

The Library Scaling Problem
and the Limits of Concrete Component Reuse

Ted J. Biggerstaff

November 1994

Technical Report
MSR-TR-94-19

Microsoft Research
Advanced Technology Division

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

Paper presented at Third International Conference on Reuse, Nov. 1994

Third International Conference on Reuse -- November, 1994

2

The Library Scaling Problem and the Limits of Concrete Component Reuse

Ted J. Biggerstaff
Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399
tedb@microsoft.com

Abstract
The growth of component libraries puts them on a

collision course with a key reuse problem -- the difficulty
in scaling reuse libraries in both component sizes and
feature variations. Because of the concreteness of
conventional, mainstream programming languages, one
is torn between combinatorial growth of reuse libraries
containing components with good run-time performance,
or linear growth with poor performance. The paper
identifies the extensions necessary to solve the scaling
problem, notably 1) factored component libraries based
on a "layers of abstraction" notion, 2) a composition
operator and compile-time generator to manufacture
combinatorially many custom components from
compositions of factors, and 3) extra-linguistic attributes
associated with individual programming constructs to
make inter-factor dependencies explicit and machine
processable. This paper analyses and compares existing
reuse systems that contain instances of these extensions
and indicates the directions for factored component
libraries.

Key Words and Phrases: Abstraction, development
environments, domain specific, factors, layers of
abstraction, generators, and reuse.

1. The problem
The growth of component libraries1 puts them on a

collision course with a key reuse problem -- the difficulty
in scaling reuse libraries in both features (i.e.,
horizontally) and component sizes (i.e., vertically). As
larger components with more feature-driven variations are
added to these libraries, the scaling problem will become
more and more of an impediment to their growth. The
crux of the problem is that the concreteness2

1 E.g., Visual BasicTM‘s VBX libraries, Application Programming

Interface libraries, foundation class libraries, and distributed object
libraries like COM or DOE.

 of the

2A concrete component is one that is expressed in a conventional
programming language such as C++ or Ada.

componentry introduces limitations, conflicts, and
penalties that are difficult to overcome within today’s
programming context. [4] Let us look at this problem in
more detail.

1.1. A Model of Reuse Libraries
To help understand the scaling problem, we need a

model of component reuse. A simple model of reuse says
that we get a savings on each reused component that is
proportional to the size of the component and we pay a
reuse tax for that use that is an apportionment of the total
cost to populate and maintain the library. In other words:

Payoff = Savings - Taxes

The total savings are proportional to the sum of all
individual savings from each individual reuse summed
over all projects, and the total taxes are proportional to the
sum of the population and maintenance costs for all
components in the reuse library. Since we are interested in
viewing components in terms of their properties, we will
define each component in terms of: 1) its underlying
abstraction (e.g., a stack or a queue) and 2) the particular
features that determine the detailed implementation
chosen for that abstraction (e.g., a “bounded” stack is a
fixed size). Given this view, we can write proportionalities
that will help to clarify the the first order effects on
Savings and Taxes:

where α φ φ φ, , , ,1 2 n
S  is the size of a library component that

implements some abstraction α chosen from the set Α
(the set of all supported abstractions) having some
combination of specific feature variations

1 2 nφ φ φ, , , chosen from the feature sets 1 2 nΦ Φ Φ, , , ;
and where π α φ φ φ, , , , ,1 2 n

N  is the number of physical copies
of this component in some specific project π chosen from
the set Π (the set of all potential projects).

Now of course, the exact formulas are more complex
than this with factors for dollar costs per line of developed
and maintained code; with totals that are summed over

Savings ~ (S N

Taxes ~ (S

1 2 n
n n2 21 1

1 2 n

1 2 n
n n2 21 1





 



α φ φ φ
φφφαπ

π α φ φ φ

α φ φ φ
φφφα

, , , , , , , , ,

, , , ,

*)

)
∈∈∈∈∈

∈∈∈∈

∑∑∑∑∑

∑∑∑∑
ΦΦΦΑΠ

ΦΦΦΑ

Third International Conference on Reuse -- November, 1994

3

time; etc. But for the purposes of helping to understanding
the first order consequences of various scaling choices,
these simple expressions are sufficient.

