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Abstract 
The growth of component libraries puts them on a 

collision course with a key reuse problem -- the difficulty 
in scaling reuse libraries in both component sizes and 
feature variations. Because of the concreteness of 
conventional,  mainstream programming languages, one 
is torn between combinatorial growth of reuse libraries 
containing components with good run-time performance, 
or linear growth with poor performance. The paper 
identifies the extensions necessary to solve the scaling 
problem, notably 1) factored component libraries based 
on a "layers of abstraction" notion, 2) a composition 
operator and compile-time generator to manufacture 
combinatorially many custom components from 
compositions of factors, and 3) extra-linguistic attributes 
associated with individual programming constructs to 
make inter-factor dependencies explicit and machine 
processable. This paper analyses and compares existing 
reuse systems that contain instances of these extensions 
and indicates the directions for factored component  
libraries. 

Key Words and Phrases: Abstraction, development 
environments,  domain specific, factors, layers of 
abstraction, generators, and reuse. 

1.  The problem 
The growth of component libraries1 puts them on a 

collision course with a key reuse problem -- the difficulty 
in scaling reuse libraries in both features (i.e., 
horizontally) and component sizes (i.e., vertically). As 
larger components with more feature-driven variations are 
added to these libraries, the scaling problem will become 
more and more of an impediment to their growth. The 
crux of the problem is that the concreteness2

                                                           
1 E.g., Visual BasicTM‘s VBX libraries, Application Programming 

Interface libraries, foundation class libraries, and distributed object 
libraries like COM or DOE. 

 of the 

2A concrete component is one that is expressed in a conventional 
programming language such as C++ or Ada. 

componentry introduces limitations, conflicts, and 
penalties that are difficult to overcome within today’s 
programming context. [4] Let us look at this problem in 
more detail. 

1.1.  A Model of Reuse Libraries 
To help understand the scaling problem, we need a 

model of component reuse. A simple model of reuse says 
that we get a savings on each reused component that is 
proportional to the size of the component and we pay a 
reuse tax for that use that is an apportionment of the total 
cost to populate and maintain the library. In other words: 

Payoff  =  Savings -  Taxes  

The total savings are proportional to the sum of all 
individual savings from each individual reuse summed 
over all projects, and the total taxes are proportional to the 
sum of the population and maintenance costs for all 
components in the reuse library. Since we are interested in 
viewing components in terms of their properties, we will 
define each component in terms of: 1) its underlying 
abstraction (e.g.,  a stack or a queue) and 2) the particular 
features that determine the detailed implementation 
chosen for that abstraction (e.g., a “bounded” stack is a 
fixed size). Given this view, we can write proportionalities 
that will help to clarify the the first order effects on 
Savings and Taxes: 

where α φ φ φ, , , ,1 2 n
S  is the size of a library component that 

implements some abstraction α chosen from the set Α  
(the set of all supported abstractions) having some 
combination of specific feature variations 

1 2 nφ φ φ, , , chosen from the feature sets  1 2 nΦ Φ Φ, , , ; 
and where π α φ φ φ, , , , ,1 2 n

N  is the number of physical copies 
of this component in some specific project π chosen from 
the set Π  (the set of all potential projects). 

Now of course, the exact formulas are more complex 
than this with factors for dollar costs per line of developed 
and maintained code; with totals that are summed over  
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time; etc. But for the purposes of helping to understanding 
the first order consequences of various scaling choices, 
these simple expressions are sufficient. 

1.2.  Vertical Library Scaling 
A builder of a reuse library is motivated to build large-

scale (i.e., vertically scaled) components because they 
provide higher payoff to the programmer in the sense that 
he typically has to write fewer lines of code. Obviously, it 
is less work to compose three very large scale components 
that realize some desired functionality than to compose a 
few hundred or thousand smaller ones. In terms of the 
model, vertical scaling is represented by increasing (on the 
average) the component sizes α φ φ φ, , , ,1 2 n

S  . 

