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S
oftware practitioners today could be forgiven 
if recent microprocessor developments have 
given them some trepidation about the future 
of software. While Moore’s law continues to 
hold (that is, transistor density continues to 
double roughly every 18 months), as a result of 
both intractable physical limitations and prac-

tical engineering considerations, that increasing density 
is no longer being spent on boosting clock rate. Instead, it 
is being used to put multiple CPU cores on a single CPU 
die. From the software perspective, this is not a revolu-
tionary shift, but rather an evolutionary one: multicore 
CPUs are not the birthing of a new paradigm, but rather 
the progression of an old one (multiprocessing) into 
more widespread deployment. Judging from many recent 
articles and papers on the subject, however, one might 
think that this blossoming of concurrency is the coming 
of the apocalypse, that “the free lunch is over.”1

As practitioners who have long been at the coal face of 
concurrent systems, we hope to inject some calm reality 

(if not some hard-won wisdom) into a discussion that has 
too often descended into hysterics. Specifically, we hope 
to answer the essential question: what does the prolif-
eration of concurrency mean for the software that you 
develop? Perhaps regrettably, the answer to that question 
is neither simple nor universal—your software’s relation-
ship to concurrency depends on where it physically 
executes, where it is in the stack of abstraction, and the 
business model that surrounds it. 

Given that many software projects now have compo-
nents in different layers of the abstraction stack spanning 
different tiers of the architecture, you may well find that 
even for the software that you write, you do not have one 
answer but several: you may be able to leave some of your 
code forever executing in sequential bliss, and some may 
need to be highly parallel and explicitly multithreaded. 
Further complicating the answer, we will argue that much 
of your code will not fall neatly into either category: it 
will be essentially sequential in nature but will need to be 
aware of concurrency at some level.  

Chances are you won’t  

actually have to write  

multithreaded code.  

But if you do,  

some key principles  

will help you master  

this “black art.”
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Although we assert that less—much less—code needs 
to be parallel than some might fear, it is nonetheless 
true that writing parallel code remains something of a 
black art. We also therefore give specific implementa-
tion techniques for developing a highly parallel system. 
As such, this article is somewhat dichotomous: we try 
both to argue that most code can (and should) achieve 
concurrency without explicit parallelism, and at the same 
time to elucidate techniques for those who must write 
explicitly parallel code. This article is half stern lecture on 
the merits of abstinence and half Kama Sutra.

SOME HISTORICAL CONTEXT
Before we discuss concurrency with respect to today’s 
applications, it would be helpful to explore the history 
of concurrent execution. Even by the 1960s—when the 
world was still wet with the morning dew of the com-
puter age—it was becoming clear that a single central pro-
cessing unit executing a single instruction stream would 
result in unnecessarily limited system performance. While 
computer designers experimented with different ideas 
to circumvent this limitation, it was the introduction of 
the Burroughs B5000 in 1961 that proffered the idea that 
ultimately proved to be the way forward: disjoint CPUs 
concurrently executing different instruction streams but 
sharing a common memory. In this regard (as in many) 
the B5000 was at least a decade ahead of its time. It was 
not until the 1980s that the need for multiprocessing 
became clear to a wider body of researchers, who over the 
course of the decade explored cache coherence protocols 
(e.g., the Xerox Dragon and DEC Firefly), prototyped par-
allel operating systems (e.g., multiprocessor Unix running 
on the AT&T 3B20A), and developed parallel databases 
(e.g., Gamma at the University of Wisconsin).

In the 1990s, the seeds planted by researchers in the 
1980s bore the fruit of practical systems, with many 
computer companies (e.g., Sun, SGI, Sequent, Pyramid) 
placing big bets on symmetric multiprocessing. These 
bets on concurrent hardware necessitated correspond-
ing bets on concurrent software—if an operating system 
cannot execute in parallel, neither can much else in the 
system—and these companies independently came to 

the realization that their operating systems would need 
to be rewritten around the notion of concurrent execu-
tion. These rewrites took place early in the 1990s, and the 
resulting systems were polished over the decade; much 
of the resulting technology can today be seen in open 
source operating systems such as OpenSolaris, FreeBSD, 
and Linux.  