1.2. Vertical Library Scaling
A builder of a reuse library is motivated to build large-

scale (i.e., vertically scaled) components because they
provide higher payoff to the programmer in the sense that
he typically has to write fewer lines of code. Obviously, it
is less work to compose three very large scale components
that realize some desired functionality than to compose a
few hundred or thousand smaller ones. In terms of the
model, vertical scaling is represented by increasing (on the
average) the component sizes α φ φ φ, , , ,1 2 n

S  .

However, since a library of large-scale components is
inherently more domain specific, the probability of
component reuse diminishes as the components grow in
size. That is, as the average size of components grow, the
number of applications in which any given component fits
well diminishes. In terms of the model, π α φ φ φ, , , , ,1 2 n

N  > 0
for fewer π in Π . So, the average reuse payoff per
project over some large set of projects will probably
diminish. Some few specific projects may benefit greatly
but over diverse application sets, the proportional effect of
reuse will probably be small.

1.3. Horizontal Library Scaling
On the other hand, if one builds libraries of very

general, widely applicable components (horizontal
scaling), then such components need to provide a wide
variety of data abstractions, functions, and features to
accommodate the variety of uses to which they will be put.
In point of fact, horizontal scaling is a consequence of
vertical scaling because larger components, by their
nature, encompass more abstractions and features.
Horizontal scaling translates into increasing the size of the
sets Α Φ Φ Φ, , , ,1 2 n (i.e., supporting additional
abstractions and feature variations) and perhaps adding
new iΦ ’s (i.e., new classes of supported features). Such
added variations drive up the cost of building libraries at a
combinatorial rate since each new feature alternative
potentially doubles the size of the library.

1.4. Scaling Concrete Libraries with Performance
 Providing both vertical and horizontal scaling (with

acceptable performance) requires the creation of several
component variations for each abstraction, where each
such variation is a monolithic component that is
performance optimized by hand for its particular
combination of features. This drives up the cost of
populating the reuse library at a combinatorial rate
because each combination requires a hand built concrete

component. Thus, the size of concrete component reuse
libraries is of the order of the number of combinations of
abstractions and feature variations:

Some features or combinations of features may not
apply to all abstractions but in practice, the relationship is
not sufficiently sparse to change its inherently
combinatorial nature. Similarly, some features are local to
specific kinds of abstractions (e.g., the “priority” feature
of queues and deques) and will generate additional
variations for these cases. It is easy to need 20 or 30
variations of even simple data structure abstractions (e.g.,
a queue) in order to cover an acceptably broad set of
application needs. This particular problem has been
variously called the "combinatorial explosion" problem,
the "feature combinatorics" problem, or the "scaling"
problem. [3] In short, the combinatorial growth of
component variations drives up the size of concrete
component libraries (and thus, their creation and
maintenance costs) at a significantly faster rate than the
resultant payoff engendered by reusing the components.
What is more, the horizontal scaling problem is
aggravated by the practical need to simultaneously scale
component sizes (i.e., vertical scaling).

Booch’s analysis [8] illustrates this problem for the
domain of data structures. Booch analyzes 17 abstractions
such as stacks, queues, strings, trees, graphs, and so forth.
He introduces four classes of global features, each of
which allows several distinct variations or choices. The
global features are:

• Concurrency -- is the data shared by multiple
tasks and how is it shared (4 variations)?

• Garbage collection -- how is garbage collection
provided (3 variations)?

• Boundedness -- is the size of the object static or
dynamic (2 variations)?

• Iterator -- is an iterator supplied (2 variations)?
In addition to the global features, abstractions such as

deques or queues, may allow additional special features
that apply only to them, such as:

• Balking -- can an element be removed from a
place other than the front or back of a deque or a queue (2
variations)?

