer; {amount of motion] 
slot-found: boolean; (h ave we found a new home- 

stead?} 

31. (Find a suitable place h to move, 
or abort-find 31) = 

slot-found c false; 
(Get set for computing header locations 24); 
repeat (Compute the next trial header location h, 

or abort-find 25); 
if ch[h + c] = empty-slot then 

begin r t link[ p]; delta t h - r; 
while (ch[r + delta] = empty-slot) A 

(sibling[r] # link[p]) do r t sibling[r]; 
if ch[r + delta] = empty-slot then 

slot-found 4~ true; 
end; 

until slot-found 

This code is used in section 29. 

32. The frequency counts. 1.t is, of course, a sim- 
ple matter to combine dictionary lookup with the 
get-word routine, so that all the word frequencies 
are counted. We may have to drop a few words in 
extreme cases (when the dictionary is full or the 
maximum count has been reached). 

define max-count = 32767 
{counts won’t go higher than this! 

(Global variables 4) += 
count: array [pointer] of 0 , . max-count; 
word-missed: boolean; (did the dictionary get too 

full?] 
p: pointer; (location of the current word) 

33. (Set initial values 12) += 
word-missed + false; 

34. (Input the text, maintaining a dictionary with 
frequency counts 34) = 

get-word; 
while word-length # 0 do 

begin p c find-buffer; 
if p = 0 then word-missed + true 
else if count[ p] < max-count then incr(count[ p]); 
get-word; 
end 

This code is used in section 8. 

35. While we have the dictionary structure in mind, 
let’s write a routine that prints the word correspond- 
ing to a given pointer, together with the correspond- 
ing frequency count. 

For obvious reasons, we put the word into the 
buffer backwards during this process. 

(Procedures for input and output 9) += 
procedure print-word( p: pointer); 

var q: pointer; (runs through ancestors of p] 
i: 1 , . max-word-length; (index into buffer) 

begin word-length t 0; q t p; write(‘,‘); 
repeat incr(word-length); 

buffer[ word-length] + ch [q]; 
move-to-prefix(q); 

until q = 0; 
for i c word-length downto 1 do 

write(lowercase[buffer[i]]); 
if count[ p] < max-count then 

wrife-ln(‘u’, counf[p] : 1) 
else write-ln(‘u’, max-count : 1, ‘oor,more’); 
end; 

36. Sorting a trie. Almost all of the frequency 
counts will be small, in typical situations, so we 
needn’t use a general-purpose sorting method. It suf- 
fices to keep a few linked lists for the words with 
small frequencies, with one other list to hold every- 
thing else. 

define large-count = ZOO {all counts less than this 
will appear in separate lists) 

(Global variables 4) += 
sorted: array [l . . large-count] of pointer; (list 

heads] 
total-words: integer: (th e number of words sorted] 

37. If we walk through the trie in reverse alphabeti- 
cal order, it is a simple matter to change the sibling 
hnks so that the words of frequency f are pointed to 
by sorted[ f], sibling[sorted[ f]], . . . in alphabetical 
order. When f = large-count, the words must also be 
linked in decreasing order of their count fields. 
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The restructuring operations are slightly subtle 
here, because we are modifying the sibling pointers 
while traversing the trie. 

(Procedures for data manipulation ZO) += 
procedure trie-sort; 

varkzl.. large-count; {index to sorted} 
p : pointer; {current position in the trie} 
f:O.. max-count; (current frequency count 1 
q, r: pointer; (list manipulation variables) 

begin total...words t 0; 
for k c 1 to large-count do sorted[k] c 0; 
p c sibling[O]; move-to-last-suffix(p); 
repeat ft count[ p]; q t sibling[ p]; 

if f # 0 then (Link p into the list sorted[ f ] 38); 
if ch[q] # header then 

begin p c 9; move-to-last-suffix(p); 
end 

else p t link[q]; {move to prefix] 
until p = 0; 
end : 

38. Here we use the fact that count[O] = 0. 

(Link p into the list sorted[ f] 38) = 
begin incr(total-words); 
if f < large-count then (easy case} 

begin sibling[ p] t sorted[ f]; sorted[ f] t p; 
end 

else begin r c sorted[large-count]; 
if count[ p] 2 count[r] then 

begin sibling[ p] c r; sorted[large-count] c p; 
end 

else begin while count[pJ < count[sibling[r]] do 
r c sibling[r]; 

sibling[ p] c sibling[r]; sibling[r] c p; 
end ; 

end; 
end 

This code is used in section 37 

38. (Sort the dictionary by frequency 39) E 
trie-sort 

This code is used in section 8. 