Just as several computer companies made big bets 
around multiprocessing, several database vendors made 
bets around highly parallel relational databases; upstarts 
including Oracle, Teradata, Tandem, Sybase, and Infor-
mix needed to use concurrency to achieve a performance 
advantage over the mainframes that had dominated 
transaction processing until that time.2 As in operating 
systems, this work was conceived in the late 1980s and 
early 1990s, and incrementally improved over the course 
of the decade.

The upshot of these trends was that by the end of the 
1990s, concurrent systems had displaced their unipro-
cessor forebears as high-performance computers: when 
the TOP500 list of supercomputers was first drawn up in 
1993, the highest-performing uniprocessor in the world 
was just #34, and more than 80 percent of the top 500 
were multiprocessors of one flavor or another. By 1997, 
uniprocessors were off the list entirely. Beyond the super-
computing world, many transaction-oriented applications 
scaled with CPU, allowing users to realize the dream of 
expanding a system without revisiting architecture.

The rise of concurrent systems in the 1990s coincided 
with another trend: while CPU clock rate continued to 
increase, the speed of main memory was not keeping up. 
To cope with this relatively slower memory, microproces-
sor architects incorporated deeper (and more compli-
cated) pipelines, caches, and prediction units. Even then, 
the clock rates themselves were quickly becoming some-
thing of a fib: while the CPU might be able to execute 
at the advertised rate, only a slim fraction of code could 
actually achieve (let alone surpass) the rate of one cycle 
per instruction—most code was mired spending three, 
four, five (or many more) cycles per instruction. 

Many saw these two trends—the rise of concurrency 
and the futility of increasing clock rate—and came to the 
logical conclusion: instead of spending transistor budget 
on “faster” CPUs that weren’t actually yielding much 
in terms of performance gains (and had terrible costs in 
terms of power, heat, and area), why not take advantage 
of the rise of concurrent software and use transistors to 
effect multiple (simpler) cores per die? 
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That it was the success of concurrent software that 
contributed to the genesis of chip multiprocessing is an 
incredibly important historical point and bears reempha-
sis. There is a perception that microprocessor architects 
have—out of malice, cowardice, or despair—inflicted 
concurrency on software.3 In reality, the opposite is the 
case: it was the maturity of concurrent software that 
led architects to consider concurrency on the die. (The 
reader is referred to one of the earliest chip multiproces-
sors—DEC’s Piranha—for a detailed discussion of this 
motivation.4) Were software not ready, these microproces-
sors would not be commercially viable today. If anything, 
the “free lunch” that some decry as being over is in fact, 
at long last, being served. One need only be hungry and 
know how to eat!

CONCURRENCY IS FOR PERFORMANCE
The most important conclusion from this foray into his-
tory is that concurrency has always been employed for 
one purpose: to improve the performance of the system. 
This seems almost too obvious to make explicit—why else 
would we want concurrency if not to improve perfor-
mance?—yet for all its obviousness, concurrency’s raison 
d’être is increasingly forgotten, as if the proliferation of 
concurrent hardware has awakened an anxiety that all 
software must use all available physical resources. Just as 
no programmer felt a moral obligation to eliminate pipe-
line stalls on a superscalar microprocessor, no software 
engineer should feel responsible for using concurrency 
simply because the hardware supports it. Rather, concur-
rency should be thought about and used for one reason 
and one reason only: because it is needs to yield an 
acceptably performing system.

Concurrent execution can improve performance in 
three fundamental ways: it can reduce latency (that is, 
make a unit of work execute faster); it can hide latency 
(that is, allow the system to continue doing work during 
a long-latency operation); or it can increase throughput 
(that is, make the system able to perform more work). 

Using concurrency to reduce latency is highly prob-
lem-specific in that it requires a parallel algorithm for 
the task at hand. For some kinds of problems—especially 
those found in scientific computing—this is straightfor-
ward: work can be divided a priori, and multiple com-
pute elements set on the task. Many of these problems, 
however, are often so parallelizable that they do not 
require the tight coupling of a shared memory—and they 
are often able to execute more economically on grids of 
small machines instead of a smaller number of highly 
concurrent ones. Further, using concurrency to reduce 

latency requires that a unit of work be long enough in its 
execution to amortize the substantial costs of coordinat-
ing multiple compute elements: one can envision using 
concurrency to parallelize a sort of 40 million elements—
but a sort of a mere 40 elements is unlikely to take 
enough compute time to pay the overhead of parallelism. 
In short, the degree to which one can use concurrency to 
reduce latency depends much more on the problem than 
on those endeavoring to solve it—and many important 
problems are simply not amenable to it.