• Priority -- is the deque or queue ordered on the
value of a programmer specified field (2 variations)?

These feature variations can be combined to generate
implementation variations for each of the abstractions.
Booch reports that there are 26 meaningful combinations
of these features and it is not difficult to imagine other
features that double the number of components (e.g.,

n n() ()Concrete Components = × × × ×Ο Α Φ Φ Φ1 2 

Third International Conference on Reuse -- November, 1994

4

allocating the data structures from multiple memory
zones).

Since these features do not map neatly and efficiently
into independent routines, the programmer is inclined to
duplicate the abstract architecture of the abstraction (e.g.,
a queue) modified by feature induced variations. This can
significantly drive up the total cost of building and
maintaining a library of components, especially in the case
of the high payoff, large-scale (i.e., vertically scaled)
components. In fact, for domains of any significant
horizontal breadth and vertical scale, building such
libraries is often not economically feasible.

1.5. Practical Compromise: Mostly Vertical
Scaling

The practical approach to this problem has been to
trade-off some of the horizontal scaling for vertically
scaled (i.e., high payoff) components within a few
important, narrow domains (e.g., user interface
construction systems). The combinatorial growth is
mitigated to a degree, firstly, by narrowing the domain
and secondly, by establishing a set of global standards
(e.g., the Win32 API) that the components hew to.
Standards minimize to a degree the variety of component
connections and thereby, the number of component
variations. (See [4].) In the model, domain narrowing
translates into a reduction of the size of the target
application set Π whereas the introduction of standards
translates into reducing the number of iΦ ‘s supported as
well as reducing the size of individual iΦ ‘s (i.e., allowing
fewer variations for a given feature class). This strategy
allows high payoff reuse (i.e., the use of large-scale
components) while mitigating library growth and thereby,
mitigating the growth of the reuse tax.

The downside of this approach is the horizontal straight
jacket of narrow domains. The components, for the most
part, are not directly reusable outside of their limited
domain because the lack of feature variation frequently
compromises both function and performance.
Consequently, this is a short term, practical compromise
and only postpones having to face the scaling problem. As
technology changes and requirements become broader, the
price of this compromise is likely to become too great and
systems based on this idea will finally be forced to address
the library scaling problem.

1.6. Factored Libraries: Scaling with Linear
Growth

On the other hand, let us suppose that by some clever
factoring of components and features, we can scale both
horizontally and vertically, with linear library growth.
Each abstraction and each feature variation must be

represented as a separate, composable factor in the library.
Thus, the number of factors is order of the sum of the
number of abstractions and feature variations. Under such
a scheme, the number of factors in the library and
therefore, the reuse taxes, grow linearly. Happily, factor
composition also allows the library to appear to have
combinatorially many (generated) concrete components,
just as in a highly scaled concrete component library.
Restated in terms of the model, the effects are:

Are there any unpleasant consequences of this clever
factoring? In today’s technology, to avoid the feature
combinatorics problem, the library builder would likely
implement the factors (i.e., the abstractions and feature
variations) as callable routines, usually organized as layers
of abstractions (LOA) that can be composed (i.e., layered)
in a multiplicity of ways. Because the factors are
organized as callable routines, the LOA structure is
retained at run-time and manifests itself as run-time calls.
This neatly solves the feature combinatorics problem, but
in practice, because features tend map into relative small
routines that are organized into deep call chains, the
amount of calling overhead is large in relation to the
amount of productive code and thus, execution time
performance diminishes dramatically. Experience with
run-time LOA architectures using small grain (i.e., highly
factored) components suggests that except for prototypes,
the performance is frequently inadequate for production
uses. On the other hand, practical run-time LOA
architectures are designed with larger grain factors to
reduce the performance degradation induced by the LOA
overhead and these larger grain factors compromise the
benefits of the factoring.

