
by jot1 Be~~tley

with Special Guest Oysters

Don Knuth and Doug McIlroy

programming
pearls

A LITERATE PROGRAM

Last month‘s column introduced Don Knuth’s style of
“Literate Programming” and his WEB system for building
programs that are works of literature. This column pre-
sents a literate program by Knuth (its origins are sketched
in last month‘s column) and, as befits literature, a review.
So without further ado, here is Knuth’s program,
retypeset in Communications style. -Jon Bentley

Common Words Section
Introduction.. , , , , . , , , . . 1
Strategic considerations . , a
Basic input routines , , . 9
Dictionary lookup . , , , .17
The frequency counts .32
Sortingatrie ...36
Theendgame................................41
Index ...42

1. Introduction. The purpose of this program is to
solve the following problem posed by Jon Bentley:

Given a text file and an integer k, print the k most
common words in the file (and the number of
their occurrences) in decreasing frequency.

Jon intentionally left the problem somewhat
vague, but he stated that “a user should be able to
find the 100 most frequent words in a twenty-page
technical paper (roughly a 50K byte file) without
undue emotional trauma.”

Let us agree that a word is a sequence of one or
more contiguous letters; “Bentley” is a word, but
“ain 1 t II isn’t. The sequence of letters should be
maximal, in the sense that it cannot be lengthened
without including a nonletter. Uppercase letters
are considered equivalent to their lowercase
counterparts, so that the words “Bentley”
and “BENTLEY” and “bentley” are essentially
identical.

The given problem still isn’t well defined, for the
file might contain more than k words, all of the same
01966 ACM OOOl-0782/86/0600-0471 750

frequency; or there might not even be as many as k
words. Let’s be more precise: The most common
words are to be printed in order of decreasing fre-
quency, with words of equal frequency listed in al-
phabetic order. Printing should stop after k words
have been output, if more than k words are present.

2. The input file is assumed to contain the given
text. If it begins with a positive decimal number
(preceded by optional blanks), that number will be
the value of k; otherwise we shall assume that
k = 100. Answers will be sent to the output file.

define default-k = 100 (use this value if k isn’t
otherwise specified)

3. Besides solving the given problem, this program is
supposed to be an example of the WEB system, for
people who know some Pascal but who have never
seen WEB before. Here is an outline of the program
to be constructed:

program common-words (input, output);
type (Type declarations 17)

var (Global variables 4)
(Procedures for initialization 5)
(Procedures for input and output a)
(Procedures for data manipulation 20)
begin (The main program 8);

end.

4. The main idea of the WEB approach is to let the
program grow in natural stages, with its parts pre-
sented in roughly the order that they might have
been written by a programmer who isn’t especially
clairvoyant.

For example, each global variable will be intro-
duced when we first know that it is necessary or
desirable; the WEB system will take care of collecting
these declarations into the proper place. We already
know about one global variable, namely the number
that Bentley called k. Let us give it the more descrip-
tive name max-words-to-print.

June 1986 Volume 29 Number 6 Communications of the ACM 471

Programming Pear/s

(Global variables 4) =

max.-words-to-print: integer;
(at most this many words will be printed)

See also sections 11, 13, 18, 22, 32, and 36.
This code is used in section 3.

5. As we introduce new global variables, we’ll often
want to give them certain starting values, This will
be done by the initialize procedure, whose body will
consist of various pieces of code to be specified
when we think of particular kinds of initialization,

(Procedures for initialization 5) =
procedure initialize;

var i: integer; {all-purpose index for initializa-
tions)

begin (Set initial values 12)
end;

This code is used in section 3.

6. The WEB system, which may be thought of as a
preprocessor for Pascal, includes a macro definition
facibty so that portable programs are easier to write.
For example, we have already defined ‘default-k’ to
be 100. Here are two more examples of WEB macros;
they allow us to write, e.g., ‘incr(counf[p])’ as a con-
venient abbreviation for the statement ‘counf[p] +
counf[p] + 1’.

define incr(#) = # c- # + 1 (increment a vari-
able}

define deer(#) = 4# t # - 1 {decrement a vari-
able)

7. Some of the procedures we shall be writing come
to abrupt conclusions; hence it will be convenient to
introduce a ‘return’ macro for the operation of
jumping to the end of the procedure. A symbolic
label ‘exit’ will be declared in all such procedures,
and ‘exit:’ will be placed just before the final end.
(No other labels or goto statements are used in the
present program, but the author would find it pain-
ful to eliminate these particular ones.)

define exit = 30 (the end of a procedure}
define return = goto exit {quick termination]
format return = nil {typeset ‘return’ in boldface)

8. Strategic considerations. What algorithms and
data structures should be used for Bentley’s prob-
lem? Clearly we need to be able to recognize differ-
ent occurrences of the same word, so some sort of
internal dictionary is necessary. There’s no obvious
way to decide that a particular word of the input
cannot possibly be in the final set, until we’ve gotten
very near the end of the file; so we might as well
remember every word that appears.

There should be a frequency count associated
with each word, and we will eventually want to run
through the words in order of decreasing frequency.
But there’s no need to keep these counts in order as
we read through the input, since the order matters
only at the end.

Therefore it makes sense to structure our program
as follows:

(The main program a) =
initialize;
(Establish the value of max-words-to-print IO);

(Input the text, maintaining a dictionary with
frequency counts 34);

(Sort the dictionary by frequency 39);
(Output the results 41)

This code is used in section 3.

9. Basic input routines. Let’s switch to a bottom-
up approach now, by writing some of the procedures
that we know will be necessary sooner or later.
Then we’ll have some confidence that our program
is taking shape, even though we haven’t decided yet
how to handle the searching or the sorting. It will be
nice to get the messy details of Pascal input out of
the way and off our minds.

Here’s a function that reads an optional positive
integer, returning zero if none is present at the be-
ginning of the current line.

(Procedures for input and output 9) =
function read-inf: integer;

var n: integer; {th e accumulated value)
begin n c 0;
if leaf then

begin while (leoln) A (input t = Iu’) do
gef(inpuf];

while (input 1 2 ‘0’) A (input 1 5 ‘9’) do
begin n t lO*n + ord(inpuf7) - ord(‘0’);
gef(inpuf);
end;

end;
read-inf c n;
end;

See also sections 15, 35, and 40.
This code is used in section 3.

10. We invoke readht only once.

(Establish the value of max-words-to-print IO) =
max-words-to-print c read-inf;
if max-words-to-prinf = 0 then

max-words-to-print t default-k

This code is used in section 8.