40. After trie-sort has done its thing, the linked lists 
sorted[large-count], . . . , sorted[l] collectively contain 
all the words of the input file, in decreasing order 
of frequency. Words of equal frequency appear in 
alphabetic order. These lists are linked by means 
of the sibling array. 

Therefore the following procedure will print the 
first k words, as required in Bentley’s problem. 

(Procedures for input and output 9) += 
procedure print-common(k : integer); 

label exit; {enable a quick return) 
varfil.. large-count + 1; (current frequency) 

p: pointer; {current or next word] 
begin f c large-count + 1; p + 0; 
repeat while p = 0 do 

begin if f = 1 then return; 
decr( f ); p t sorted[ f 1; 
end; 

print-word(p); deer(k); p c sibling[ p]; 
until k = 0; 

exit: end ; 

41. The endgame. We have recorded total-words 
different words. Furthermore the variables 
word-missed and word-truncated tell whether or 
not any storage limitations were exceeded. So the 
remaining task is simple: 

(Output the results 41) = 
if total-words = 0 then write-ln('Thereuare', 

'Uno,wordsUin,theUinput!') 
else begin if total-words < max-words-to-print then 

{we will print all words] 
write-ln('Words,of,the,input,file,', 

',,ordered,by,frequency:') 
else if max-words-to-print = 1 then 

wrife(‘TheumostUcommonUword’, 
'UandUitsufrequency:') 

else write-ln('The,', max-words-to-print : 1, 
'umostucommonuwords,', 
',and,their,frequencies:'); 

print-common(max-words-to-print); 
if word.-truncated then 

write-ln('(At,least,one,word,had,toUbe', 
'Ushortened,to,', max-word-length: 1, 
‘Jetters . ) ‘); 

if word-missed then 
write-ln(’ (Someuinputudata,wasUskipped,', 

‘,due,to,,memory,limitations. )‘); 
end 

This code is used in section 8. 

42. Index. Here is a list of all uses of all identifiers, 
underlined at the point of definition. 
abort-find: 2J, 25. char: 11. 
alpha: 22, 24. common-words: 3. 
Bentley, Jon Louis: 1. count: 6, 17, 18,19, 20, 
boolean: 13, 30, 32. 27, 28, 29,3J, 34, 35, 
buffer: lJ, 16, 20, 35. 37, 38. 
c: 20. 
ch% 18, 19, 21, 27, 

deer: 5, 40. 
28, default-k: 2, 6, 10. 

29, 31, 35, 37. delta: 29, 3, 31. 
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empty-slot: 18, 19, 21, 27, 
29, 31. 

eof: 9, 15. 
eoln: 9, 15. 
exit: 2, 15, 20, 40. 
f: 37, 40. 
false: 14, 31, 33. 
find-buffer: ZJ, 34. 
get: 9, 15, 16. 
get-word: 15, 32, 34. 
goto: 1. 
h: 26. 
header: 18, 19, 27, 37. 
i: 5,2, 35. 
incr: tj, lx 20, 25, 34, 35, 

38. 
initialize: !j, 8. 
input: 2, 3, 9, 11, 15, 16. 
integer: 4, 5, 9, 26, 30, 36, 

40. 
k: 37, 40. 
Knuth3onald Ervin: 17. 
large-count: 36, 37, 38, 

40. 
last-h: 24, 25, 26. 
lettercode: lJ, 12, 15, 16. 
Liang, Franklin Mark: 