The evolution of Booch’s library of components [8]
over the years hints at an evolution toward factored
libraries, within the limits permitted by conventional
languages. The original version of his library comprised a
reported 501 components in just under 150,000 lines of
AdaTM code covering 17 abstractions, four kinds of global
features, and a handful of local features. This is an average
of just under 30 variations per abstraction, which clearly
suggests the combinatorial growth potential.

In contrast, this library was redesigned for C++, which
allowed greater degrees of factorization and a concomitant
reduction in size to about 30,000 lines of C++. This
change was realized mostly through pushing the C++
abstraction facilities to their limit. Booch estimates that
10% of the improvement is due to the “second system

n

n

n())

() ()

Factors (
Taxes ~ S S S

Composites

1
1

n
n n

n

= + + + +

∑ + ∑ + + ∑

= × × × ×

∈ ∈ ∈

Ο Α Φ Φ Φ

Ο Α Φ Φ Φ

Α Φ Φ

1 2

1 2

1







α
α

φ
φ

φ
φ

Third International Conference on Reuse -- November, 1994

5

effect,” 20% to rearchitecting, and the rest to template
classes, inheritance and polymorphism.[9] The limit of
such an evolution would be a library of 30 to 50 factors
comprising a few thousand lines of code from which all
501 concrete components could be generated. This limit
appears to be beyond today’s C++ or Ada.

I believe that Booch’s library is a benchmark that
approximates the limits to which today’s languages can be
pushed in creating reuse libraries that emphasize reduced
library growth while providing an acceptable performance
level. The degree to which new, proposed language
constructs improve on this benchmark will indicate their
contribution to the solution of the scaling problem.

1.7. The Quandary
In summary, we have a quandary. The architectural

choices for designing reuse libraries introduce an inherent
conflict between vertical scaling, horizontal scaling, and
performance. Horizontal and vertical scaling seem
naturally antagonistic. Maximizing the payoff from one
tends to minimize the payoff from the other. Either one
gets a large number of reuses with minuscule payoff
(small general components) or a small number of highly
profitable reuses within an overly narrow domain (large
specific components). Nevertheless, there are architectures
(i.e. those using factored run-time components) that
mitigate the feature combinatorics problem and allow
simultaneous scaling -- but, then performance of the
resulting applications suffers.

What is the underlying problem and what can we do
about it? I hypothesize that the crux of the scaling problem
is due largely to inadequate abstraction and composition
mechanisms in conventional programming languages.
Further, I hypothesize that factoring conventional reusable
library components into separate but re-composable
abstractions and features based on an LOA notion will
foster simultaneous horizontal and vertical scalability of
reusable libraries at reasonable costs, if one uses a
composition strategy that avoids run-time calling overhead
between layers. Finally, such an overhead-free
composition strategy may be accomplished by composing
at reuse-time and then optimizing away the LOA overhead
before execution time. The resulting target program code
looks and performs much like the hand-coded, monolithic
components.

In the following sections, we will examine the
representational abstractions in today's programming
languages and analyze why they are inadequate for
forming factored reuse libraries. We will also discuss the
notion of composing components and features, and
analyze what representational extensions are needed to
achieve high degrees of simultaneous horizontal and
vertical library scaling with high performance.

2. Representational abstraction

2.1. Limitations of representation
The hypothesis of this paper is that the crux of the

scaling problem of reuse libraries is due to excessive
concreteness in conventional programming languages
[5,6]. Such concreteness requires many implementation
oriented details to be specified at library creation time,
details that could logically be deferred until later in the
design process, i.e., until component reuse time. Worse,
premature introduction of such implementation details
(which often represent arbitrary design choices made in
the absence of definitive requirements) precludes many
opportunities for reuse, often for reasons other than
functionality (e.g., for performance inadequacies).
Typically, such reasons are perfectly valid and a potential
reuse is lost because details have been introduced too early
-- before the opportunity for reuse, not after.