11. To find words in the input file, we want a quick
way to distinguish letters from nonletters. Pascal has

472 Communications of he ACM June 1986 Volume 29 Number 6

Programming Pearls

conspired to make this problem somewhat tricky, 13. Each new word found in the input will be
because it leaves many details of the character set placed into a buffer array. We shall assume that no
undefined. We shall define two arrays, lowercase and words are more than 60 letters long; if a longer word
uppercase, that specify the letters of the alphabet. A appears, it will be truncated to 60 characters, and a
third array, lettercode, maps arbitrary characters into warning message will be printed at the end of the
the integers 0 . . 26. run.

If c is a value of type char that represents the kth
letter of the alphabet, then lettercode[ord(c)] = k; but
if c is a nonletter, lettercode[ord(c)] = 0. We assume
that 0 5 ord(c) 5 255 whenever c is of type char.

define max-word-length = 60
{words shouldn’t be longer than this]

(Global variables 4) +=

(Global variables 4) +=

lowercase, uppercase: array [l . . 261 of char;
(the letters)

lettercode; array [0 . . 2551 of 0 . . 26;
{the input conversion table)

buffer: array [l . . max-word-length] of 1 . . 26;
(the current word]

word-length: 0 . . max-word-length;
(the number of active letters currently in buffer]

word-truncated: boolean;
(was some word longer than max-word-length?]

12. A somewhat tedious set of assignments is neces-
sary for the definition of lowercase and uppercase, be-
cause letters need not be consecutive in Pascal’s

14. (Set initial values 12) +=
word-truncated t false;

character set.

(Set initial values 12) =

lowercase[l] t ‘a’; uppercase[l] t ‘A’;

lowercase[2] + ‘b’; uppercase[2] c ‘B’;

lowercase[3] .L ‘c’; uppercase[3] c ‘C’;
lowercase[4] t ‘d’; uppeucase[4] t ‘D’;

loweYcase[5] + ‘e’; uppercase[5] t ‘E’;

lowercase[6] + ‘f’; uppercase[6] t ‘I?‘;
lowercase[7] t ‘g’; uppercase[7] t ‘G’;
lowercase[8] + ‘h’; uppercase[8] t ‘H’;

lowercase[9] + ‘i’; uppercase[9] c ‘I’;

lowercase[lO] + ’ j’; uppercase[lO] c ‘J’;

~owercase[ll] t ‘k’; uppercase[ll] t ‘K’;

lowercase[l2] c ‘1’; uppercase1121 c ‘L’;

lowercase[l3] t ‘m’; uppercase[l3] c ‘M’;

lowercase[l4] t ‘n’; uppercase[l4] t ‘N’;
lowercase[l5] + ‘0’; uppercase[l5] c ‘0’;
lowercase[l6] c ‘p’; uppercase[l6] c ‘P’;
lowercase[l7] t ‘q’; uppercase[l7] t ‘Q’;
loweucase[l8] c ‘r’; uppercase[l8] c ‘R’;

lowercase[l9] c ‘s’; uppercase[l9] c ‘S’;
loweYcase[20] + ‘t’; uppercase[20] c ‘T’;
Zowercase[21] c ‘u’; uppercase[Zl] c ‘U’;
lowercase[22] c ‘v’; uppercase[22] t ‘V’;

lowercase[23] + ‘WI; uppercase[23] t ‘W’;

lowercase[24] + ‘x’; uppercase[24] c ‘X’;
lowercase[25] + ‘y’; uppercase[25] c ‘Y’;
lowercase[26] c ‘2’; uppercase[26] c ‘z’;
for i t 0 to 255 do lettercode [i] c 0;
for i t 1 to 26 do

15. We’re ready now for the main input routine,
which puts the next word into the buffer. If no more
words remain, word-length is set to zero; otherwise
word-length is set to the length of the new word.

(Procedures for input and output 9) +=
procedure get-word;

label exit; {enable a quick return)
begin word-length + 0;

if leaf then
begin while lettercode[ord(input t)] = 0 do

if leoln then get(input)
else begin read-ln;

if eof then return;
end;

(Read a word into buffer 16);

end;
exit: end;

16. At this point lettercode[ord(input t)] > 0, hence
input T contains the first letter of a word.

(Read a word into buffer 16) =
repeat if word-length = max-word-length then

word-truncated + true
else begin incr(word-length);

buffer[word-length] c lettercode[ord(input t)];
end;

get(input);
until lettercode[ord(input f)] = 0

begin lettercode[ord(lowercase[i])] c i;
lettercode[ord(uppercase[i])] c i;
end;

See also sections 14, 19, 23, and 33.
This code is used in section 5.

This code is used in section 15.

17. Dictionary lookup. Given a word in the buffer,
we will want to look for it in a dynamic dictionary
of all words that have appeared so far. We expect

June 1986 Volume 29 Number 6 Communications of the ACM 473

Programming Pearls

many words to occur often, so we want a search est child’s sibling pointer is link[p]. Continuing our
technique that will find existing words quickly. Fur- earlier example, if all words in the dictionary begin-
thermore, the dictionary should accommodate words ning with “be*’ sl.art with either “hen” or “betl*,
of variable length, and [ideally) it should also facili- then sibfing[2000] = 2021, sibling[2021] = 2015, and
tate the task of alphabetic ordering. sibling[2015] = 2000.

These constraints, suggest a variant of the data
structure introduced by Frank M. Liang in his Ph.D.
thesis [“Word Hy-p.hen-a-tion by Corn-pu-ter,”
Stanford University, 19831. Liang’s structure, which
we may call a hash Pie, requires comparatively few
operations to find a word that is already present,
although it may take somewhat longer to insert a
new entry. Some space is sacrificed-we will need
two pointers, a count, and another s-bit field for
each character in the dictionary, plus extra space to
keep the hash table from becoming congested-but
relatively large memories are commonplace now-
adays, so the method seems ideal for the present
application.

Notice that children of different parents might ap-
pear next to each other. For example, we might
have ch[2020] = 6, for the child of some word such
that link[p] = 2014.

If link[p] # 0, the table entry in position link[p] is
called the “header” of p’s children. The special code
value header appears in the ch field of each header
entry.

If p represents a word, count [p] is the number of
times that the word has occurred in the input so far.
The count field in a header entry is undefined.

Unused positions p have ch[p] = empty-slot: In this
case link[p], sibling[p], and count [p] are undefined.

