
16 September 2008 ACM QUEUE rants: feedback@acmqueue.com

Bryan Cantrill and Jeff Bonwick,
Sun Microsystems

ACM QUEUE September 2008 17 more queue: www.acmqueue.com

S
oftware practitioners today could be forgiven
if recent microprocessor developments have
given them some trepidation about the future
of software. While Moore’s law continues to
hold (that is, transistor density continues to
double roughly every 18 months), as a result of
both intractable physical limitations and prac-

tical engineering considerations, that increasing density
is no longer being spent on boosting clock rate. Instead, it
is being used to put multiple CPU cores on a single CPU
die. From the software perspective, this is not a revolu-
tionary shift, but rather an evolutionary one: multicore
CPUs are not the birthing of a new paradigm, but rather
the progression of an old one (multiprocessing) into
more widespread deployment. Judging from many recent
articles and papers on the subject, however, one might
think that this blossoming of concurrency is the coming
of the apocalypse, that “the free lunch is over.”1

As practitioners who have long been at the coal face of
concurrent systems, we hope to inject some calm reality

(if not some hard-won wisdom) into a discussion that has
too often descended into hysterics. Specifically, we hope
to answer the essential question: what does the prolif-
eration of concurrency mean for the software that you
develop? Perhaps regrettably, the answer to that question
is neither simple nor universal—your software’s relation-
ship to concurrency depends on where it physically
executes, where it is in the stack of abstraction, and the
business model that surrounds it.

Given that many software projects now have compo-
nents in different layers of the abstraction stack spanning
different tiers of the architecture, you may well find that
even for the software that you write, you do not have one
answer but several: you may be able to leave some of your
code forever executing in sequential bliss, and some may
need to be highly parallel and explicitly multithreaded.
Further complicating the answer, we will argue that much
of your code will not fall neatly into either category: it
will be essentially sequential in nature but will need to be
aware of concurrency at some level.

Chances are you won’t

actually have to write

multithreaded code.

But if you do,

some key principles

will help you master

this “black art.”

Real-world
CONCURRENCY

18 September 2008 ACM QUEUE rants: feedback@acmqueue.com

Although we assert that less—much less—code needs
to be parallel than some might fear, it is nonetheless
true that writing parallel code remains something of a
black art. We also therefore give specific implementa-
tion techniques for developing a highly parallel system.
As such, this article is somewhat dichotomous: we try
both to argue that most code can (and should) achieve
concurrency without explicit parallelism, and at the same
time to elucidate techniques for those who must write
explicitly parallel code. This article is half stern lecture on
the merits of abstinence and half Kama Sutra.

SOME HISTORICAL CONTEXT
Before we discuss concurrency with respect to today’s
applications, it would be helpful to explore the history
of concurrent execution. Even by the 1960s—when the
world was still wet with the morning dew of the com-
puter age—it was becoming clear that a single central pro-
cessing unit executing a single instruction stream would
result in unnecessarily limited system performance. While
computer designers experimented with different ideas
to circumvent this limitation, it was the introduction of
the Burroughs B5000 in 1961 that proffered the idea that
ultimately proved to be the way forward: disjoint CPUs
concurrently executing different instruction streams but
sharing a common memory. In this regard (as in many)
the B5000 was at least a decade ahead of its time. It was
not until the 1980s that the need for multiprocessing
became clear to a wider body of researchers, who over the
course of the decade explored cache coherence protocols
(e.g., the Xerox Dragon and DEC Firefly), prototyped par-
allel operating systems (e.g., multiprocessor Unix running
on the AT&T 3B20A), and developed parallel databases
(e.g., Gamma at the University of Wisconsin).

In the 1990s, the seeds planted by researchers in the
1980s bore the fruit of practical systems, with many
computer companies (e.g., Sun, SGI, Sequent, Pyramid)
placing big bets on symmetric multiprocessing. These
bets on concurrent hardware necessitated correspond-
ing bets on concurrent software—if an operating system
cannot execute in parallel, neither can much else in the
system—and these companies independently came to

the realization that their operating systems would need
to be rewritten around the notion of concurrent execu-
tion. These rewrites took place early in the 1990s, and the
resulting systems were polished over the decade; much
of the resulting technology can today be seen in open
source operating systems such as OpenSolaris, FreeBSD,
and Linux.

Just as several computer companies made big bets
around multiprocessing, several database vendors made
bets around highly parallel relational databases; upstarts
including Oracle, Teradata, Tandem, Sybase, and Infor-
mix needed to use concurrency to achieve a performance
advantage over the mainframes that had dominated
transaction processing until that time.2 As in operating
systems, this work was conceived in the late 1980s and
early 1990s, and incrementally improved over the course
of the decade.

The upshot of these trends was that by the end of the
1990s, concurrent systems had displaced their unipro-
cessor forebears as high-performance computers: when
the TOP500 list of supercomputers was first drawn up in
1993, the highest-performing uniprocessor in the world
was just #34, and more than 80 percent of the top 500
were multiprocessors of one flavor or another. By 1997,
uniprocessors were off the list entirely. Beyond the super-
computing world, many transaction-oriented applications
scaled with CPU, allowing users to realize the dream of
expanding a system without revisiting architecture.