For long-running operations that cannot be parallel-
ized, concurrent execution can instead be used to perform 
useful work while the operation is pending; in this model, 
the latency of the operation is not reduced, but it is hid-
den by the progression of the system. Using concurrency 
to hide latency is particularly tempting when the opera-
tions themselves are likely to block on entities outside 
of the program—for example, a disk I/O operation or a 
DNS lookup. Tempting though it may be, one must be 
very careful when considering using concurrency merely 
to hide latency: having a parallel program can become a 
substantial complexity burden to bear just for improved 
responsiveness. Further, concurrent execution is not the 
only way to hide system-induced latencies: one can often 
achieve the same effect by employing nonblocking opera-
tions (e.g., asynchronous I/O) and an event loop (e.g., 
the poll()/select() calls found in Unix) in an otherwise 
sequential program. Programmers who wish to hide 
latency should therefore consider concurrent execution as 
an option, not as a foregone conclusion.

When problems resist parallelization or have no 
appreciable latency to hide, the third way that concur-
rent execution can improve performance is to increase 
the throughput of the system. Instead of using parallel 
logic to make a single operation faster, one can employ 
multiple concurrent executions of sequential logic to 
accommodate more simultaneous work. Importantly, a 
system using concurrency to increase throughput need 
not consist exclusively (or even largely) of multithreaded 
code. Rather, those components of the system that 
share no state can be left entirely sequential, with the 
system executing multiple instances of these compo-
nents concurrently. The sharing in the system can then 
be offloaded to components explicitly designed around 
parallel execution on shared state, which can ideally be 
reduced to those elements already known to operate well 
in concurrent environments: the database and/or the 
operating system. 
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To make this concrete, in a typical MVC (model-view-
controller) application, the view (typically implemented 
in environments such as JavaScript, PHP, or Flash) and 
the controller (typically implemented in environments 
such as J2EE or Ruby on Rails) can consist purely of 
sequential logic and still achieve high levels of concur-
rency, provided that the model (typically implemented 
in terms of a database) allows for parallelism. Given that 
most don’t write their own databases (and virtually no 
one writes their own operating systems), it is possible to 
build (and indeed, many have built) highly concurrent, 
highly scalable MVC systems without explicitly creating a 
single thread or acquiring a single lock; it is concurrency 
by architecture instead of by implementation.

ILLUMINATING THE BLACK ART
What if you are the one developing the operating system 
or database or some other body of code that must be 
explicitly parallelized? If you count yourself among the 
relative few who need to write such code, you presum-
ably do not need to be warned that writing multithreaded 
code is hard. In fact, this domain’s reputation for dif-
ficulty has led some to conclude (mistakenly) that writing 
multithreaded code is simply impossible: “No one knows 
how to organize and maintain large systems that rely on 
locking,” reads one recent (and typical) assertion.5 Part 
of the difficulty of writing scalable and correct multi-
threaded code is the scarcity of written wisdom from 
experienced practitioners: oral tradition in lieu of formal 
writing has left the domain shrouded in mystery. So in 
the spirit of making this domain less mysterious for our 
fellow practitioners (if not also to demonstrate that some 
of us actually do know how to organize and maintain 
large lock-based systems), we present our collective bag of 
tricks for writing multithreaded code.

Know your cold paths from your hot paths. If there 
is one piece of advice to dispense to those who must 
develop parallel systems, it is to know which paths 
through your code you want to be able to execute in 
parallel (the hot paths) versus which paths can execute 
sequentially without affecting performance (the cold 
paths). In our experience, much of the software we 

write is bone-cold in terms of concurrent execution: it 
is executed only when initializing, in administrative 
paths, when unloading, etc. Not only is it a waste of time 
to make such cold paths execute with a high degree of 
parallelism, but it is also dangerous: these paths are often 
among the most difficult and error-prone to parallelize.