A trie represents a set of words and all prefixes of
those words [cf. I<nuth, Sorting and Searching, Section
6.31. For convenience, we shall say that all non-
empty prefixes of the words in our dictionary are
also words, even though they may not occur as
“words” in the inpu.t file. Each word (in this general-
ized sense) is represented by a pointer, which is an
index into four large arrays called link, sibling, count,
and ch.

define empfy-slot = 0
define header = 27
define move-to-prefix(#) = # c link[# - ch[#]]
define move-to-last-suffix(#) =

while link[#] # 0 do # t sibling[link[#]]

(Global variables 4) +=
link, sibling: array [pointer] of pointer;
ch: array [pointer] of empty-slot . . header;

define frie-size = 32767 (the largest pointer value)

(Type declarations 17) =

pointer = 0 . . trie.size;
This code is used in section 3.

19. (Set initial values 12) +=
for i c 27 to trie-size do ch[i] t empty-slot;
foritl to26do

begin ch[i] c i; link[i] c 0; count[i] t 0;
sibling[i] c i - 1;
end;

18. One-letter words are represented by the pointers
1 through 26. The representation of longer words is
defined recursively: If p represents word w and if
1 5 c % 26, then the word w followed by the cth
letter of the alphabet is represented by Iink[p] + c.

For example, suppose that link[2] = 1000,
link[1005] = 2000, a.nd link[2015] = 3000. Then the
word vlb*l is represented by the pointer value 2;
“be” is represented by Zink[2] + 5 = 1005; “hen” is
represented by 2015; and “bent” by 3021. If no
longer word beginning with “bent ‘I appears in the
dictionary, Iink[3021] will be zero.

The hash trie also contains redundant information
to facilitate traversal and updating. If link[p] is non-
zero, then link[Zink[p]] = p. Furthermore if 4 =
link[p] + c is a “child” of p, we have ch[q] = c; this
makes it possible to’ go from child to parent, since
link[q - ch[q]] = link[link[p]] = p.

Children of the same parent are linked by sibling
pointers: The largest child of p is sibling]link[p]], and
the next largest is sibling[sibling[link[p]]]; the small-

ch[O] c header; link[O] c 0; sibling[O] t 26;

20. Here’s the basic subroutine that finds a given
word in the dictionary. The word will be inserted
(with a count of zero) if it isn’t already present.

More precisely, the find-buffer function looks for
the contents of buffer, and returns a pointer to the
appropriate dictionary location. If the dictionary is
so full that a new word cannot be inserted, the
pointer 0 is returned.

define abort-find =
begin find-buffer c 0; return; end

(Procedures for data manipulation zo) =
function find-buffer: pointer;

label exit; (enable a quick return)
vari:l.. max-word-length; (index into buffer)

p: pointer; (the current word position)
q: pointer; (the next word position)
c: 1 . . 26; {current letter code)
(Other local variables of find-buffer 26)

474 Communications of the ACM June 1986 Volume 29 Number 6

Programming Pearls

begin i t 1; p t buffer[l];
while i < word-length do

begin incr(i); c + buffer[i];
(Advance p to its child number c 21);
end;

find-buffer c p;
exit: end ;

See also section 37.
This code is used in section 3.

21. (Advance p to its child number c 21) =
if link[p] = 0 then (Insert the firstborn child of p

and move to it, or abort-find 27)

else begin 9 c link[p] + c;
if ch[9] # c then

begin if ch[q] # empty-slot then
(Move p’s family to a place where child c
will fit, or abort-find 29);

(Insert child c into p’s family 28);

end;

P+9;
end

This code is used in section 20.

22. Each “family” in the trie has a header location
h = link[p] such that child c is in location h + c. We
want these values to be spread out in the trie, so
that families don’t often interfere with each other.
Furthermore we will need to have

26 < h 5 trie-size - 26

if the search algorithm is going to work properly.
One of the main tasks of the insertion algorithm is

to find a place for a new header. The theory of hash-
ing tells us that it is advantageous to put the nth
header near the location x,, = con mod t, where t =
trie-size - 52 and where (Y is an integer relatively
prime to t such that a/t is approximately equal to
(& - 1)/2 = .61803. [These locations X, are about as
“spread out” as you can get; see Sorting and Searching,
pp. 510-511.1

define alpha = 20219 (- .61803trie_size)

(Global variables 4) +=

x: pointer; (an mod (trie-size - 52))

23. (Set initial values 12) +=
xt 0;

24. We will give up trying to find a vacancy if 1000
trials have been made without success. This will
happen only if the table is quite full, at which time
the most common words will probably already ap-
pear in the dictionary.

define tolerance = 1000

(Get set for computing header locations 24) =

if x < trie-size - 52 - alpha then x t x + alpha
else x t x + alpha - trie-size + 52;
h + x + 27; {now 26 < h 6 trie-size - 26)
if h 5 trie-size - 26 - tolerance then

lust-h t h + tolerance
else lust-h c h + tolerance - trie-size + 52;

This code is used in sections 27 and 31.

25. (Compute the next trial header location h,
or abort-find 25) =

if h = last-h then abort-find;
if h = trie-size - 26 then h + 27
else incr(h)

This code is used in sections 27 and 31.

26. (Other local variables of find-buffer 26) =

h: pointer; (trial header location)
last-h: integer; lthe final one to try)

See also section 30.
This code is used in section 20.

27. (Insert the firstborn child of p and move to it,
or abort-find 27) =

begin (Get set for computing header locations 24);

repeat (Compute the next trial header location h,
or abort-find 25);

until (ch[h] = empty-slot) A
(ch[h + c] = empty-slot);

link[p] c h; link[h] t p; p t h + c;
ch[h] c header; ch[p] t c;
sibling[h] c p; sibling[p] c h; count[p] t 0;
link[p] t 0;
end

This code is used in section 21.

28. The decreasing order of sibling pointers is pre-
served here. We assume that 9 = link[p] + c.

(Insert child c into p’s family 28) =

begin h t link[p];
while sibling[h] > 9 do h t sibling[h];
sibling[q] t sibling[h]; sibling[h] + 9;
ch[q] c c; count[q] c 0; link[q] c 0;
end

This code is used in section 21.

29. There’s one complicated case, which we have
left for last. Fortunately this step doesn’t need to be
done very often in practice, and the families that
need to be moved are generally small.

he 1986 Volume 29 Number 6 Communications of the ACM 475

Programming Pearls

(Move p’s family to a place w:here child c will fit,
or abort-find 29) =

begin (Find a suitable place h to move,
or abort-find 31);

q c h + c; r c link[p]; delta c h - r;
repeat sibling[r + delta] t sibling[r] + delta;

ch[r + delta] c ch[r]; ch[r] t empty-slot;
count[r + delta] c count[r];
link[r + delta] t- link[r];
if link[r] # 0 then link[link[r]] t r + delta;
r c sibling[rI];

until ch [r] = empty-slot ;
end

This code is used in section 21.