This premature introduction of implementation details
is a direct result of using conventional programming
languages, which make abstraction difficult and limit its
form and degree. Let us consider the modes of abstraction
that are available to the builder of a reuse library using
conventional languages -- classes, macros, parameterized
types, and modules of Module Interconnection Languages
(MILs) -- and explore why these abstractions are
inadequate as the basis for reusable factors.

Object-Oriented (OO) Classes: Classes are
conventionally thought of as abstractions and that term is
often informally applied as a synonym for classes. But
classes are implementation-oriented components. Their
detailed algorithms are chosen and although hidden, these
show through to the application in terms of their
performance, size, error handling design, memory
management schemes, etc. These properties can have
great (generally, negative) effect on the reusability of the
components. So while composing (i.e., merging)
independently developed reusable classes appears to be an
ideal solution, it often fails in practice because of such
implementation-based object collisions [7], e.g.,
inconsistent memory management assumptions. If class
merging is not the ideal factor composition operator, what
are other candidates?

The first candidate -- simple inheritance -- is less of a
composition operation and more of an extension operator.
It extends an existing concrete architecture without
allowing the existing methods of that architecture to be
easily or efficiently reengineered. One can certainly
subclass methods, but too often the programmer must
write code that includes too much knowledge of the
superclasses, or must modify existing classes to fit a
different subclassing architecture. He is always dealing
with concrete implementation details, not abstractions.

Third International Conference on Reuse -- November, 1994

6

Modifications and adaptations always occur at the
concrete, implementation level, not at a more abstract
level. Therefore, they often require code transformations
that are not isomorphic mappings of localized structure to
localized structure but rather require globally distributed,
complex code reorganizations. The differing
implementation architectures are simply not structurally or
conceptually isomorphic to each other. Hence, OO
implementations from reuse libraries may have to be
manually reorganized by the programmer in order to adapt
them to a new application context and this can be subtle
even in the simplest of cases.

Another possibility for an ideal composition operator is
multiple inheritance. Abstractly, this seems like the right
idea. Compose two independent classes to form a
computational union. Nevertheless, for many of the same
reasons given above (e.g., concreteness), this only works
well and allows hands-off generation of the composite
class in exactly those cases where the two classes are truly
independent. More commonly, the two classes are
somehow interdependent, which requires deep knowledge
and manual modification. OK, what about macros?

Macros: Macros certainly have the potential to be
powerful tools because of their powerful forward
refinement3

Parameterized Types: Another class of candidates
arises from the notion of parameterized types [21], which
allow one to declare a data type framework, such as, a
collection of items, but defer declaration of the type of the
items until later -- for example, until reuse-time when that
type will likely be known. Generics in Ada and Templates
in C++ are specific implementations of the parameterized
type

 capabilities but they are limited by the anti-
reuse design features of the languages in which they are
embedded. Take C for example. The language was
designed to allow maximum flexibility for the programmer
not maximum abstraction of the code. More to the point,
consider the requirements of generative reuse
architectures, which often conditionally generate
alternative code streams based on the inferred type of, or
on a declared property of a data item. Further, they
typically apply such conditional generation recursively. C
macros allow neither capability let alone allow it to be
applied recursively. Thus, macros are far too
representationally limited for reuse.

4

3Forward refinement is the term used to describe the transformation

from a small, abstract representation to a more detailled, concrete
representation.

 notion. These add a powerful level of abstraction
over simple macros because they allow parametric

4 Goguen calls this kind of parameterization “horizontal.” See [11,
12].

generation of many concrete components from a single
abstraction.

But these too fall short of the kind of abstractions
needed to solve the library scaling problem. Specifically,
they do not allow highly abstract components to vary
based on properties that fall outside of the type system.
For example, consider two coupled design decisions5 --
the choice of the implementation data structure for a very
long string (e.g., array versus linked list) and the choice
of the substring search algorithm (e.g., linear search
versus Boyer-Moore6 search). The performance
consequences can be onerous if the these choices are not
coordinated7

So, while parameterized types are a good idea and
amplify reusability, they still fall short of the key
structures needed to solve the reuse library scaling
problem. OK, what about module interconnection
languages (MILs)?