In cold paths, keep the locking as coarse-grained as 
possible. Don’t hesitate to have one lock that covers a 
wide range of rare activity in your subsystem. Conversely, 
in hot paths—those that must execute concurrently to 
deliver highest throughput—you must be much more 
careful: locking strategies must be simple and fine-
grained, and you must be careful to avoid activity that 
can become a bottleneck. And what if you don’t know if a 
given body of code will be the hot path in the system? In 
the absence of data, err on the side of assuming that your 
code is in a cold path and adopt a correspondingly coarse-
grained locking strategy—but be prepared to be proven 
wrong by the data.

Intuition is frequently wrong—be data intensive. In 
our experience, many scalability problems can be attrib-
uted to a hot path that the developing engineer originally 
believed (or hoped) to be a cold path. When cutting 
new software from whole cloth, you will need some 
intuition to reason about hot and cold paths—but once 
your software is functional, even in prototype form, the 
time for intuition has ended: your gut must defer to the 
data. Gathering data on a concurrent system is a tough 
problem in its own right. It requires you first to have a 
machine that is sufficiently concurrent in its execution 
to be able to highlight scalability problems. Once you 
have the physical resources, it requires you to put load 
on the system that resembles the load you expect to see 
when your system is deployed into production. Once the 
machine is loaded, you must have the infrastructure to be 
able to dynamically instrument the system to get to the 
root of any scalability problems.

The first of these problems has historically been acute: 
there was a time when multiprocessors were so rare that 
many software development shops simply didn’t have 
access to one. Fortunately, with the rise of multicore 
CPUs, this is no longer a problem: there is no longer any 
excuse for not being able to find at least a two-processor 
(dual-core) machine, and with only a little effort, most 
will be able (as of this writing) to run their code on an 
eight-processor (two-socket, quad-core) machine.

Even as the physical situation has improved, however, 
the second of these problems—knowing how to put load 
on the system—has worsened: production deployments 
have become increasingly complicated, with loads that 
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are difficult and expensive to simulate in development. 
As much as possible, you must treat load generation and 
simulation as a first-class problem; the earlier you tackle 
this problem in your development, the earlier you will be 
able to get critical data that may have tremendous impli-
cations for your software. Although a test load should 
mimic its production equivalent as closely as possible, 
timeliness is more important than absolute accuracy: the 
absence of a perfect load simulation should not prevent 
you from simulating load altogether, as it is much better 
to put a multithreaded system under the wrong kind of 
load than under no load whatsoever.

Once a system is loaded—be it in development or in 
production—it is useless to software development if the 
impediments to its scalability can’t be understood. Under-
standing scalability inhibitors on a production system 
requires the ability to safely dynamically instrument its 
synchronization primitives. In developing Solaris, our 
need for this was so historically acute that it led one of us 
(Bonwick) to develop a technology (lockstat) to do this 
in 1997. This tool became instantly essential—we quickly 
came to wonder how we ever resolved scalability prob-
lems without it—and it led the other of us (Cantrill) to 
further generalize dynamic instrumentation into DTrace, 
a system for nearly arbitrary dynamic instrumentation of 
production systems that first shipped in Solaris in 2004, 
and has since been ported to many other systems includ-
ing FreeBSD and Mac OS.6 (The instrumentation method-
ology in lockstat has been reimplemented to be a DTrace 
provider, and the tool itself has been reimplemented to be 
a DTrace consumer.) 

Today, dynamic instrumentation continues to provide 
us with the data we need not only to find those parts 
of the system that are inhibiting scalability, but also to 
gather sufficient data to understand which techniques 
will be best suited for reducing that contention. Proto-
typing new locking strategies is expensive, and one’s 
intuition is frequently wrong; before breaking up a lock 
or rearchitecting a subsystem to make it more parallel, 
we always strive to have the data in hand indicating that 
the subsystem’s lack of parallelism is a clear inhibitor to 
system scalability!