30. (Other local va.riables of find-buffer 26) +=
r: pointer; (family member to be moved]
delta: integer; {amount of motion]
slot-found: boolean; (h ave we found a new home-

stead?}

31. (Find a suitable place h to move,
or abort-find 31) =

slot-found c false;
(Get set for computing header locations 24);
repeat (Compute the next trial header location h,

or abort-find 25);
if ch[h + c] = empty-slot then

begin r t link[p]; delta t h - r;
while (ch[r + delta] = empty-slot) A

(sibling[r] # link[p]) do r t sibling[r];
if ch[r + delta] = empty-slot then

slot-found 4~ true;
end;

until slot-found

This code is used in section 29.

32. The frequency counts. 1.t is, of course, a sim-
ple matter to combine dictionary lookup with the
get-word routine, so that all the word frequencies
are counted. We may have to drop a few words in
extreme cases (when the dictionary is full or the
maximum count has been reached).

define max-count = 32767
{counts won’t go higher than this!

(Global variables 4) +=
count: array [pointer] of 0 , . max-count;
word-missed: boolean; (did the dictionary get too

full?]
p: pointer; (location of the current word)

33. (Set initial values 12) +=
word-missed + false;

34. (Input the text, maintaining a dictionary with
frequency counts 34) =

get-word;
while word-length # 0 do

begin p c find-buffer;
if p = 0 then word-missed + true
else if count[p] < max-count then incr(count[p]);
get-word;
end

This code is used in section 8.

35. While we have the dictionary structure in mind,
let’s write a routine that prints the word correspond-
ing to a given pointer, together with the correspond-
ing frequency count.

For obvious reasons, we put the word into the
buffer backwards during this process.

(Procedures for input and output 9) +=
procedure print-word(p: pointer);

var q: pointer; (runs through ancestors of p]
i: 1 , . max-word-length; (index into buffer)

begin word-length t 0; q t p; write(‘,‘);
repeat incr(word-length);

buffer[word-length] + ch [q];
move-to-prefix(q);

until q = 0;
for i c word-length downto 1 do

write(lowercase[buffer[i]]);
if count[p] < max-count then

wrife-ln(‘u’, counf[p] : 1)
else write-ln(‘u’, max-count : 1, ‘oor,more’);
end;

36. Sorting a trie. Almost all of the frequency
counts will be small, in typical situations, so we
needn’t use a general-purpose sorting method. It suf-
fices to keep a few linked lists for the words with
small frequencies, with one other list to hold every-
thing else.

define large-count = ZOO {all counts less than this
will appear in separate lists)

(Global variables 4) +=
sorted: array [l . . large-count] of pointer; (list

heads]
total-words: integer: (th e number of words sorted]

37. If we walk through the trie in reverse alphabeti-
cal order, it is a simple matter to change the sibling
hnks so that the words of frequency f are pointed to
by sorted[f], sibling[sorted[f]], . . . in alphabetical
order. When f = large-count, the words must also be
linked in decreasing order of their count fields.

476 Commutlications of the ,4CM \une 1986 Volume 29 Number 6

Programming Pearls

The restructuring operations are slightly subtle
here, because we are modifying the sibling pointers
while traversing the trie.

(Procedures for data manipulation ZO) +=
procedure trie-sort;

varkzl.. large-count; {index to sorted}
p : pointer; {current position in the trie}
f:O.. max-count; (current frequency count 1
q, r: pointer; (list manipulation variables)

begin total...words t 0;
for k c 1 to large-count do sorted[k] c 0;
p c sibling[O]; move-to-last-suffix(p);
repeat ft count[p]; q t sibling[p];

if f # 0 then (Link p into the list sorted[f] 38);
if ch[q] # header then

begin p c 9; move-to-last-suffix(p);
end

else p t link[q]; {move to prefix]
until p = 0;
end :

38. Here we use the fact that count[O] = 0.

(Link p into the list sorted[f] 38) =
begin incr(total-words);
if f < large-count then (easy case}

begin sibling[p] t sorted[f]; sorted[f] t p;
end

else begin r c sorted[large-count];
if count[p] 2 count[r] then

begin sibling[p] c r; sorted[large-count] c p;
end

else begin while count[pJ < count[sibling[r]] do
r c sibling[r];

sibling[p] c sibling[r]; sibling[r] c p;
end ;

end;
end

This code is used in section 37

38. (Sort the dictionary by frequency 39) E
trie-sort

This code is used in section 8.

40. After trie-sort has done its thing, the linked lists
sorted[large-count], . . . , sorted[l] collectively contain
all the words of the input file, in decreasing order
of frequency. Words of equal frequency appear in
alphabetic order. These lists are linked by means
of the sibling array.

Therefore the following procedure will print the
first k words, as required in Bentley’s problem.

(Procedures for input and output 9) +=
procedure print-common(k : integer);

label exit; {enable a quick return)
varfil.. large-count + 1; (current frequency)

p: pointer; {current or next word]
begin f c large-count + 1; p + 0;
repeat while p = 0 do

begin if f = 1 then return;
decr(f); p t sorted[f 1;
end;

print-word(p); deer(k); p c sibling[p];
until k = 0;

exit: end ;

41. The endgame. We have recorded total-words
different words. Furthermore the variables
word-missed and word-truncated tell whether or
not any storage limitations were exceeded. So the
remaining task is simple:

(Output the results 41) =
if total-words = 0 then write-ln('Thereuare',

'Uno,wordsUin,theUinput!')
else begin if total-words < max-words-to-print then

{we will print all words]
write-ln('Words,of,the,input,file,',

',,ordered,by,frequency:')
else if max-words-to-print = 1 then

wrife(‘TheumostUcommonUword’,
'UandUitsufrequency:')

else write-ln('The,', max-words-to-print : 1,
'umostucommonuwords,',
',and,their,frequencies:');

print-common(max-words-to-print);
if word.-truncated then

write-ln('(At,least,one,word,had,toUbe',
'Ushortened,to,', max-word-length: 1,
‘Jetters .) ‘);

if word-missed then
write-ln(’ (Someuinputudata,wasUskipped,',

‘,due,to,,memory,limitations.)‘);
end

This code is used in section 8.