However, since a library of large-scale components is 
inherently more domain specific, the probability of 
component reuse diminishes as the components grow in 
size. That is, as the average size of components grow, the 
number of applications in which any given component fits 
well diminishes. In terms of the model, π α φ φ φ, , , , ,1 2 n

N  > 0  
for fewer π in Π . So, the average reuse payoff per 
project over some large set of projects will probably 
diminish. Some few specific projects may benefit greatly 
but over diverse application sets, the proportional effect of 
reuse will probably be small. 

1.3.  Horizontal Library Scaling 
On the other hand, if one builds libraries of very 

general, widely applicable components (horizontal 
scaling), then such components need to provide a wide 
variety of data abstractions, functions, and features to 
accommodate the variety of uses to which they will be put. 
In point of fact, horizontal scaling is a consequence of 
vertical scaling because larger components, by their 
nature, encompass more abstractions and features. 
Horizontal scaling translates into increasing the size of the 
sets Α Φ Φ Φ, , , ,1 2 n (i.e., supporting additional 
abstractions and feature variations) and perhaps adding 
new iΦ ’s (i.e., new classes of supported features). Such 
added variations drive up the cost of building libraries at a 
combinatorial rate since each new feature alternative 
potentially doubles the size of the library. 

1.4.  Scaling Concrete Libraries with Performance 
 Providing both vertical and horizontal scaling (with 

acceptable performance) requires the creation of several 
component variations for each abstraction, where each 
such variation is a monolithic component that is 
performance optimized by hand for its particular 
combination of features. This drives up the cost of 
populating the reuse library at a combinatorial rate 
because each combination requires a hand built concrete 

component. Thus, the size of concrete component reuse 
libraries is of the order of the number of combinations of 
abstractions and feature variations:  

Some features or combinations of features may not 
apply to all abstractions but in practice, the relationship is 
not sufficiently sparse to change its inherently 
combinatorial nature. Similarly, some features are local to 
specific kinds of abstractions (e.g., the “priority” feature 
of queues and deques) and will generate additional 
variations for these cases. It is easy to need 20 or 30 
variations of even simple data structure abstractions (e.g., 
a queue) in order to cover an acceptably broad set of 
application needs. This particular problem has been 
variously called the "combinatorial explosion" problem, 
the "feature combinatorics" problem, or the "scaling" 
problem. [3] In short, the combinatorial growth of 
component variations drives up the size of concrete 
component libraries (and thus, their creation and 
maintenance costs) at a significantly faster rate than the 
resultant payoff engendered by reusing the components. 
What is more, the horizontal scaling problem is 
aggravated by the practical need to simultaneously scale 
component sizes (i.e., vertical scaling). 

Booch’s analysis [8] illustrates this problem for the 
domain of data structures. Booch analyzes 17 abstractions 
such as stacks, queues, strings, trees, graphs, and so forth. 
He introduces four classes of global features, each of 
which allows several distinct variations or choices. The 
global features are:  

• Concurrency --  is the data shared by multiple 
tasks and how is it shared  (4 variations)?  

• Garbage collection -- how is garbage collection 
provided (3 variations)?  

• Boundedness -- is the size of the object static or 
dynamic (2 variations)? 

• Iterator -- is an iterator supplied (2 variations)? 
In addition to the global features, abstractions such as 

deques or queues, may allow additional special features 
that apply only to them, such as: 

• Balking -- can an element be removed from a 
place other than the front or back of a deque or a queue (2 
variations)?  

• Priority -- is the deque or queue ordered on the 
value of a programmer specified field (2 variations)? 

These feature variations can be combined to generate 
implementation variations for each of the abstractions. 
Booch reports that there are 26 meaningful combinations 
of these features and it is not difficult to imagine other 
features that double the number of components (e.g., 

n n( ) ( )Concrete Components  = × × × ×Ο Α Φ Φ Φ1 2   
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allocating the data structures from multiple memory 
zones). 