Know when—and when not—to break up a lock. 
Global locks can naturally become scalability inhibitors, 
and when gathered data indicates a single hot lock, it 
is reasonable to want to break up the lock into per-CPU 
locks, a hash table of locks, per-structure locks, etc. This 
might ultimately be the right course of action, but before 
blindly proceeding down that (complicated) path, care-
fully examine the work done under the lock: breaking 

up a lock is not the only way to reduce contention, and 
contention can be (and often is) more easily reduced by 
decreasing the hold time of the lock. This can be done 
by algorithmic improvements (many scalability improve-
ments have been achieved by reducing execution under 
the lock from quadratic time to linear time!) or by finding 
activity that is needlessly protected by the lock. Here’s a 
classic example of this latter case: if data indicates that 
you are spending time (say) deallocating elements from a 
shared data structure, you could dequeue and gather the 
data that needs to be freed with the lock held and defer 
the actual deallocation of the data until after the lock is 
dropped. Because the data has been removed from the 
shared data structure under the lock, there is no data race 
(other threads see the removal of the data as atomic), and 
lock hold time has been decreased with only a modest 
increase in implementation complexity.

Be wary of readers/writer locks. If there is a novice 
error when trying to break up a lock, it is this: seeing 
that a data structure is frequently accessed for reads and 
infrequently accessed for writes, one may be tempted 
to replace a mutex guarding the structure with a read-
ers/writer lock to allow for concurrent readers. This seems 
reasonable, but unless the hold time for the lock is long, 
this solution will scale no better (and indeed, may scale 
worse) than having a single lock. Why? Because the 
state associated with the readers/writer lock must itself 
be updated atomically, and in the absence of a more 
sophisticated (and less space-efficient) synchronization 
primitive, a readers/writer lock will use a single word 
of memory to store the number of readers. Because the 
number of readers must be updated atomically, acquiring 
the lock as a reader requires the same bus transaction—a 
read-to-own—as acquiring a mutex, and contention on 
that line can hurt every bit as much. 

There are still many situations where long hold times 
(e.g., performing I/O under a lock as reader) more than 
pay for any memory contention, but one should be sure 
to gather data to make sure that it is having the desired 
effect on scalability. Even in those situations where a 
readers/writer lock is appropriate, an additional note of 
caution is warranted around blocking semantics. If, for 
example, the lock implementation blocks new readers 
when a writer is blocked (a common paradigm to avoid 
writer starvation), one cannot recursively acquire a lock as 
reader: if a writer blocks between the initial acquisition as 
reader and the recursive acquisition as reader, deadlock 
will result when the recursive acquisition is blocked. All 
of this is not to say that readers/writer locks shouldn’t be 
used—just that they shouldn’t be romanticized.
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Consider per-CPU locking. Per-CPU locking (that is, 
acquiring a lock based on the current CPU identifier) can 
be a convenient technique for diffracting contention, 
as a per-CPU lock is not likely to be contended (a CPU 
can run only one thread at a time). If one has short hold 
times and operating modes that have different coherence 
requirements, one can have threads acquire a per-CPU 
lock in the common (noncoherent) case, and then force 
the uncommon case to grab all the per-CPU locks to 
construct coherent state. Consider this concrete (if trivial) 
example: if one were implementing a global counter that 
is frequently updated but infrequently read, one could 
implement a per-CPU counter protected by its own lock. 
Updates to the counter would update only the per-CPU 
copy, and in the uncommon case in which one wanted to 
read the counter, all per-CPU locks could be acquired and 
their corresponding values summed. 

Two notes on this technique: first, it should be 
employed only when the data indicates that it’s neces-
sary, as it clearly introduces substantial complexity into 
the implementation; second, be sure to have a single 
order for acquiring all locks in the cold path: if one case 
acquires the per-CPU locks from lowest to highest and 
another acquires them from highest to lowest, deadlock 
will (naturally) result.

Know when to broadcast—and when to signal. Virtu-
ally all condition variable implementations allow threads 
waiting on the variable to be awakened either via a signal 
(in which case one thread sleeping on the variable is 
awakened) or via a broadcast (in which case all threads 
sleeping on the variable are awakened). These constructs 
have subtly different semantics: because a broadcast will 
awaken all waiting threads, it should generally be used 
to indicate state change rather than resource availability. 
If a condition broadcast is used when a condition signal 
would have been more appropriate, the result will be a 
thundering herd: all waiting threads will wake up, fight 
over the lock protecting the condition variable, and 
(assuming that the first thread to acquire the lock also 
consumes the available resource) sleep once again when 
they discover that the resource has been consumed. 
This needless scheduling and locking activity can have 

a serious effect on performance, especially in Java-based 
systems, where notifyAll() (i.e., broadcast) seems to have 
entrenched itself as a preferred paradigm; changing these 
calls to notify() (i.e., signal) has been known to result in 
substantial performance gains.7