42. Index. Here is a list of all uses of all identifiers,
underlined at the point of definition.
abort-find: 2J, 25. char: 11.
alpha: 22, 24. common-words: 3.
Bentley, Jon Louis: 1. count: 6, 17, 18,19, 20,
boolean: 13, 30, 32. 27, 28, 29,3J, 34, 35,
buffer: lJ, 16, 20, 35. 37, 38.
c: 20.
ch% 18, 19, 21, 27,

deer: 5, 40.
28, default-k: 2, 6, 10.

29, 31, 35, 37. delta: 29, 3, 31.

]une 1986 Volume 29 Number 6 Communications of the ACM 477

Programming Pearls

empty-slot: 18, 19, 21, 27,
29, 31.

eof: 9, 15.
eoln: 9, 15.
exit: 2, 15, 20, 40.
f: 37, 40.
false: 14, 31, 33.
find-buffer: ZJ, 34.
get: 9, 15, 16.
get-word: 15, 32, 34.
goto: 1.
h: 26.
header: 18, 19, 27, 37.
i: 5,2, 35.
incr: tj, lx 20, 25, 34, 35,

38.
initialize: !j, 8.
input: 2, 3, 9, 11, 15, 16.
integer: 4, 5, 9, 26, 30, 36,

40.
k: 37, 40.
Knuth3onald Ervin: 17.
large-count: 36, 37, 38,

40.
last-h: 24, 25, 26.
lettercode: lJ, 12, 15, 16.
Liang, Franklin Mark:

17.
link: 17,IJ 19, 21, 122,

27, 28, 29, 31, 37.
lowercase: 2, 12, 35.
max-count: 3, 34, 35, 37.
max-word-length: 13, 16,

20, 35, 41.
max-words-to-print: 4,

10, 41.
move-to-last-suffix: 3,

37.

move-to-prefix: 18, 35.
n: 9. -
nil: 7.
ord: 9, 11, 12, 15, 16.
oufpuf: 2, 3.
p: 20, 32, 35, 37, 40.
pointer: 17, 18, 20, 22, 26,

30, 32, 35, 36, 37, 40.
print-common: 40, 41.
print-word: 35, 40.
q: 20, 35, 37.
r: 3J, 37. -
read-int: 9, 10.
read-ln: 15.
return: 7.
sibling: 17, 18, 19, 27, 28,

29, 31, 37, 38, 40.
slot-found: 3J, 31.
sorted: 3, 37, 38, 40.
tolerance: 24.
total-word;%, 37, 38,

41.
trie-size: lJ, 19, 22, 24,

25.
Pie-sort: 3J, 39, 40.
true: 16, 31, 34.
uppercase: 11, 12.
word-length: lJ, 15, 16,

20, 34, 35.
word-missed: 32, 33, 34,

41.
word-truncated: lJ, 14,

16, 41.
write: 35, 41.
write-ln: 35, 41.
x: 22. -

(Advance p to its child number c 21)
Used in section 20.

(Compute the next trial header location h, or
abort-find 25) Used in sections 27 and 31.

(Establish the value of max-words-to-print IO)
Used in section 8.

(Find a suitable place h to move, or abort-find 31)
Used in section 29.

(Get set for computing header locations 24)
Used in sections 27 and 31.

(Global variables 4,11,13, 18, 22, 32, 36)

Used in section 3.
(Input the text, maintaining a dictionary with fre-

quency counts 34) Used in section 8.

(Insert child c into p’s family 28) Used in section 21.

(Insert the firstborn child of p and move to it, or
abort-find 27) Used in section 21.

(Link p into the list sorted[f] 38) Used in section 37.
(Move p’s family to a place where child c will fit, or

abort-find 29) Used in section 21.
(Other local variables of find-buffer 26, 30)

Used in section 20.
(Output the results 41) Used in section 8.
(Procedures for data manipulation 20,37)

Used in section 3.
(Procedures for initialization 5) Used in section 3.
(Procedures for input and output 9,15,35,40)

Used in section 3.
(Read a word into buffer 16) Used in section 15.
(Set initial values 12,14.19, 23, 33) Used in section 5.
(Sort the dictionary by frequency 39)

Used in section 8.
(The main program 8) Used in section 3.
(Type declarations 17) Used in section 3.

A Review
My dictiona y defines criticism as “the art of evaluating
or analyzing with knowledge and propriety, especially
works of art or literature. “ Knuth’s program deserves
criticism on two counts. He was the one, after all, who
put forth the analogy of programming as literature, so
what is more deserved than a little criticism? This
program also merits criticism by ifs intrinsic interest;
although Knuth set out only to display WEB, he hcs
produced a program that is fascinating in its own right.
Doug Mcllroy of Bell Labs was kind enough to provide
this review.-J.B.

I found Don Knuth’s program convincing as a dem-
onstration of WEB and fascinating for its data struc-
ture, but I disagree with it on engineering grounds.
The problem is to print the K most common words in
an input file (and the number of their occurrences]
in decreasing frequency. Knuth’s solution is to tally
in an associative data structure each word as it is
read from the file. The data structure is a trie, with
26-way (for technical reasons actually 27-way) fan-
out at each letter. To avoid wasting space all the
(sparse) 26-element arrays are cleverly interleaved
in one common arena, with hashing used to assign
homes. Homes may move underfoot as new words
cause old arrays to collide. The final sorting is done
by distributing counts less than 200 into buckets and
insertion-sorting larger counts into a list.

The presentation is engaging and clear. In WEB one
deliberately writes a paper, not just comments, along
with code. This of course helps readers. I am sure
that it also helps writers: reflecting upon design
choices sufficiently to make them explainable must

478 Commurlications of the ACM Iune 1986 Volume 29 Number 6

help clarify and refine one’s thinking. Moreover, be-
cause an explanation in WEB is intimately combined
with the hard reality of implementation, it is quali-
tatively different from, and far more useful than, an
ordinary “specification” or “design” document. It
can’t gloss over the tough places.

Perhaps the greatest strength of WEB is that it al-
lows almost any sensible order of presentation. Even
if you did not intend to include any documentation,
and even if you had an ordinary cross-referencer at
your disposal, it would make sense to program in
WEB simply to circumvent the unnatural order
forced by the syntax of Pascal. Knuth’s exercise am-
ply demonstrates the virtue of doing so.