Since these features do not map neatly and efficiently 
into independent routines, the programmer is inclined to 
duplicate the abstract architecture of the abstraction (e.g., 
a queue) modified by feature induced variations. This can 
significantly drive up the total cost of building and 
maintaining a library of components, especially in the case 
of the high payoff, large-scale (i.e., vertically scaled) 
components. In fact, for domains of any significant 
horizontal breadth and vertical scale, building such 
libraries is often not economically feasible.  

1.5.  Practical Compromise: Mostly Vertical 
Scaling 

The practical approach to this problem has been to 
trade-off some of the horizontal scaling for vertically 
scaled (i.e., high payoff) components within a few 
important, narrow domains (e.g., user interface 
construction systems). The combinatorial growth is 
mitigated to a degree, firstly, by narrowing the domain 
and secondly, by establishing a set of global standards 
(e.g., the Win32 API) that the components hew to. 
Standards minimize to a degree the variety of component 
connections and thereby, the number of component 
variations. (See [4].) In the model, domain narrowing 
translates into a reduction of the size of the target 
application set Π  whereas the introduction of standards 
translates into reducing the number of iΦ ‘s supported as 
well as reducing the size of individual iΦ ‘s (i.e., allowing 
fewer variations for a given feature class). This strategy 
allows high payoff reuse (i.e., the use of large-scale 
components) while mitigating library growth and thereby, 
mitigating the growth of the reuse tax.  

The downside of this approach is the horizontal straight 
jacket of narrow domains. The components, for the most 
part, are not directly reusable outside of their limited 
domain because the lack of feature variation frequently 
compromises both function and performance. 
Consequently, this is a short term, practical compromise 
and only postpones having to face the scaling problem. As 
technology changes and requirements become broader, the 
price of this compromise is likely to become too great and 
systems based on this idea will finally be forced to address 
the library scaling problem. 

1.6.  Factored Libraries: Scaling with Linear 
Growth 

On the other hand, let us suppose that by some clever 
factoring of components and features, we can scale both 
horizontally and vertically, with linear library growth. 
Each abstraction and each feature variation must be 

represented as a separate, composable factor in the library. 
Thus, the number of factors is order of the sum of the 
number of abstractions and feature variations. Under such 
a scheme, the number of factors in the library and 
therefore, the reuse taxes, grow linearly. Happily, factor 
composition also allows the library to appear to have 
combinatorially many (generated) concrete components, 
just as in a highly scaled concrete component library. 
Restated in terms of the model, the effects are: 

Are there any unpleasant consequences of this clever 
factoring? In today’s technology, to avoid the feature 
combinatorics problem, the library builder would likely 
implement the factors (i.e., the abstractions and feature 
variations) as callable routines, usually organized as layers 
of abstractions (LOA) that can be composed (i.e., layered) 
in a multiplicity of ways. Because the factors are 
organized as callable routines, the LOA structure is 
retained at  run-time and manifests itself as run-time calls. 
This neatly solves the feature combinatorics problem, but 
in practice, because features tend map into relative small 
routines that are organized into deep call chains, the 
amount of calling overhead is large in relation to the 
amount of productive code and thus, execution time 
performance diminishes dramatically. Experience with 
run-time LOA architectures using small grain (i.e., highly 
factored) components suggests that except for prototypes, 
the performance is frequently inadequate for production 
uses. On the other hand, practical run-time LOA 
architectures are designed with larger grain factors to 
reduce the performance degradation induced by the LOA 
overhead and these larger grain factors compromise the 
benefits of the factoring. 

The evolution of Booch’s library of components [8] 
over the years hints at an evolution toward factored 
libraries, within the limits permitted by conventional 
languages. The original version of his library comprised a 
reported 501 components in just under 150,000 lines of 
AdaTM code covering 17 abstractions, four kinds of global 
features, and a handful of local features. This is an average 
of just under 30 variations per abstraction, which clearly 
suggests the combinatorial growth potential. 