17. 
link: 17,IJ 19, 21, 122, 

27, 28, 29, 31, 37. 
lowercase: 2, 12, 35. 
max-count: 3, 34, 35, 37. 
max-word-length: 13, 16, 

20, 35, 41. 
max-words-to-print: 4, 

10, 41. 
move-to-last-suffix: 3, 

37. 

move-to-prefix: 18, 35. 
n: 9. - 
nil: 7. 
ord: 9, 11, 12, 15, 16. 
oufpuf: 2, 3. 
p: 20, 32, 35, 37, 40. 
pointer: 17, 18, 20, 22, 26, 

30, 32, 35, 36, 37, 40. 
print-common: 40, 41. 
print-word: 35, 40. 
q: 20, 35, 37. 
r: 3J, 37. - 
read-int: 9, 10. 
read-ln: 15. 
return: 7. 
sibling: 17, 18, 19, 27, 28, 

29, 31, 37, 38, 40. 
slot-found: 3J, 31. 
sorted: 3, 37, 38, 40. 
tolerance: 24. 
total-word;%, 37, 38, 

41. 
trie-size: lJ, 19, 22, 24, 

25. 
Pie-sort: 3J, 39, 40. 
true: 16, 31, 34. 
uppercase: 11, 12. 
word-length: lJ, 15, 16, 

20, 34, 35. 
word-missed: 32, 33, 34, 

41. 
word-truncated: lJ, 14, 

16, 41. 
write: 35, 41. 
write-ln: 35, 41. 
x: 22. - 

(Advance p to its child number c 21) 
Used in section 20. 

(Compute the next trial header location h, or 
abort-find 25) Used in sections 27 and 31. 

(Establish the value of max-words-to-print IO) 
Used in section 8. 

(Find a suitable place h to move, or abort-find 31) 
Used in section 29. 

(Get set for computing header locations 24) 
Used in sections 27 and 31. 

(Global variables 4,11,13, 18, 22, 32, 36) 

Used in section 3. 
(Input the text, maintaining a dictionary with fre- 

quency counts 34) Used in section 8. 

(Insert child c into p’s family 28) Used in section 21. 

(Insert the firstborn child of p and move to it, or 
abort-find 27) Used in section 21. 

(Link p into the list sorted[ f ] 38) Used in section 37. 
(Move p’s family to a place where child c will fit, or 

abort-find 29) Used in section 21. 
(Other local variables of find-buffer 26, 30) 

Used in section 20. 
(Output the results 41) Used in section 8. 
(Procedures for data manipulation 20,37) 

Used in section 3. 
(Procedures for initialization 5) Used in section 3. 
(Procedures for input and output 9,15,35,40) 

Used in section 3. 
(Read a word into buffer 16) Used in section 15. 
(Set initial values 12,14.19, 23, 33) Used in section 5. 
(Sort the dictionary by frequency 39) 

Used in section 8. 
(The main program 8) Used in section 3. 
(Type declarations 17) Used in section 3. 

A Review 
My dictiona y defines criticism as “the art of evaluating 
or analyzing with knowledge and propriety, especially 
works of art or literature. “ Knuth’s program deserves 
criticism on two counts. He was the one, after all, who 
put forth the analogy of programming as literature, so 
what is more deserved than a little criticism? This 
program also merits criticism by ifs intrinsic interest; 
although Knuth set out only to display WEB, he hcs 
produced a program that is fascinating in its own right. 
Doug Mcllroy of Bell Labs was kind enough to provide 
this review.-J.B. 

I found Don Knuth’s program convincing as a dem- 
onstration of WEB and fascinating for its data struc- 
ture, but I disagree with it on engineering grounds. 
The problem is to print the K most common words in 
an input file (and the number of their occurrences] 
in decreasing frequency. Knuth’s solution is to tally 
in an associative data structure each word as it is 
read from the file. The data structure is a trie, with 
26-way (for technical reasons actually 27-way) fan- 
out at each letter. To avoid wasting space all the 
(sparse) 26-element arrays are cleverly interleaved 
in one common arena, with hashing used to assign 
homes. Homes may move underfoot as new words 
cause old arrays to collide. The final sorting is done 
by distributing counts less than 200 into buckets and 
insertion-sorting larger counts into a list. 