. If inconsistent, one or the other choice must
be revised or performance will suffer. Types are not a
good way to encode such dependencies but extra-
linguistic properties associated with individual program
items are and this is the way the Draco [15, 16] deals with
the coupling problem. Also see [14].

MILs: MILs [17] contain an important idea. They
allow a formal specification of component assemblies by
specifying the interconnecting interfaces. This allows for a
degree of independence between the abstract interface and
the implementation details, which helps in scaling
libraries. But this alone is not enough.

First, MILs provide a largely static description of a
program’s structure and do not incorporate the kind of
parametrically-based generation facilities that can
implement a rich enough notion of composition (i.e., one
that allows both horizontal and vertical composition8

5This example is due to Jim Neighbors.

).
These two notions of composition are absent or weak in
typical MILs and thus, MILs largely provide a way to

6The advantage of the Boyer-Moore search algorithm arises out of the
ability to avoid comparisons for many substrings (i.e., the ability to jump
over some substrings) within the long search string. A linked list
implementation eliminates most of this advantage and makes sequencing
through the strings an expensive operation.

7In the automatic programming literature, this kind of
interdependence is known as the “coupling problem” or the “conjunctive
goals problem.”

8Horizontal composition is a specialization process that allows a few
generic types to generate a multiplicative set of concrete type instances.
Vertical composition is an assembly or refinement process that
implements abstract operations used in one layer in terms of less abstract
operations defined in an lower layer.

Third International Conference on Reuse -- November, 1994

7

assemble static, monolithic components and so do little to
mitigate the scaling problem9

However, MILs have a more telling shortcoming,
which prevents easily implemented optimizations that

remove the inefficiencies introduced by compositions of
factors. There is a language boundary or discontinuity
between the MIL language and the component
programming language. This boundary complicates the
inter-component code shuffling between layers that is
needed to optimize for performance. Consider Figure 1.
This figure illustrates abstractions and features factored
into separate components or layers. Composition (i.e.,
stacking) of these components establishes a delegation
relationship between operators that are used in one layer
but defined in a lower layer. For example, the queue layer
defines an abstract version of the pop operator whose

.

9 To be fair, some systems that call themselves MILs appear to have

most of the desired parameterization and composition machinery. An
example of one is OOMIL [13].

implementation details are defined in the linked list
component.

The key issue is whether that delegation relationship
can be easily optimized away at compile-time to avoid the
performance hit of run-time delegation. Happily, the target
of such delegation is known as soon as the reusable
components are vertically composed (i.e., at reuse-time
and therefore, well before run-time). Thus, simple inlining
can easily remove much of the inefficiency of delegation
and simple partial evaluation can remove even more.
Unfortunately, the MIL/programming language boundary
complicates this kind of optimization. So, conceptually, I
like the MIL notion of component composition but find
most implementations wanting.

2.2. In Search of Components that Scale and
Perform

While conventional languages are inadequate for
solving the scaling problem, we have identified a number
of good ideas, viz. macro-like forward refinement, object-
like abstraction/encapsulation, parameterized type-like
specialization, and MIL-like component assembly. We
also argued that these ideas alone are not enough to solve
the library problem. So, what all is needed?

The primary requirement is the ability to factor
abstractions and features into separate but recomposable
LOA-based precursor components such that each
compositional combination results in the generation (at
compile-time) of a concrete but custom variation. Each
such generated variation is a version of an abstraction that
incorporates the features included in the composition. The
ideal factorization strategy leads to linear growth of the
libraries while allowing the set of useful composites to
grow combinatorially. However, the resulting composites
must be generated in a fully hands-off manner, with no
need for glue code, component modification, or any other
non-black-box reuse technique, since such hand work
reduces and often eliminates the benefits of reuse.