Learn to debug postmortem. Among some Cassan-
dras of concurrency, a deadlock seems to be a particular 
bogeyman of sorts, having become the embodiment of 
all that is difficult in lock-based multithreaded program-
ming. This fear is somewhat peculiar, because deadlocks 
are actually among the simplest pathologies in software: 
because (by definition) the threads involved in a deadlock 
cease to make forward progress, they do the implementer 
the service of effectively freezing the system with all state 
intact. To debug a deadlock, one need have only a list of 
threads, their corresponding stack backtraces, and some 
knowledge of the system. This information is contained 
in a snapshot of state so essential to software develop-
ment that its very name reflects its origins at the dawn of 
computing: it is a core dump. 

Debugging from a core dump—postmortem debug-
ging—is an essential skill for those who implement 
parallel systems: problems in highly parallel systems are 
not necessarily reproducible, and a single core dump is 
often one’s only chance to debug them. Most debuggers 
support postmortem debugging, and many allow user-
defined extensions.8 We encourage practitioners to under-
stand their debugger’s support for postmortem debugging 
(especially of parallel programs) and to develop exten-
sions specific to debugging their systems.

Design your systems to be composable. Among the 
more galling claims of the detractors of lock-based sys-
tems is the notion that they are somehow uncomposable: 
“Locks and condition variables do not support modular 
programming,” reads one typically brazen claim, “build-
ing large programs by gluing together smaller programs[:] 
locks make this impossible.”9 The claim, of course, 
is incorrect. For evidence one need only point at the 
composition of lock-based systems such as databases and 
operating systems into larger systems that remain entirely 
unaware of lower-level locking.

There are two ways to make lock-based systems com-
pletely composable, and each has its own place. First (and 
most obviously), one can make locking entirely internal 
to the subsystem. For example, in concurrent operating 
systems, control never returns to user level with in-kernel 
locks held; the locks used to implement the system itself 
are entirely behind the system call interface that con-
stitutes the interface to the system. More generally, this 
model can work whenever a crisp interface exists between 
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software components: as long as control flow is never 
returned to the caller with locks held, the subsystem will 
remain composable.

Second (and perhaps counterintuitively), one can 
achieve concurrency and composability by having no 
locks whatsoever. In this case, there must be no global 
subsystem state—subsystem state must be captured in 
per-instance state, and it must be up to consumers of the 
subsystem to assure that they do not access their instance 
in parallel. By leaving locking up to the client of the sub-
system, the subsystem itself can be used concurrently by 
different subsystems and in different contexts. A concrete 
example of this is the AVL tree implementation used 
extensively in the Solaris kernel. As with any balanced 
binary tree, the implementation is sufficiently complex 
to merit componentization, but by not having any global 
state, the implementation may be used concurrently by 
disjoint subsystems—the only constraint is that manipu-
lation of a single AVL tree instance must be serialized.

Don’t use a semaphore where a mutex would suf-
fice. A semaphore is a generic synchronization primi-
tive originally described by Dijkstra that can be used to 
effect a wide range of behavior. It may be tempting to use 
semaphores in lieu of mutexes to protect critical sections, 
but there is an important difference between the two 
constructs: unlike a semaphore, a mutex has a notion of 
ownership—the lock is either owned or not, and if it is 
owned, it has a known owner. By contrast, a semaphore 
(and its kin, the condition variable) has no notion of 
ownership: when sleeping on a semaphore, one has no 
way of knowing which thread one is blocking upon. 