The presentation is engaging and clear. In WEB one 
deliberately writes a paper, not just comments, along 
with code. This of course helps readers. I am sure 
that it also helps writers: reflecting upon design 
choices sufficiently to make them explainable must 
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help clarify and refine one’s thinking. Moreover, be- 
cause an explanation in WEB is intimately combined 
with the hard reality of implementation, it is quali- 
tatively different from, and far more useful than, an 
ordinary “specification” or “design” document. It 
can’t gloss over the tough places. 

Perhaps the greatest strength of WEB is that it al- 
lows almost any sensible order of presentation. Even 
if you did not intend to include any documentation, 
and even if you had an ordinary cross-referencer at 
your disposal, it would make sense to program in 
WEB simply to circumvent the unnatural order 
forced by the syntax of Pascal. Knuth’s exercise am- 
ply demonstrates the virtue of doing so. 

Mere use of WEB, though, won’t assure the best 
organization. In the present instance the central idea 
of interleaving sparsely populated arrays is not men- 
tioned until far into the paper. Upon first reading 
that, with hash tries, “some space is sacrificed,” I 
snorted to myself that some understatement had 
been made of the wastage. Only much later was I 
disabused of my misunderstanding. I suspect that 
this oversight in presentation was a result of docu- 
menting on the fly. With this sole exception, the 
paper eloquently attests that the discipline of simul- 
taneously writing and describing a program pays off 
handsomely. 

A few matters of style: First, the program is stud- 
ded with instances of an obviously important con- 
stant, which variously take the guise of “26”, “27”, 
and “52.” Though it is unobjectionable to have such 
a familiar number occur undocumented in a pro- 
gram about words, it is impossible to predict all its 
disguised forms. Just how might one confidently 
change it to handle, say, Norwegian or, more mun- 
danely, alphanumeric “words”? A more obscure ex- 
ample is afforded by a constant alpha, calculated as 
the golden ratio times another constant, trie-size. 
Signaled only by a comment deep inside the pro- 
gram, this relationship would surely be missed in 
any quick attempt to change the table size. WEB, 

unlike Pascal, admits dependent constants. They 
should have been used. 

Second, small assignment statements are grouped 
several to the line with no particularly clear ration- 
ale. This convention saves space; but the groupings 
impose a false and distracting phrasing, like “poetry” 
produced by randomly breaking prose into lines. 

Third, a picture would help the verbal explana- 
tion of the complex data structure. Indeed, pictures 
in listings are another strong reason to combine pro- 
gramming with typesetting; see Figure 1. 

Like any other scheme of commentary, WEB can’t 
guarantee that the documentation agrees perfectly 
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FIGURE 1. A Picture to Accompany Knuth’s $18’ 

with the program. For example, the procedure 
read-int expects an integer possibly preceded by 
blanks, although a literal reading of the description 
would require the integer to appear at the exact 
beginning of the text. This, however, was the only 
such case I noticed. The accuracy of the documenta- 
tion compliments both the author and his method. 

The WEB description led me pleasantly through 
the program and contained excellent cross refer- 
ences to help me navigate in my own ways. It pro- 
vided important guideposts to the logical structure of 
the program, which are utterly unavailable in 
straight Pascal. For no matter how conscientiously 
commented or stylishly expressed programs in 
Pascal may be, the language forces an organization 
convenient for translating, not for writing or reading. 
In the WEB presentation variables were introduced 