In contrast, this library was redesigned for C++, which 
allowed greater degrees of factorization and a concomitant 
reduction in size to about 30,000 lines of C++. This 
change was realized mostly through pushing the C++ 
abstraction facilities to their limit. Booch estimates that 
10% of the improvement is due to the “second system 
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effect,” 20% to rearchitecting, and the rest to template 
classes, inheritance and polymorphism.[9] The limit of 
such an evolution would be a library of 30 to 50 factors 
comprising a few thousand lines of code from which all 
501 concrete components could be generated. This limit 
appears to be beyond today’s C++ or Ada. 

I believe that Booch’s library is a benchmark that 
approximates the limits to which today’s languages can be 
pushed in creating reuse libraries that emphasize reduced 
library growth while providing an acceptable performance 
level. The degree to which new, proposed language 
constructs improve on this benchmark will indicate their 
contribution to the solution of the scaling problem. 

1.7.  The Quandary 
In summary, we have a quandary. The architectural 

choices for designing reuse libraries introduce an inherent 
conflict between vertical scaling, horizontal scaling, and 
performance. Horizontal and vertical scaling seem 
naturally antagonistic. Maximizing the payoff from one 
tends to minimize the payoff from the other. Either one 
gets a large number of reuses with minuscule payoff 
(small general components) or a small number of highly 
profitable reuses within an overly narrow domain (large 
specific components). Nevertheless, there are architectures 
(i.e. those using factored run-time components) that 
mitigate the feature combinatorics problem and allow 
simultaneous scaling -- but, then performance of the 
resulting applications suffers.  

What is the underlying problem and what can we do 
about it? I hypothesize that the crux of the scaling problem 
is due largely to inadequate abstraction and composition 
mechanisms in conventional programming languages. 
Further, I hypothesize that factoring conventional reusable 
library components into separate but re-composable 
abstractions and features based on an LOA notion will 
foster simultaneous horizontal and vertical scalability of 
reusable libraries at reasonable costs, if one uses a 
composition strategy that avoids run-time calling overhead 
between layers. Finally, such an overhead-free 
composition strategy may be accomplished by composing 
at reuse-time and then optimizing away the LOA overhead 
before execution time. The resulting target program code 
looks and performs much like the hand-coded, monolithic 
components. 

In the following sections, we will examine the 
representational abstractions in today's programming 
languages and analyze why they are inadequate for 
forming factored reuse libraries. We will also discuss the 
notion of composing components and features, and 
analyze what representational extensions are needed to 
achieve high degrees of simultaneous horizontal and 
vertical library scaling with high performance. 

2.  Representational abstraction 

2.1. Limitations of representation 
The hypothesis of this paper is that the crux of the 

scaling problem of reuse libraries is due to excessive 
concreteness in conventional programming languages 
[5,6]. Such concreteness requires many implementation 
oriented details to be specified at library creation time, 
details that could logically be deferred until later in the 
design process, i.e., until component reuse time. Worse, 
premature introduction of such implementation details 
(which often represent arbitrary design choices made in 
the absence of definitive requirements) precludes many 
opportunities for reuse, often for reasons other than 
functionality (e.g., for performance inadequacies). 
Typically, such reasons are perfectly valid and a potential 
reuse is lost because details have been introduced too early 
-- before the opportunity for reuse, not after.  

This premature introduction of implementation details 
is a direct result of using conventional programming 
languages, which make abstraction difficult and limit its 
form and degree. Let us consider the modes of abstraction 
that are available to the builder of a reuse library using 
conventional languages -- classes, macros, parameterized 
types, and modules of Module Interconnection Languages 
(MILs) -- and explore why these abstractions are 
inadequate as the basis for reusable factors. 

Object-Oriented (OO) Classes: Classes are 
conventionally thought of as abstractions and that term is 
often informally applied as a synonym for classes. But 
classes are implementation-oriented components. Their 
detailed algorithms are chosen and although hidden, these 
show through to the application in terms of their 
performance, size, error handling design, memory 
management schemes, etc. These properties can  have 
great (generally, negative) effect on the reusability of the 
components. So while composing (i.e., merging) 
independently developed reusable classes appears to be an 
ideal solution, it often fails in practice because of such 
implementation-based object collisions [7], e.g., 
inconsistent memory management assumptions. If class 
merging is not the ideal factor composition operator, what 
are other candidates? 