There are several existing systems that share these
important component and composition notions and that
appear to meet some or all of the requirements necessary
to solve the scaling problem: Draco[15, 16], Predator and
P++ [1, 2, 3, 18, 19], LIL [11], LILEANNA [20], FOOPS
[12], OOMIL [13] and RESOLVE [10].

These systems vary in many details but share the
common notion of an abstract, factored component that
can be vertically composed with other such components to
realize a high degree of operational variety. In the
majority of these systems, such components are based on
an LOA notion such that each component (or layer)

Figure 1
Composed, Layered Factors

Queue(x)

Synchronize (x)

Collection(x)

Linked
List(x)

Garbage Collection(x)

 pop(L)
 {return
(x::remove(L))}

remove(L)
 {return(...)}

 Composition delegates
 implementation details

remove is
defined

pop uses
remove

Third International Conference on Reuse -- November, 1994

8

isolates one abstraction or feature (e.g., an abstract queue
or a synchronization feature).

The following table compares and contrasts the two
representatives from this group that exhibit the greatest
differences in approach -- Draco and Predator/P++ -- and
for contrast, it includes the two major variations of
concrete component libraries. The fundamental difference
in these two factored approaches is how they handle
composition. Predator/P++ provides two basic kinds of
domain independent composition -- horizontal and vertical

-- whereas Draco provides custom, domain specific
transformations (e.g., x + 0 => x), which allow for the
kind of global optimizations and target code
reorganization that are beyond Predator/P++. On the other
hand, Predator/P++ code generation is faster than Draco
because the programmer makes all composition choices.
Draco automates many composition choices thereby,
introducing an indeterminate amount of search, which
slows generation. Because of the LOA architecture, both
Draco and Predator/P++ have linearly growing reuse
libraries.

In addition to an LOA-based factoring, a full solution
to the scaling problem requires the use of extra-linguistic
properties associated with individual programming
structures (as in Draco). These serve to determine (perhaps
in conjunction with other properties) how those
programming constructs should be implemented. These
extra-linguistic properties may induce local effects such as
indicating compile time pruning of if...then ...else...
structures during case-based generation (e.g., producing
differing insertion implementations), or global effects such
as coordinating distributed implementation decisions (e.g.,

coordinating the implementation choices for a string and
its search algorithm). Extra-linguistic properties allow
factors to be quasi-independent of each other and thereby,
allow better factor modularization and optimization.

3. Conclusions
The combinatorial explosion of reuse libraries is not

just an academic problem. It is of immediate relevance to
library growth in real systems, e.g., Visual BasicTM
VBXs, APIs (Application Programming Interfaces),

foundation class libraries, and distributed object systems
(e.g., COM or DOE). Fortunately, there is sufficient
evidence to suggest the extensions necessary to overcome
the scaling problem.

4. References
[1] Don Batory, and Sean O’Malley, The Design and

Implementation of Hierarchical Software Systems. ACM
Transactions on Software Engineering and Methodology.
Vol. 1, No. 4, pp 355-39, October, 1992.

[2] Don Batory, Vivek Singhal, and Marty Sirkin,
Implementing a Domain Model for Data Structures.
International Journal of Software Engineering and
Knowledge Engineering. Vol. 2, No. 3, pp 375-402,
September, 1992.

[3] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas,
Scalable Software Libraries. Symposium on the
Foundations of Software Engineering. Los Angeles, CA,
December, 1993.

[4] Ted J. Biggerstaff, An Assessment and Analysis of
Software Reuse. Advances in Computers, Vol. 34,
Academic Press, 1992.