’ I typeset this picture in an hour or two of my time using the PIC language; 
Knuth could have usedT@ features to include such a figure in his WEB 
program. The figure contains a slight mistake for consistency with an off-by- 
one slio in 618 of Knuth’s oroeram: he assumed that “N” was the 15” letter of 
the alihabet, while it is r&111; the 14~“. Knuth insisted that we publish his 
program as he wrote it, warts and all, since it shows that WEB does not totally 
eliminate mistakes.-J.B. 
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where needed, rather than where permitted, and 
procedures were presented top-down as well as 
bottom-up according to peda!gogical convenience 
rather than syntactic convention. I was able to skim 
the dull parts and concentrate on the significant 
ones, learning painlessly about a new data structure. 
Although I could have learned about hash tries 
without the program, it was truly helpful to have it 
there, if only to ta.ste the practical complexity of the 
idea. Along the way I even learned some math: the 
equidistribution (mod 1) of multiples of the golden 
mean. Don Knuth’s ideas and practice mix into a 
whole greater than the parts. 

Although WEB circumvents Pascal’s rigid rules of 
order, it makes no attempt to remedy other defects 
of Pascal (and r-igh.tly so, for the idea of WEB tran- 
scends the partimulars of one language]. Knuth tip- 
toes around the tarpits of Pascal I/O-as I do myself. 
To avoid multiple input files, he expects a numerical 
parameter to be tacked on to the beginning of other- 
wise pure text. Besides violating the spirit of 
Bentley’s specifica.tion, where the file was clearly 
distinguished from the parameter, this clumsy con- 
vention could not conceivably happen in any real 
data. Worse still, how is the parameter, which Knuth 
chose to make optional, to be distinguished from the 
text proper? Finally, by overtaxing Pascal’s higher- 
level I/O capabili.ties, the convention compels 
Knuth to write a special, but utterly mundane, read 
routine. 

Knuth’s purpose was to illustrate WEB. Neverthe- 
less, it is instructive to consi.der the program at face 
value as a solution to a problem. A first engineering 
question to ask is: how often is one likely to have to 
do this exact task’? Not at all often, I contend. It is 
plausible, though, that similar, but not identical, 
problems might arise. A wise engineering solution 
would produce-or better, exploit-reusable parts. 

If the application were so big as to need the effi- 
ciency of a sophisticated solution, the question 
of size should be addressed before plunging in. 
Bentley’s original statement suggested middling size 
input, perhaps 10,000 words. But a major piece of 
engineering built for the ages, as Knuth’s program is, 
should have a large factor of safety. Would it, for 
example, work on the Bible? A quick check of a 
concordance reveals that the Bible contains some 
15,000 distinct words, with typically 3 unshared iet- 
ters each (supposing a trie solution, which squeezes 
out common prefixes). At 4 integers per trie node, 
that makes 180,000 machine integers. Allowing for 
gaps in the hash trie, we may reasonably round up 
to half a million. Knuth provided for 128K integers; 
the prospects for scaling the trie store are not 
impossible. 

Still, unless the program were run in a multi- 
megabyte memory, it would likely have to ignore 
some late-arriving words, and not necessarily the 
least frequent ones, either: the word “Jesus” doesn’t 
appear until three-fourths of the way through the 
Bible. 

Very few people can obtain the virtuoso services 
of Knuth (or afford the equivalent person-weeks of 
lesser personnel) to attack nonce problems such as 
Bentley’s from the ground up. But old Unix@ hands 
know instinctively how to solve this one in a jiffy. 
(So do users of SNOBOL and other programmers 
who have associative tables’ readily at hand-for 
almost any small problem, there’s some language 
that makes it a snap.) The following shell script3 was 
written on the spot and worked on the first try. It 
took 30 seconds to handle a 10,000-word file on a 
VAX-11/750@. 

(1) tr -cs A-Za-z' 
' I 

(2) tr A-Z a-z ) 
(3) sort ) 
(4) uniq -c 1 
(5) sort -rn 1 
(6) sed Sjlls 

If you are not a Unix adept, you may need a little 
explanation, but not much, to understand this pipe- 
line of processes. The plan is easy: 

1. 

2. 
3. 
4. 

5. 
6. 