The first candidate  -- simple inheritance -- is less of a 
composition operation and more of an extension operator. 
It extends an existing concrete architecture without 
allowing the existing methods of that architecture to be 
easily or efficiently reengineered. One can certainly 
subclass methods, but too often the programmer must 
write code that includes too much knowledge of the 
superclasses, or must modify existing classes to fit a 
different subclassing architecture. He is always dealing 
with concrete implementation details, not abstractions. 
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Modifications and adaptations always occur at the 
concrete, implementation level, not at a more abstract 
level. Therefore, they often require code transformations 
that are not isomorphic mappings of localized structure to 
localized structure but rather require globally distributed, 
complex code reorganizations. The differing 
implementation architectures are simply not structurally or 
conceptually isomorphic to each other. Hence, OO 
implementations from reuse libraries may have to be 
manually reorganized by the programmer in order to adapt 
them to a new application context and this can be subtle 
even in the simplest of cases. 

Another possibility for an ideal composition operator is 
multiple inheritance. Abstractly, this seems like the right 
idea. Compose two independent classes to form a 
computational union. Nevertheless, for many of the same 
reasons given above (e.g., concreteness), this only works 
well and allows hands-off generation of the composite 
class in exactly those cases where the two classes are truly 
independent. More commonly, the two classes are 
somehow interdependent, which requires deep knowledge 
and manual modification. OK, what about macros? 

Macros: Macros certainly have the potential to be 
powerful tools because of their powerful forward 
refinement3

Parameterized Types: Another class of candidates 
arises from the notion of parameterized types [21], which 
allow one to declare a data type framework, such as, a 
collection of items, but defer declaration of the type of the 
items until later -- for example, until reuse-time when that 
type will likely be known. Generics in Ada and Templates 
in C++ are specific implementations of the parameterized 
type

 capabilities but they are limited by the anti-
reuse design features of the languages in which they are 
embedded. Take C for example. The language was 
designed to allow maximum flexibility for the programmer 
not maximum abstraction of the code. More to the point, 
consider the requirements of generative reuse 
architectures, which often conditionally generate 
alternative code streams based on the inferred type of, or 
on a declared property of a data item. Further, they 
typically apply such conditional generation recursively. C 
macros allow neither capability let alone allow it to be 
applied recursively. Thus, macros are far too 
representationally limited for reuse.  

4

                                                           
3Forward refinement is the term used to describe the transformation 

from a small, abstract representation to a more detailled, concrete 
representation. 

 notion. These add a powerful level of abstraction 
over simple macros because they allow parametric 

4 Goguen calls this kind of parameterization  “horizontal.”  See [11, 
12]. 

generation of many concrete components from a single 
abstraction. 

But these too fall short of the kind of abstractions 
needed to solve the library scaling problem. Specifically, 
they do not allow highly abstract components to vary 
based on properties that fall outside of the type system. 
For example, consider two coupled design decisions5 -- 
the choice of the implementation data structure for a very 
long string  (e.g., array versus linked list) and the choice 
of the substring search algorithm (e.g., linear search 
versus Boyer-Moore6 search). The performance 
consequences can be onerous if the these choices are not 
coordinated7

So, while parameterized types are a good idea and 
amplify reusability, they still fall short of the key 
structures needed to solve the reuse library scaling 
problem. OK, what about module interconnection 
languages (MILs)?  

. If inconsistent, one or the other choice must 
be revised or performance will suffer.  Types are not a 
good way to encode such dependencies but extra-
linguistic properties associated with individual program 
items are and this is the way the Draco [15, 16] deals with 
the coupling problem. Also see [14].  

MILs: MILs [17] contain an important idea. They 
allow a formal specification of component assemblies by 
specifying the interconnecting interfaces. This allows for a 
degree of independence between the abstract interface and 
the implementation details, which helps in scaling 
libraries. But this alone is not enough.  