Reuse
System

Approach Components Composition
Operator

Operational
Characteristics

Optimiza-
tion

Concrete
Compon-
ent
Libraries

Non-LOA
architecture

Monolithic, custom
combos of
abstractions and
features

No intra-
component
composition

Combinatorial library
growth with acceptable
performance

Components individually and
manually optimized

Concrete
Compon-
ent, LOA
Libraries

Run-time LOA
architecture

Abstractions and
features factored
into run-time
routines

Run-time call Linear library growth,
degenerate run-time
performance

Compromises trade off ideal factoring
for performance

Predator/
P++

Programming
language
supplemented for
factoring
components

Abstractions and
features factored
into compile-time
LOA

Domain
independent,
vertical and
horizontal
parameterization

Linear library growth with
good run-time
performance; Potential
programming leverage
n*x;

Local inlining and code
specialization; Global effects hard
(e.g., design decision coupling or
code reorganization)

Draco

Domain specific
languages with
general
transformation
engine

Layers of abstract,
compile-time
objects and
operations

General program
transformations,
often domain
specific

Very low rate of linear
library growth with near
hand tuned performance;
Programming leverage
potential 10x to 100x;

Domain specific optimizations may
reorganize target code; Global effects
easy (e.g., code reorg. & transform
coupling)

Third International Conference on Reuse -- November, 1994

9

[5] Ted J. Biggerstaff, Directions in Software Development
and Maintenance. Keynote Address, Conference on
Software Maintenance, Montreal, Canada, October, 1993a.

[6] Ted J. Biggerstaff, The Limits of Concrete Component
Reuse, Workshop on Institutionalization of Reuse, Owego,
NY, November, 1993b.

[7] Lucy Berlin, When Objects Collide. OOPSLA, 1990.
[8] Grady Booch, Software Components with Ada.

Benjamin/Cummings, 1987.
[9] Grady Booch, Personal Communication, 1994.
[10] Steve Edwards et al, RESOLVE Reading/Reference List,

available via anonymous ftp from ftp.cis.ohio-state.edu in
the directory pub/rsrg as the file RESOLVE-refs.txt, 1993.

[11] Joseph Goguen, Reusing and Interconnecting Components.
Computer, Vol. 19, No. 2, pp 16-28, February, 1986.

[12] Joseph Goguen and Adolfo Socorro, Module Composition
and System Design for the Object Paradigm. Journal of
Object-Oriented Programming, (to appear).

[13] Pat Hall and Ray Weedon, Object Oriented Module
Interconnection Languages, IEEE Proceedings of
Advances in Software Reuse, Lucca, Italy, 1993.

[14] Martin D. Katz and Dennis Volper, Constraint Propagation
in Software Libraries of Transformation Systems,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 2, No. 3, pp 355-374, 1992.

[15] James M. Neighbors, Software Construction Using
Components, PhD Dissertation, University of California,
Irvine, CA, 1980.

[16] James M. Neighbors, Draco: A Method for Engineering
Reusable Software Systems. In Ted J. Biggerstaff and Alan
Perlis (Eds.), Software Reusability, Addison-Wesley/ACM
Press, 1989.

[17] Ruben Prieto-Diaz and James M. Neighbors, Module
Interconnection Languages. The Journal of Systems and
Software, No. 6, pp 307-334, 1986.

[18] Vivek Singhal and Don Batory. P++: A Language for
Software System Generators. Technical Report TR-93-16,
University of Texas, 1993.

[19] Marty Sirkin, Don Batory, and Vivek Singhal, Software
Components in a Data Structure Precompiler. International
Conference on Software Engineering, Baltimore, MD,
May, 1993.

[20] Will Tracz, Parameterized Programming in LILLEANNA.
Proceedings, Second International Workshop on Software
Reuse, March, 1993.

[21] Dennis Volpano and Richard B. Kieburtz, The Templates
Approach to Software Reuse. In Ted J. Biggerstaff and Alan
Perlis (Eds.), Software Reusability, Addison-Wesley/ACM
Press, 1989.

	The problem
	A Model of Reuse Libraries
	Vertical Library Scaling
	Horizontal Library Scaling
	Scaling Concrete Libraries with Performance
	Practical Compromise: Mostly Vertical Scaling
	Factored Libraries: Scaling with Linear Growth
	The Quandary

	Representational abstraction
	Limitations of representation
	In Search of Components that Scale and Perform

	Conclusions
	References