Make one-word lines by transliterating the com- 
plement (-c) of the alphabet into newlines (note 
the quoted newline), and squeezing out (-s) 
multiple newlines. 
Transliterate upper case to lower case. 
Sort to bring identical words together. 
Replace each run of duplicate words with a 
single representative and include a count (-c), 
Sort in reverse (-r) numeric (-n) order. 
Pass through a stream editor; quit (q) after print- 
ing the number of lines designated by the 
script’s first parameter ($(I 1). 

The utilities employed in this trivial solution are 
Unix staples. They grew up over the years as people 
noticed useful steps that tended to recur in real 
problems. Every one was written first for a particu- 
lar need, but untangled from the specific application. 

Unix is a trademark of AT&T Bell Laboratories. VAX is a trademark of Digital 
Equipment Corporation. 
‘The June 1985 column describes associative arrays as they are implemented 
in the AWK language; page 572 contains a B-line AWK program to count how 
many times each word occurs in a file.-J.B. 
‘This shell script is similar to a prototype spelling checker described in the 
May 1985 column. (That column also described a production-quality spelling 
checker designed and implemented by one-and-the-same Doug Mcllroy.) This 
shell script runs on a descendant of the “seventh edition” UNIX system; trivial 
syntactic changes would adapt it for System V.-J.B. 
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With time they accreted a few optional parameters 
to handle variant, but closely related, tasks. Sort, for 
example, did not at first admit reverse or numeric 
ordering, but these options were eventually identi- 
fied as worth adding. 

As an aside on programming methodology, let us 
compare the two approaches. At a sufficiently ab- 
stract level both may be described in the same 
terms: partition the words of a document into equiv- 
alence classes by spelling and extract certain in- 
formation about the classes. Of two familiar strate- 
gies for constructing equivalence classes, tabulation 
and sorting, Knuth used the former, and I chose the 
latter. In fact, the choice seems to be made precon- 
sciously by most people. Everybody has an instinc- 
tive idea how to solve this problem, but the instinct 
is very much a product of culture: in a small poll of 
programming luminaries, all (and only) the people 
with Unix experience suggested sorting as a quick- 
and-easy technique. 

The tabulation method, which gets right to the 
equivalence classes, deals more directly with the 
data of interest than does the sorting method, which 
keeps the members much longer. The sorting 
method, being more concerned with process than 
with data, is less natural and, in this instance, poten- 
tially less efficient. Yet in many practical circum- 
stances it is a clear winner. The causes are not far to 
seek: we have succeeded in capturing generic pro- 
cesses in a directly usable way far better than we 
have data structures. One may hope that the new 
crop of more data-centered languages will narrow 
the gap. But for now, good old process-centered 
thinking still has a place in the sun. 

Program transformations between the two ap- 
proaches are interesting to contemplate, but only 
one direction seems reasonable: sorting to tabula- 
tion. The reverse transformation is harder because 
the elaboration of the tabulation method obscures 
the basic pattern. In the context of standard software 
tools, sorting is the more primitive, less irrevocably 
committed method from which piecewise refine- 
ments more easily flow. 

To return to Knuth’s paper: everything there- 
even input conversion and sorting-is programmed 
monolithically and from scratch. In particular the 
isolation of words, the handling of punctuation, and 
the treatment of case distinctions are built in. Even 
if data-filtering programs for these exact purposes 
were not at hand, these operations would well be 
implemented separately: for separation of concerns, 
for easier development, for piecewise debugging, and 
for potential reuse. The small gain in efficiency from 
integrating them is not likely to warrant the result- 
ing loss of flexibility. And the worst possible even- 

tuality-being forced to combine programs-is not 
severe. 

The simple pipeline given above will suffice to get 
answers right now, not next week or next month. It 
could well be enough to finish the job. But even for 
a production project, say for the Library of Congress, 
it would make a handsome down payment, useful 
for testing the value of the answers and for smoking 
out follow-on questions. 