The lack of ownership presents several problems when 
used to protect critical sections. First, there is no way of 
propagating the blocking thread’s scheduling priority 
to the thread that is in the critical section. This ability 
to propagate scheduling priority—priority inheritance—is 
critical in a realtime system, and in the absence of other 
protocols, semaphore-based systems will always be 
vulnerable to priority inversions. A second problem with 
the lack of ownership is that it deprives the system of the 
ability to make assertions about itself. For example, when 
ownership is tracked, the machinery that implements 
thread blocking can detect pathologies such as deadlocks 
and recursive lock acquisitions, inducing fatal failure (and 
that all-important core dump) upon detection. Finally, 
the lack of ownership makes debugging much more 
onerous. A common pathology in a multithreaded system 
is a lock not being dropped in some errant return path. 
When ownership is tracked, one at least has the smoking 
gun of the past (faulty) owner—and, thus, clues as to the 

code path by which the lock was not correctly dropped. 
Without ownership, one is left clueless and reduced to 
debugging by staring at code/the ceiling/into space. 

All of this is not to say that semaphores shouldn’t be 
used (indeed, some problems are uniquely suited to a 
semaphore’s semantics), just that they shouldn’t be used 
when mutexes would suffice.

Consider memory retiring to implement per-chain 
hash-table locks. Hash tables are common data structures 
in performance-critical systems software, and sometimes 
they must be accessed in parallel. In this case, adding a 
lock to each hash chain, with the per-chain lock held 
while readers or writers iterate over the chain, seems 
straightforward. The problem, however, is resizing the 
table: dynamically resizing a hash table is central to its 
efficient operation, and the resize means changing the 
memory that contains the table. That is, in a resize the 
pointer to the hash table must change—but we do not 
wish to require hash lookups to acquire a global lock to 
determine the current hash table! 

This problem has several solutions, but a (relatively) 
straightforward one is to retire memory associated with 

old hash tables instead of freeing it. On a resize, all 
per-chain locks are acquired (using a well-defined order 
to prevent deadlock), and a new table is then allocated, 
with the contents of the old hash table being rehashed 
into the new table. After this operation, the old table is 
not deallocated but rather placed in a queue of old hash 
tables. Hash lookups then require a slight modification to 
operate correctly: after acquiring the per-chain lock, the 
lookup must check the hash-table pointer and compare 
it with the hash-table pointer that was used to determine 
the hash chain. If the hash table has changed (that is, 
if a hash resize has occurred), it must drop the lock and 
repeat the lookup (which will acquire the correct chain 
lock in the new table). 

There are some delicate issues in implementing 
this—the hash-table pointer must be declared volatile, 
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and the size of the hash table must be contained in the 
table itself—but the implementation complexity is modest 
given the alternatives, and (assuming hash tables are  
doubled when they are resized) the cost in terms of 
memory is only a factor of two. For an example of this  
in production code, the reader is directed to the file 
descriptor locking in Solaris, the source code for which 
can be found by searching the Internet for “flist_grow.”

Be aware of false sharing. There are a variety of differ-
ent protocols for keeping memory coherent in caching 
multiprocessor systems. Typically, these protocols dictate 
that only a single cache may have a given line of memory 
in a dirty state. If a different cache wishes to write to the 
dirty line, the new cache must first read-to-own the dirty 
line from the owning cache. The size of the line used for 
coherence (the coherence granularity) has an important 
ramification for parallel software: because only one cache 
may own a line a given time, one wishes to avoid a situ-
ation where two (or more) small, disjoint data structures 
are both contained within a single line and accessed in 
parallel by disjoint caches. This situation—called  false 
sharing—can induce suboptimal scalability in otherwise 
scalable software. This most frequently arises in practice 
when one attempts to defract contention with an array of 
locks: the size of a lock structure is typically no more than 
the size of a pointer or two and is usually quite a bit less 
than the coherence granularity (which is typically on the 
order of 64 bytes). Disjoint CPUs acquiring different locks 
can therefore potentially contend for the same cache line.

False sharing is excruciating to detect dynamically: it 
requires not only a bus analyzer, but also a way of trans-
lating from the physical addresses of the bus to the virtual 
addresses that make sense to software, and then from 
there to the actual structures that are inducing the false 
sharing. (This process is so arduous and error-prone that 
we have experimented—with some success—with static 
mechanisms to detect false sharing.10) Fortunately, false 
sharing is rarely the single greatest scalability inhibitor 
in a system, and it can be expected to be even less of an 
issue on a multicore system (where caches are more likely 
to be shared among CPUs). Nonetheless, this remains an 
issue that the practitioner should be aware of, especially 

when creating arrays that are designed to be accessed in 
parallel. (In this situation, array elements should be pad-
ded out to be a multiple of the coherence granularity.)