Mere use of WEB, though, won’t assure the best
organization. In the present instance the central idea
of interleaving sparsely populated arrays is not men-
tioned until far into the paper. Upon first reading
that, with hash tries, “some space is sacrificed,” I
snorted to myself that some understatement had
been made of the wastage. Only much later was I
disabused of my misunderstanding. I suspect that
this oversight in presentation was a result of docu-
menting on the fly. With this sole exception, the
paper eloquently attests that the discipline of simul-
taneously writing and describing a program pays off
handsomely.

A few matters of style: First, the program is stud-
ded with instances of an obviously important con-
stant, which variously take the guise of “26”, “27”,
and “52.” Though it is unobjectionable to have such
a familiar number occur undocumented in a pro-
gram about words, it is impossible to predict all its
disguised forms. Just how might one confidently
change it to handle, say, Norwegian or, more mun-
danely, alphanumeric “words”? A more obscure ex-
ample is afforded by a constant alpha, calculated as
the golden ratio times another constant, trie-size.
Signaled only by a comment deep inside the pro-
gram, this relationship would surely be missed in
any quick attempt to change the table size. WEB,

unlike Pascal, admits dependent constants. They
should have been used.

Second, small assignment statements are grouped
several to the line with no particularly clear ration-
ale. This convention saves space; but the groupings
impose a false and distracting phrasing, like “poetry”
produced by randomly breaking prose into lines.

Third, a picture would help the verbal explana-
tion of the complex data structure. Indeed, pictures
in listings are another strong reason to combine pro-
gramming with typesetting; see Figure 1.

Like any other scheme of commentary, WEB can’t
guarantee that the documentation agrees perfectly

1000
1001
1002
1003
1004
1005

2000

2014
2015
2016
2017
2018
2019
2020
2021

3000

3021

Prograrnn7irzg Pearls

link Ip 1 Word

a
b
C

2 v header A 1005 ,
I I

2000 . 5 1000 ’ be

ben

I I

4000 6 ’ 2014 ’
20 2015 ’

af
bet

<‘::I’ bent

I I I I

FIGURE 1. A Picture to Accompany Knuth’s $18’

with the program. For example, the procedure
read-int expects an integer possibly preceded by
blanks, although a literal reading of the description
would require the integer to appear at the exact
beginning of the text. This, however, was the only
such case I noticed. The accuracy of the documenta-
tion compliments both the author and his method.

The WEB description led me pleasantly through
the program and contained excellent cross refer-
ences to help me navigate in my own ways. It pro-
vided important guideposts to the logical structure of
the program, which are utterly unavailable in
straight Pascal. For no matter how conscientiously
commented or stylishly expressed programs in
Pascal may be, the language forces an organization
convenient for translating, not for writing or reading.
In the WEB presentation variables were introduced

’ I typeset this picture in an hour or two of my time using the PIC language;
Knuth could have usedT@ features to include such a figure in his WEB
program. The figure contains a slight mistake for consistency with an off-by-
one slio in 618 of Knuth’s oroeram: he assumed that “N” was the 15” letter of
the alihabet, while it is r&111; the 14~“. Knuth insisted that we publish his
program as he wrote it, warts and all, since it shows that WEB does not totally
eliminate mistakes.-J.B.

June 1986 Volume 29 Number 6 Communications of the ACM 479

Programming Pearls

where needed, rather than where permitted, and
procedures were presented top-down as well as
bottom-up according to peda!gogical convenience
rather than syntactic convention. I was able to skim
the dull parts and concentrate on the significant
ones, learning painlessly about a new data structure.
Although I could have learned about hash tries
without the program, it was truly helpful to have it
there, if only to ta.ste the practical complexity of the
idea. Along the way I even learned some math: the
equidistribution (mod 1) of multiples of the golden
mean. Don Knuth’s ideas and practice mix into a
whole greater than the parts.

Although WEB circumvents Pascal’s rigid rules of
order, it makes no attempt to remedy other defects
of Pascal (and r-igh.tly so, for the idea of WEB tran-
scends the partimulars of one language]. Knuth tip-
toes around the tarpits of Pascal I/O-as I do myself.
To avoid multiple input files, he expects a numerical
parameter to be tacked on to the beginning of other-
wise pure text. Besides violating the spirit of
Bentley’s specifica.tion, where the file was clearly
distinguished from the parameter, this clumsy con-
vention could not conceivably happen in any real
data. Worse still, how is the parameter, which Knuth
chose to make optional, to be distinguished from the
text proper? Finally, by overtaxing Pascal’s higher-
level I/O capabili.ties, the convention compels
Knuth to write a special, but utterly mundane, read
routine.

Knuth’s purpose was to illustrate WEB. Neverthe-
less, it is instructive to consi.der the program at face
value as a solution to a problem. A first engineering
question to ask is: how often is one likely to have to
do this exact task’? Not at all often, I contend. It is
plausible, though, that similar, but not identical,
problems might arise. A wise engineering solution
would produce-or better, exploit-reusable parts.

If the application were so big as to need the effi-
ciency of a sophisticated solution, the question
of size should be addressed before plunging in.
Bentley’s original statement suggested middling size
input, perhaps 10,000 words. But a major piece of
engineering built for the ages, as Knuth’s program is,
should have a large factor of safety. Would it, for
example, work on the Bible? A quick check of a
concordance reveals that the Bible contains some
15,000 distinct words, with typically 3 unshared iet-
ters each (supposing a trie solution, which squeezes
out common prefixes). At 4 integers per trie node,
that makes 180,000 machine integers. Allowing for
gaps in the hash trie, we may reasonably round up
to half a million. Knuth provided for 128K integers;
the prospects for scaling the trie store are not
impossible.

Still, unless the program were run in a multi-
megabyte memory, it would likely have to ignore
some late-arriving words, and not necessarily the
least frequent ones, either: the word “Jesus” doesn’t
appear until three-fourths of the way through the
Bible.

Very few people can obtain the virtuoso services
of Knuth (or afford the equivalent person-weeks of
lesser personnel) to attack nonce problems such as
Bentley’s from the ground up. But old Unix@ hands
know instinctively how to solve this one in a jiffy.
(So do users of SNOBOL and other programmers
who have associative tables’ readily at hand-for
almost any small problem, there’s some language
that makes it a snap.) The following shell script3 was
written on the spot and worked on the first try. It
took 30 seconds to handle a 10,000-word file on a
VAX-11/750@.

(1) tr -cs A-Za-z'
' I

(2) tr A-Z a-z)
(3) sort)
(4) uniq -c 1
(5) sort -rn 1
(6) sed Sjlls

If you are not a Unix adept, you may need a little
explanation, but not much, to understand this pipe-
line of processes. The plan is easy:

1.