If we do have to get fancier, what should we do 
next? We first notice that all the time goes into sort- 
ing. It might make sense to look into the possibility 
of modifying the sort utility to cast out duplicates as 
it goes (Unix sort already can) and to keep counts. A 
quick experiment shows that this would throw away 
85 percent of a 10,888-word document, even more of 
a larger file. The second sort would become trivial. 
Perhaps half the time of the first would be saved, 
too. Thus the idea promises an easy a-to-1 speedup 
overall-provided the sort routine is easy to modify. 
If it isn’t, the next best thing to try is to program the 
tallying using some kind of associative memory- 
just as Knuth did. Hash tables come to mind as easy 
to get right. So do simple tries (with list fanout to 
save space, except perhaps at the first couple of 
levels where the density of fanout may justify ar- 
rays). And now that Knuth has provided us with the 
idea and the code, we would also consider hash 
tries. It remains sensible, though, to use utilities for 
case transliteration and for the final sort by count. 
With only 15 percent as much stuff to sort (even less 
on big jobs) and only one sort instead of two, we can 
expect an order of magnitude speedup, probably 
enough relief to dispel further worries about sorting. 

Knuth has shown us here how to program intelli- 
gibly, but not wisely. I buy the discipline. I do not 
buy the result. He has fashioned a sort of industrial- 
strength Faberge egg-intricate, wonderfully worked, 
refined beyond all ordinary desires, a museum piece 
from the start. 

Principles-J.B. 
Literate Programming. Last month’s column sketched 
the mechanics of literate programming. This month’s 
column provides a large example-by far the most 
substantial pearl described in detail in this column. 
I’m impressed by Knuth’s methods and his results; I 
hope that this small sample has convinced you to 
explore the Further Reading to see his methods 
applied to real software. 

A New Data Structure. I asked Knuth to provide a 
textbook solution to a textbook problem; he went far 
beyond that request by inventing, implementing 
and lucidly describing a fascinating new data 
structure-the hash trie. 

lune 1986 Volume 29 Number 6 Communications of the ACM 481 



Progrunrmii~g Pearls 

Further Reading 
“Literate Programming” is the title and the togto of 
Knuth’s article in the May 3984 Cu#~~~~~~~~~~~ 
(Volume 27, Number 2, pages 97-112). Xt intr~~~~s 
a Xiterate style of pro~amm~ng with the flxamplo d ” 
printing the first WOO prime ~urnb~r~.~~rn~~e~e 
documentation of “The WEB System of §~r~~~~red 
Documentation” is available as Stanford ~o~~~ter 
Science technical report 988 (September 19&I, $336 
pages); it contains the WEB source code far TANGLE 
and WEAVE. 

The small programs in this column and I&t 
month’s hint at the benefits of literate ~rog~ming; 
its full power can only be a~~precia~e~~~~, you see 
it applied to substantial prq~ams. Tw~~~~ WI@ 
programs appear in Knuth’s .-five-vol~~~:~~~~~~~r 
and Typesetting, just pubhshed by ~~~~~~~~~~~, 
The source code for.% is Vohkne & e&led :, 
7lX: The Program (xvi f $94 pages). V&me D is 
METAFONT: The Program (xvi + 569 ~a@$. V&nne 
A is The TEXbook, Volume C is The ~~~~~~~~ 
and Volume E Is Computer Modem ~y~~u~~~. “’ 

Criticism of Programs. The role of any critic is to 
give the reader insight, and McIlroy does that splen- 
didly. He first looks inside this gem, then sets it 
against a background to help us see it in context. He 
admires the execution of the solution, but faults the 
problem on engi-neering grounds. (That is, of course, 
my responsibility as problem assigner; Knuth solved 
the problem he wa:s given on grounds that are im- 
portant to most engineers-the paychecks provided 
by their problem assigners.) Book reviews tell you 
what is in the book; good reviews go beyond that to 
give you insight into the environment that molded 
the work. As Knuth has set high standards for future 
authors of programming literature, McIlroy has 
shown us how to analyze those works. 

Problems 
1. Design and implement programs for finding the 

K most common words. Characterize the trade- 
offs among code length, problem definition, re- 
source utilization (time and space), and imple- 
mentation language and system. 