Consider using nonblocking synchronization routines 
to monitor contention. Many synchronization primitives 
have different entry points to specify different behavior if 
the primitive is unavailable: the default entry point will 
typically block, whereas an alternative entry point will 
return an error code instead of blocking. This second vari-
ant has a number of uses, but a particularly interesting 
one is the monitoring of one’s own contention: when an 
attempt to acquire a synchronization primitive fails, the 
subsystem can know that there is contention. This can be 
especially useful if a subsystem has a way of dynamically 
reducing its contention. For example, the Solaris kernel 
memory allocator has per-CPU caches of memory buffers. 
When a CPU exhausts its per-CPU caches, it must obtain 
a new series of buffers from a global pool. Instead of 
simply acquiring a lock in this case, the code attempts to 
acquire the lock, incrementing a counter when this fails 
(and then acquiring the lock through the blocking entry 
point). If the counter reaches a predefined threshold, the 
size of the per-CPU caches is increased, thereby dynami-
cally reducing contention.

When reacquiring locks, consider using generation 
counts to detect state change. When lock ordering 
becomes complicated, at times one will need to drop 
one lock, acquire another, and then reacquire the first. 
This can be tricky, as state protected by the first lock 
may have changed during the time that the lock was 
dropped—and reverifying this state may be exhausting, 
inefficient, or even impossible. In these cases, consider 
associating a generation count with the data structure; 
when a change is made to the data structure, a genera-
tion count is bumped. The logic that drops and reacquires 
the lock must cache the generation before dropping the 
lock, and then check the generation upon reacquisition: 
if the counts are the same, the data structure is as it was 
when the lock was dropped and the logic may proceed; if 
the count is different, the state has changed and the logic 
may react accordingly (for example, by reattempting the 
larger operation).

Use wait- and lock-free structures only if you abso-
lutely must. Over our careers, we have each implemented 
wait- and lock-free data structures in production code, but 
we did this only in contexts in which locks could not be 
acquired for reasons of correctness. Examples include the 
implementation of the locking system itself,11 the sub-
systems that span interrupt levels, and dynamic instru-
mentation facilities.12 These constrained contexts are the 
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exception, not the rule; in normal contexts, wait- and 
lock-free data structures are to be avoided as their failure 
modes are brutal (livelock is much nastier to debug than 
deadlock), their effect on complexity and the mainte-
nance burden is significant, and their benefit in terms of 
performance is usually nil.

Prepare for the thrill of victory—and the agony of 
defeat. Making a system scale can be a frustrating pursuit: 
the system will not scale until all impediments to scal-
ability have been removed, but it is often impossible to 
know if the current impediment to scalability is the last 
one. Removing that last impediment is incredibly gratify-
ing: with that change, throughput finally gushes through 
the system as if through an open sluice. Conversely, it can 
be disheartening to work on a complicated lock breakup 
only to discover that while it was the impediment to 
scalability, it was merely hiding another impediment, 
and removing it improves performance very little—or 
perhaps not at all. As discouraging as it may be, you must 
return to the system to gather data: does the system not 
scale because the impediment was misunderstood, or 
does it not scale because a new impediment has been 
encountered? If the latter is the case, you can take solace 
in knowing that your work is necessary—though not suf-
ficient—to achieve scalability, and that the glory of one 
day flooding the system with throughput still awaits you.

THE CONCURRENCY BUFFET
There is universal agreement that writing multithreaded 
code is difficult: although we have attempted to elucidate 
some of the lessons learned over the years, it nonetheless 
remains, in a word, hard. Some have become fixated on 
this difficulty, viewing the coming of multicore comput-
ing as cataclysmic for software. This fear is unfounded, for 
it ignores the fact that relatively few software engineers 
actually need to write multithreaded code: for most, con-
currency can be achieved by standing on the shoulders of 
those subsystems that already are highly parallel in imple-
mentation. Those practitioners who are implementing a 
database or an operating system or a virtual machine will 
continue to need to sweat the details of writing multi-
threaded code, but for everyone else, the challenge is not 
how to implement those components but rather how 
best to use them to deliver a scalable system. While lunch 
might not be exactly free, it is practically all-you-can-
eat—and the buffet is open! Q
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