First, MILs provide a largely static description of a 
program’s structure and do not incorporate the kind of 
parametrically-based generation facilities that can 
implement a rich enough notion of composition (i.e., one 
that allows both horizontal and vertical composition8

                                                           
5This example is due to Jim Neighbors. 

). 
These two notions of composition are absent or weak in 
typical MILs and thus, MILs largely provide a way to 

6The advantage of the Boyer-Moore search algorithm arises out of the 
ability to avoid comparisons for many substrings (i.e., the ability to jump 
over some substrings) within the long search string. A linked list 
implementation eliminates most of this advantage and makes sequencing 
through the strings an expensive operation. 

7In the automatic programming literature, this kind of 
interdependence is known as the “coupling problem” or the “conjunctive 
goals problem.” 

8Horizontal composition is a specialization process that allows a few 
generic types to generate a multiplicative set of concrete type instances. 
Vertical composition is an assembly or refinement process that 
implements abstract operations used in one layer in terms of less abstract 
operations defined in an lower layer. 
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assemble static, monolithic components and so do little to 
mitigate the scaling problem9

However, MILs have a more telling shortcoming, 
which prevents easily implemented optimizations that 

remove the inefficiencies introduced by compositions of 
factors. There is a language boundary or discontinuity 
between the MIL language and the component 
programming language. This boundary complicates the 
inter-component code shuffling between layers that is 
needed to optimize for performance. Consider Figure 1. 
This figure illustrates abstractions and features factored 
into separate components or layers. Composition (i.e., 
stacking) of these components establishes a delegation 
relationship between operators that are used in one layer 
but defined in a lower layer. For example, the queue layer 
defines an abstract version of the pop operator whose 

. 

                                                           
9 To be fair,  some systems that call themselves MILs appear to have 

most of the desired parameterization and composition machinery. An 
example of one is OOMIL [13]. 

implementation details are defined in the linked list 
component.  

The key issue is whether that delegation relationship 
can be easily optimized away at compile-time to avoid the 
performance hit of run-time delegation. Happily, the target 
of such delegation is known as soon as the reusable 
components are vertically composed (i.e., at reuse-time 
and therefore, well before run-time). Thus, simple inlining 
can easily remove much of the inefficiency of delegation 
and simple partial evaluation can remove even more. 
Unfortunately, the MIL/programming language boundary 
complicates this kind of optimization. So, conceptually, I 
like the MIL notion of component composition but  find 
most implementations wanting. 

 
 

2.2. In Search of Components that Scale and 
Perform 

While conventional languages are inadequate for 
solving the scaling problem, we have identified a number 
of good ideas, viz. macro-like forward refinement, object-
like abstraction/encapsulation, parameterized type-like 
specialization, and MIL-like component assembly. We 
also argued that these ideas alone are not enough to solve 
the library problem. So, what all is needed? 

The primary requirement is the ability to factor 
abstractions and features into separate but recomposable 
LOA-based precursor components such that each 
compositional combination results in the generation (at 
compile-time) of a concrete but custom variation. Each 
such generated variation is a version of an abstraction that 
incorporates the features included in the composition. The 
ideal factorization strategy leads to linear growth of the 
libraries while allowing the set of useful composites to 
grow combinatorially. However, the resulting composites 
must be generated in a fully hands-off manner, with no 
need for glue code, component modification, or any other 
non-black-box reuse technique, since such hand work 
reduces and often eliminates the benefits of reuse. 

There are several existing systems that share these 
important component and composition notions and that 
appear to meet some or all of the requirements necessary 
to solve the scaling problem: Draco[15, 16], Predator and 
P++ [1, 2, 3, 18, 19], LIL [11], LILEANNA [20], FOOPS 
[12], OOMIL [13] and RESOLVE [10].  