2. The problem of the K most common words can 
be altered in many ways. How do solutions to 
the original problem handle these new twists? 
Instead of finding the K most common words, 
suppose you want to find the single most fre- 
quent word, the frequency of all words in de- 
creasing order, or the K least frequent words. 

3. 

4. 

5. 

Instead of dealing with words, suppose you wish 
to study the frequency of letters, letter pairs, let- 
ter triples, word pairs, or sentences. 
Quantify the time and space required by Knuth’s 
version of Liang’s hash tries; use either experi- 
mental or mathematical tools (see Problem 4). 
Knuth’s dynamic implementation allows inser- 
tions into hash tries; how would you use the 
data structure in a static problem in which the 
entire set of words was known before any look- 
ups (consider representing an English diction- 
ary)? 
Both Knuth and McIlroy made assumptions 
about the distribution of words in English docu- 
ments. For instance, Knuth assumed that most 
frequent words tend to occur near the front of 
the document, and McIlroy pointed out that a 
few frequent words may not appear until rela- 
tively late. 
a. Run experiments to test the various assump- 

tions. For instance, does reducing the mem- 
ory size of Knuth’s program cause it to miss 
any frequent words? 

b. Gather data on the distribution of words 
in English documents to help one answer 
questions like this; can you summarize that 
statistical data in a probabilistic model of 
English text? 

A map of the United States has been split into 
25,000 tiny line segments, ordered from north to 
south, for drawing on a one-way plotting device. 
Design a program to reconnect the segments into 
reasonably long connected chains for use on a 
pen plotter. 

Solutions to May’s Problems 
4. J. S. Vitter’s “Faster Methods for Random Sam- 

pling” in the July 1984 Communications shows 
how to generate M sorted random integers in 
O(M) expected time and constant space; those 
resource bounds are within a constant factor of 
optimal. 

5. WEB provides two kinds of macros: define for 
short strings and the (Do this now) notation for 
longer pieces of code. Howard Trickey writes 
that “this facility is qualitatively better than the 
C preprocessor macros, because the syntax for 
naming and defining C macros is too awkward 
for use-once code fragments. Even in languages 
with the ability to declare procedures ‘inline’, I 
think most people would resist using procedures 
as prolifically as WEB users use modules. Some- 
how the ability to describe modules with sen- 
tences instead of having to make up a name 
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helps me a lot in using lots of modules. Also, 
WEB macros can be used before they are defined, 
and they can be defined in pieces (e.g., (Global 
variables)), and that isn’t allowed in any macro 
language I know.” 

6. Howard Trickey observes that “the fact that 
TANGLE produces unreadable code can make it 
hard to use debuggers and other source-level 
software. Knuth’s rejoinder is that if people like 
WEB enough they will modify such software to 
work with the WEB source. In practice, I never 
had much difficulty debugging TANGLE output 
run through a filter to break lines at statement 
boundaries.” 

7. [D. E. Knuth] To determine whether two input 
sequences define the same set of integers, insert 
each into an ordered hash table. The two ordered 
hash tables are equal if and only if the two sets 
are equal. 
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SIGBDP DATABASE (Business Data 
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SIGCAS Newsletter (Computers and 
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Review (Measurement and 
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SIGMICRO Newsletter 
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SIGMOD Record (Management of Data) 

SIGNUM Newsletter (Numerical 
Mathematics) 

SIGOA Newsletter (Office Automation) 

SIGOPS Operating Systems Review 
(Operating Systems) 

SIGPLAN Notices (Programming 
Languages) 

SIGPLAN FORTRAN FORUM (FORTRAN) 

SIGSAC Newsletter (Security, Audit. 
and Control) 

SIGSAM Bulletin (Symbolic and Algebraic 
Manipulation) 

SIGSIM Simuletter (Simulation and 
Modeling) 

SIGSMALL/PC Newsletter (Small and 
Personal Computing Systems and 
Applications) 

SIGSOFT Software Engineering Notes 
(Software Engineering) 

SIGUCCS Newsletter (University and 
College Computing Services) 
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