2.
3.
4.

5.
6.

Make one-word lines by transliterating the com-
plement (-c) of the alphabet into newlines (note
the quoted newline), and squeezing out (-s)
multiple newlines.
Transliterate upper case to lower case.
Sort to bring identical words together.
Replace each run of duplicate words with a
single representative and include a count (-c),
Sort in reverse (-r) numeric (-n) order.
Pass through a stream editor; quit (q) after print-
ing the number of lines designated by the
script’s first parameter ($(I 1).

The utilities employed in this trivial solution are
Unix staples. They grew up over the years as people
noticed useful steps that tended to recur in real
problems. Every one was written first for a particu-
lar need, but untangled from the specific application.

Unix is a trademark of AT&T Bell Laboratories. VAX is a trademark of Digital
Equipment Corporation.
‘The June 1985 column describes associative arrays as they are implemented
in the AWK language; page 572 contains a B-line AWK program to count how
many times each word occurs in a file.-J.B.
‘This shell script is similar to a prototype spelling checker described in the
May 1985 column. (That column also described a production-quality spelling
checker designed and implemented by one-and-the-same Doug Mcllroy.) This
shell script runs on a descendant of the “seventh edition” UNIX system; trivial
syntactic changes would adapt it for System V.-J.B.

480 Communications of the ACM June 1986 Volume 29 Number 6

Programming Pearls

With time they accreted a few optional parameters
to handle variant, but closely related, tasks. Sort, for
example, did not at first admit reverse or numeric
ordering, but these options were eventually identi-
fied as worth adding.

As an aside on programming methodology, let us
compare the two approaches. At a sufficiently ab-
stract level both may be described in the same
terms: partition the words of a document into equiv-
alence classes by spelling and extract certain in-
formation about the classes. Of two familiar strate-
gies for constructing equivalence classes, tabulation
and sorting, Knuth used the former, and I chose the
latter. In fact, the choice seems to be made precon-
sciously by most people. Everybody has an instinc-
tive idea how to solve this problem, but the instinct
is very much a product of culture: in a small poll of
programming luminaries, all (and only) the people
with Unix experience suggested sorting as a quick-
and-easy technique.

The tabulation method, which gets right to the
equivalence classes, deals more directly with the
data of interest than does the sorting method, which
keeps the members much longer. The sorting
method, being more concerned with process than
with data, is less natural and, in this instance, poten-
tially less efficient. Yet in many practical circum-
stances it is a clear winner. The causes are not far to
seek: we have succeeded in capturing generic pro-
cesses in a directly usable way far better than we
have data structures. One may hope that the new
crop of more data-centered languages will narrow
the gap. But for now, good old process-centered
thinking still has a place in the sun.

Program transformations between the two ap-
proaches are interesting to contemplate, but only
one direction seems reasonable: sorting to tabula-
tion. The reverse transformation is harder because
the elaboration of the tabulation method obscures
the basic pattern. In the context of standard software
tools, sorting is the more primitive, less irrevocably
committed method from which piecewise refine-
ments more easily flow.

To return to Knuth’s paper: everything there-
even input conversion and sorting-is programmed
monolithically and from scratch. In particular the
isolation of words, the handling of punctuation, and
the treatment of case distinctions are built in. Even
if data-filtering programs for these exact purposes
were not at hand, these operations would well be
implemented separately: for separation of concerns,
for easier development, for piecewise debugging, and
for potential reuse. The small gain in efficiency from
integrating them is not likely to warrant the result-
ing loss of flexibility. And the worst possible even-

tuality-being forced to combine programs-is not
severe.

The simple pipeline given above will suffice to get
answers right now, not next week or next month. It
could well be enough to finish the job. But even for
a production project, say for the Library of Congress,
it would make a handsome down payment, useful
for testing the value of the answers and for smoking
out follow-on questions.

If we do have to get fancier, what should we do
next? We first notice that all the time goes into sort-
ing. It might make sense to look into the possibility
of modifying the sort utility to cast out duplicates as
it goes (Unix sort already can) and to keep counts. A
quick experiment shows that this would throw away
85 percent of a 10,888-word document, even more of
a larger file. The second sort would become trivial.
Perhaps half the time of the first would be saved,
too. Thus the idea promises an easy a-to-1 speedup
overall-provided the sort routine is easy to modify.
If it isn’t, the next best thing to try is to program the
tallying using some kind of associative memory-
just as Knuth did. Hash tables come to mind as easy
to get right. So do simple tries (with list fanout to
save space, except perhaps at the first couple of
levels where the density of fanout may justify ar-
rays). And now that Knuth has provided us with the
idea and the code, we would also consider hash
tries. It remains sensible, though, to use utilities for
case transliteration and for the final sort by count.
With only 15 percent as much stuff to sort (even less
on big jobs) and only one sort instead of two, we can
expect an order of magnitude speedup, probably
enough relief to dispel further worries about sorting.

Knuth has shown us here how to program intelli-
gibly, but not wisely. I buy the discipline. I do not
buy the result. He has fashioned a sort of industrial-
strength Faberge egg-intricate, wonderfully worked,
refined beyond all ordinary desires, a museum piece
from the start.

Principles-J.B.
Literate Programming. Last month’s column sketched
the mechanics of literate programming. This month’s
column provides a large example-by far the most
substantial pearl described in detail in this column.
I’m impressed by Knuth’s methods and his results; I
hope that this small sample has convinced you to
explore the Further Reading to see his methods
applied to real software.

A New Data Structure. I asked Knuth to provide a
textbook solution to a textbook problem; he went far
beyond that request by inventing, implementing
and lucidly describing a fascinating new data
structure-the hash trie.

lune 1986 Volume 29 Number 6 Communications of the ACM 481

Progrunrmii~g Pearls

Further Reading
“Literate Programming” is the title and the togto of
Knuth’s article in the May 3984 Cu#~~~~~~~~~~~
(Volume 27, Number 2, pages 97-112). Xt intr~~~~s
a Xiterate style of pro~amm~ng with the flxamplo d ”
printing the first WOO prime ~urnb~r~.~~rn~~e~e
documentation of “The WEB System of §~r~~~~red
Documentation” is available as Stanford ~o~~~ter
Science technical report 988 (September 19&I, $336
pages); it contains the WEB source code far TANGLE
and WEAVE.