These systems vary in many details but share the 
common notion of an abstract, factored component that 
can be vertically composed with other such components to 
realize a high degree of operational variety. In the 
majority of these systems, such components are based on 
an LOA notion such that each component (or layer) 

 

Figure 1
Composed, Layered Factors

Queue(x)

Synchronize (x)

Collection(x)

Linked
List(x)

Garbage Collection(x)

  pop(L)
   {return
(x::remove(L))}

remove(L)
       {return(...)}

 Composition delegates
 implementation details

remove is
defined

pop uses
remove
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isolates one abstraction or feature (e.g., an abstract queue 
or a synchronization feature).  

The following table compares and contrasts the two 
representatives from this group that exhibit the greatest 
differences in approach -- Draco and Predator/P++ -- and 
for contrast, it includes the two major variations of 
concrete component libraries. The fundamental difference 
in these two factored approaches is how they handle 
composition. Predator/P++ provides two basic kinds of 
domain independent composition -- horizontal and vertical 

-- whereas Draco provides custom, domain specific 
transformations (e.g., x + 0 => x), which allow for the 
kind of global optimizations and target code 
reorganization that are beyond Predator/P++. On the other 
hand, Predator/P++ code generation is faster than Draco 
because the programmer makes all composition choices. 
Draco automates many composition choices thereby, 
introducing an indeterminate amount of search, which 
slows generation. Because of the LOA architecture, both 
Draco and Predator/P++ have linearly growing reuse 
libraries.  

In addition to an LOA-based factoring, a full solution 
to the scaling problem requires the use of extra-linguistic 
properties associated with individual programming 
structures (as in Draco). These serve to determine (perhaps 
in conjunction with other properties) how those 
programming constructs should be implemented. These 
extra-linguistic properties may induce local effects such as 
indicating compile time pruning of if...then ...else... 
structures during case-based generation (e.g., producing 
differing insertion implementations), or global effects such 
as coordinating distributed implementation decisions (e.g., 

coordinating the implementation choices for a string and 
its search algorithm). Extra-linguistic properties allow 
factors to be quasi-independent of each other and thereby, 
allow better factor modularization and optimization.  

3. Conclusions 
The combinatorial explosion of reuse libraries is not 

just an academic problem. It is of immediate relevance to 
library growth in real systems, e.g., Visual BasicTM 
VBXs, APIs (Application Programming Interfaces), 

foundation class libraries, and distributed object systems 
(e.g., COM or DOE). Fortunately, there is sufficient 
evidence to suggest the extensions necessary to overcome 
the scaling problem. 

4.  References 
[1] Don Batory, and Sean O’Malley, The Design and 

Implementation of Hierarchical Software Systems. ACM 
Transactions on Software Engineering and Methodology. 
Vol. 1, No. 4, pp 355-39, October, 1992. 

[2] Don Batory, Vivek Singhal, and Marty Sirkin, 
Implementing a Domain Model for Data Structures. 
International Journal of Software Engineering and 
Knowledge Engineering. Vol. 2, No. 3, pp 375-402, 
September, 1992. 

[3] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas, 
Scalable Software Libraries. Symposium on the 
Foundations of Software Engineering. Los Angeles, CA, 
December, 1993. 

[4] Ted J. Biggerstaff, An Assessment and Analysis of 
Software Reuse. Advances in Computers, Vol. 34, 
Academic Press, 1992. 

Reuse  
System 

Approach Components Composition  
Operator 

Operational 
Characteristics 

Optimiza- 
tion 

Concrete 
Compon- 
ent 
Libraries 

Non-LOA 
architecture 

Monolithic, custom 
combos of 
abstractions and 
features 

No intra-
component 
composition 

Combinatorial library 
growth with acceptable 
performance 

Components individually and 
manually optimized 

Concrete 
Compon-
ent, LOA 
Libraries 

Run-time LOA 
architecture 

Abstractions and 
features factored 
into run-time 
routines 

Run-time call Linear library growth, 
degenerate run-time 
performance 

Compromises trade off ideal factoring 
for performance 

Predator/ 
P++ 
 

Programming 
language 
supplemented for 
factoring 
components 

Abstractions and 
features factored 
into compile-time 
LOA 

Domain 
independent, 
vertical and 
horizontal 
parameterization 

Linear library growth with 
good  run-time 
performance; Potential 
programming leverage 
n*x; 

Local inlining and code 
specialization; Global effects hard 
(e.g., design decision coupling or 
code reorganization) 

Draco  
 

Domain specific 
languages with 
general 
transformation 
engine 

Layers of abstract, 
compile-time 
objects and  
operations 

General program 
transformations, 
often domain 
specific 

Very low rate of linear 
library growth with near 
hand tuned  performance; 
Programming leverage 
potential 10x to 100x; 

Domain specific optimizations may 
reorganize target code; Global effects  
easy (e.g., code reorg. & transform 
coupling) 



Third International Conference on Reuse -- November, 1994  
    
  

9 

[5] Ted J. Biggerstaff,  Directions in Software Development 
and Maintenance. Keynote Address, Conference on 
Software Maintenance, Montreal, Canada, October, 1993a. 

[6] Ted J. Biggerstaff, The Limits of Concrete Component 
Reuse, Workshop on Institutionalization of Reuse, Owego, 
NY, November, 1993b. 

[7] Lucy Berlin, When Objects Collide. OOPSLA, 1990. 
[8] Grady Booch, Software Components with Ada. 

Benjamin/Cummings, 1987. 
[9] Grady Booch, Personal Communication, 1994. 
[10] Steve Edwards et al, RESOLVE Reading/Reference List, 

available via anonymous ftp from ftp.cis.ohio-state.edu in 
the directory pub/rsrg as the file RESOLVE-refs.txt, 1993. 

[11] Joseph Goguen, Reusing and Interconnecting Components. 
Computer, Vol. 19, No. 2, pp 16-28, February, 1986. 

[12] Joseph Goguen and Adolfo Socorro, Module Composition 
and System Design for the Object Paradigm. Journal of 
Object-Oriented Programming, (to appear). 

[13] Pat Hall and Ray Weedon, Object Oriented Module 
Interconnection Languages, IEEE Proceedings of 
Advances in Software Reuse, Lucca, Italy, 1993. 

[14] Martin D. Katz and Dennis Volper, Constraint Propagation 
in Software Libraries of Transformation Systems, 
International Journal of Software Engineering and 
Knowledge Engineering, Vol. 2, No. 3, pp 355-374, 1992. 

[15] James M. Neighbors, Software Construction Using 
Components, PhD Dissertation, University of California, 
Irvine, CA, 1980. 

[16] James M. Neighbors, Draco: A Method for Engineering 
Reusable Software Systems. In Ted J. Biggerstaff and Alan 
Perlis (Eds.), Software Reusability, Addison-Wesley/ACM 
Press, 1989. 

[17] Ruben Prieto-Diaz and James M. Neighbors, Module 
Interconnection Languages. The Journal of Systems and 
Software, No. 6, pp 307-334, 1986. 

[18] Vivek Singhal and Don Batory. P++: A Language for 
Software System Generators.  Technical Report TR-93-16, 
University of Texas, 1993. 

[19] Marty Sirkin, Don Batory, and Vivek Singhal, Software 
Components in a Data Structure Precompiler. International 
Conference on Software Engineering, Baltimore, MD, 
May, 1993. 

[20] Will Tracz, Parameterized Programming in LILLEANNA. 
Proceedings, Second International Workshop on Software 
Reuse, March, 1993. 

[21] Dennis Volpano and Richard B. Kieburtz, The Templates 
Approach to Software Reuse. In Ted J. Biggerstaff and Alan 
Perlis (Eds.), Software Reusability, Addison-Wesley/ACM 
Press, 1989. 

 
 


	The problem
	A Model of Reuse Libraries
	Vertical Library Scaling
	Horizontal Library Scaling
	Scaling Concrete Libraries with Performance
	Practical Compromise: Mostly Vertical Scaling
	Factored Libraries: Scaling with Linear Growth
	The Quandary

	Representational abstraction
	Limitations of representation
	In Search of Components that Scale and Perform

	Conclusions
	References