The small programs in this column and I&t
month’s hint at the benefits of literate ~rog~ming;
its full power can only be a~~precia~e~~~~, you see
it applied to substantial prq~ams. Tw~~~~ WI@
programs appear in Knuth’s .-five-vol~~~:~~~~~~~r
and Typesetting, just pubhshed by ~~~~~~~~~~~,
The source code for.% is Vohkne & e&led :,
7lX: The Program (xvi f $94 pages). V&me D is
METAFONT: The Program (xvi + 569 ~a@$. V&nne
A is The TEXbook, Volume C is The ~~~~~~~~
and Volume E Is Computer Modem ~y~~u~~~. “’

Criticism of Programs. The role of any critic is to
give the reader insight, and McIlroy does that splen-
didly. He first looks inside this gem, then sets it
against a background to help us see it in context. He
admires the execution of the solution, but faults the
problem on engi-neering grounds. (That is, of course,
my responsibility as problem assigner; Knuth solved
the problem he wa:s given on grounds that are im-
portant to most engineers-the paychecks provided
by their problem assigners.) Book reviews tell you
what is in the book; good reviews go beyond that to
give you insight into the environment that molded
the work. As Knuth has set high standards for future
authors of programming literature, McIlroy has
shown us how to analyze those works.

Problems
1. Design and implement programs for finding the

K most common words. Characterize the trade-
offs among code length, problem definition, re-
source utilization (time and space), and imple-
mentation language and system.

2. The problem of the K most common words can
be altered in many ways. How do solutions to
the original problem handle these new twists?
Instead of finding the K most common words,
suppose you want to find the single most fre-
quent word, the frequency of all words in de-
creasing order, or the K least frequent words.

3.

4.

5.

Instead of dealing with words, suppose you wish
to study the frequency of letters, letter pairs, let-
ter triples, word pairs, or sentences.
Quantify the time and space required by Knuth’s
version of Liang’s hash tries; use either experi-
mental or mathematical tools (see Problem 4).
Knuth’s dynamic implementation allows inser-
tions into hash tries; how would you use the
data structure in a static problem in which the
entire set of words was known before any look-
ups (consider representing an English diction-
ary)?
Both Knuth and McIlroy made assumptions
about the distribution of words in English docu-
ments. For instance, Knuth assumed that most
frequent words tend to occur near the front of
the document, and McIlroy pointed out that a
few frequent words may not appear until rela-
tively late.
a. Run experiments to test the various assump-

tions. For instance, does reducing the mem-
ory size of Knuth’s program cause it to miss
any frequent words?

b. Gather data on the distribution of words
in English documents to help one answer
questions like this; can you summarize that
statistical data in a probabilistic model of
English text?

A map of the United States has been split into
25,000 tiny line segments, ordered from north to
south, for drawing on a one-way plotting device.
Design a program to reconnect the segments into
reasonably long connected chains for use on a
pen plotter.

Solutions to May’s Problems
4. J. S. Vitter’s “Faster Methods for Random Sam-

pling” in the July 1984 Communications shows
how to generate M sorted random integers in
O(M) expected time and constant space; those
resource bounds are within a constant factor of
optimal.

5. WEB provides two kinds of macros: define for
short strings and the (Do this now) notation for
longer pieces of code. Howard Trickey writes
that “this facility is qualitatively better than the
C preprocessor macros, because the syntax for
naming and defining C macros is too awkward
for use-once code fragments. Even in languages
with the ability to declare procedures ‘inline’, I
think most people would resist using procedures
as prolifically as WEB users use modules. Some-
how the ability to describe modules with sen-
tences instead of having to make up a name

482 Conrmunicatiot~s of the .4CM lune 1986 Volume 29 Number 6

Programmir~g Pearls

helps me a lot in using lots of modules. Also,
WEB macros can be used before they are defined,
and they can be defined in pieces (e.g., (Global
variables)), and that isn’t allowed in any macro
language I know.”

6. Howard Trickey observes that “the fact that
TANGLE produces unreadable code can make it
hard to use debuggers and other source-level
software. Knuth’s rejoinder is that if people like
WEB enough they will modify such software to
work with the WEB source. In practice, I never
had much difficulty debugging TANGLE output
run through a filter to break lines at statement
boundaries.”

7. [D. E. Knuth] To determine whether two input
sequences define the same set of integers, insert
each into an ordered hash table. The two ordered
hash tables are equal if and only if the two sets
are equal.

For Correspondence: Jon Bentley, AT&T Bell Laboratories, Room X-317.
600 Mountain Ave.. Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

ACM SPECIAL INTEREST GROUPS
ARE YOUR TECHNICAL

INTERESTS HERE?

The ACM Special Interest Groups further the ad-
vancement of mputer Science and practice in
many specialized areas. Members of each SIG
receive as one of their benefits a periodikal ex-
dusively devoted to the specd interest. The fd-
lowing are the publications that are available-
through membership o(special subwiption.

SIGACT NEWS (Automata and
Computability Theory)

SIGCOMM Computer Communication
Review (Data Communication)

SlGAda Letters (Ada)

SIGCPR Newsletter (Computer Personnel
Research)

SIGAPL Quote Quad (APL)
SIGCSE Bulletin (Computer Science

Education)

SIGARCH Computer Architecture News SIGCUE Bulletin (Computer Uses in
(Architecture of Computer Systems) Education)

SIGART Newsletter (Artificial
Intelligence)

SIGDA Newsletter (Design Automation)

SIGBDP DATABASE (Business Data
Processing)

SIGDOC Asterisk (Systems
Documentation)

SIGBIO Newsletter (Biomedical
Computing)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGIR Forum (Information Retrieval)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Edition

SIGCAPH Newsletter, Cassette Edition

SIGCAPH Newsletter, Print and Cassette
Editions

SIGCAS Newsletter (Computers and
Society)

SIGCHI Bulletin (Computer and Human
Interaction)

SIGMETRICS Performance Evaluation
Review (Measurement and
Evaluation)

SIGMICRO Newsletter
(Microprogramming)

SIGMOD Record (Management of Data)

SIGNUM Newsletter (Numerical
Mathematics)

SIGOA Newsletter (Office Automation)

SIGOPS Operating Systems Review
(Operating Systems)

SIGPLAN Notices (Programming
Languages)

SIGPLAN FORTRAN FORUM (FORTRAN)

SIGSAC Newsletter (Security, Audit.
and Control)

SIGSAM Bulletin (Symbolic and Algebraic
Manipulation)

SIGSIM Simuletter (Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applications)

SIGSOFT Software Engineering Notes
(Software Engineering)

SIGUCCS Newsletter (University and
College Computing Services)

june 1986 Volume 29 Number 6 Communications of the ACM 483