The rise of concurrent systems in the 1990s coincided
with another trend: while CPU clock rate continued to
increase, the speed of main memory was not keeping up.
To cope with this relatively slower memory, microproces-
sor architects incorporated deeper (and more compli-
cated) pipelines, caches, and prediction units. Even then,
the clock rates themselves were quickly becoming some-
thing of a fib: while the CPU might be able to execute
at the advertised rate, only a slim fraction of code could
actually achieve (let alone surpass) the rate of one cycle
per instruction—most code was mired spending three,
four, five (or many more) cycles per instruction.

Many saw these two trends—the rise of concurrency
and the futility of increasing clock rate—and came to the
logical conclusion: instead of spending transistor budget
on “faster” CPUs that weren’t actually yielding much
in terms of performance gains (and had terrible costs in
terms of power, heat, and area), why not take advantage
of the rise of concurrent software and use transistors to
effect multiple (simpler) cores per die?

Real-world
CONCURRENCY

ACM QUEUE September 2008 19 more queue: www.acmqueue.com

That it was the success of concurrent software that
contributed to the genesis of chip multiprocessing is an
incredibly important historical point and bears reempha-
sis. There is a perception that microprocessor architects
have—out of malice, cowardice, or despair—inflicted
concurrency on software.3 In reality, the opposite is the
case: it was the maturity of concurrent software that
led architects to consider concurrency on the die. (The
reader is referred to one of the earliest chip multiproces-
sors—DEC’s Piranha—for a detailed discussion of this
motivation.4) Were software not ready, these microproces-
sors would not be commercially viable today. If anything,
the “free lunch” that some decry as being over is in fact,
at long last, being served. One need only be hungry and
know how to eat!

CONCURRENCY IS FOR PERFORMANCE
The most important conclusion from this foray into his-
tory is that concurrency has always been employed for
one purpose: to improve the performance of the system.
This seems almost too obvious to make explicit—why else
would we want concurrency if not to improve perfor-
mance?—yet for all its obviousness, concurrency’s raison
d’être is increasingly forgotten, as if the proliferation of
concurrent hardware has awakened an anxiety that all
software must use all available physical resources. Just as
no programmer felt a moral obligation to eliminate pipe-
line stalls on a superscalar microprocessor, no software
engineer should feel responsible for using concurrency
simply because the hardware supports it. Rather, concur-
rency should be thought about and used for one reason
and one reason only: because it is needs to yield an
acceptably performing system.

Concurrent execution can improve performance in
three fundamental ways: it can reduce latency (that is,
make a unit of work execute faster); it can hide latency
(that is, allow the system to continue doing work during
a long-latency operation); or it can increase throughput
(that is, make the system able to perform more work).

Using concurrency to reduce latency is highly prob-
lem-specific in that it requires a parallel algorithm for
the task at hand. For some kinds of problems—especially
those found in scientific computing—this is straightfor-
ward: work can be divided a priori, and multiple com-
pute elements set on the task. Many of these problems,
however, are often so parallelizable that they do not
require the tight coupling of a shared memory—and they
are often able to execute more economically on grids of
small machines instead of a smaller number of highly
concurrent ones. Further, using concurrency to reduce

latency requires that a unit of work be long enough in its
execution to amortize the substantial costs of coordinat-
ing multiple compute elements: one can envision using
concurrency to parallelize a sort of 40 million elements—
but a sort of a mere 40 elements is unlikely to take
enough compute time to pay the overhead of parallelism.
In short, the degree to which one can use concurrency to
reduce latency depends much more on the problem than
on those endeavoring to solve it—and many important
problems are simply not amenable to it.

For long-running operations that cannot be parallel-
ized, concurrent execution can instead be used to perform
useful work while the operation is pending; in this model,
the latency of the operation is not reduced, but it is hid-
den by the progression of the system. Using concurrency
to hide latency is particularly tempting when the opera-
tions themselves are likely to block on entities outside
of the program—for example, a disk I/O operation or a
DNS lookup. Tempting though it may be, one must be
very careful when considering using concurrency merely
to hide latency: having a parallel program can become a
substantial complexity burden to bear just for improved
responsiveness. Further, concurrent execution is not the
only way to hide system-induced latencies: one can often
achieve the same effect by employing nonblocking opera-
tions (e.g., asynchronous I/O) and an event loop (e.g.,
the poll()/select() calls found in Unix) in an otherwise
sequential program. Programmers who wish to hide
latency should therefore consider concurrent execution as
an option, not as a foregone conclusion.

When problems resist parallelization or have no
appreciable latency to hide, the third way that concur-
rent execution can improve performance is to increase
the throughput of the system. Instead of using parallel
logic to make a single operation faster, one can employ
multiple concurrent executions of sequential logic to
accommodate more simultaneous work. Importantly, a
system using concurrency to increase throughput need
not consist exclusively (or even largely) of multithreaded
code. Rather, those components of the system that
share no state can be left entirely sequential, with the
system executing multiple instances of these compo-
nents concurrently. The sharing in the system can then
be offloaded to components explicitly designed around
parallel execution on shared state, which can ideally be
reduced to those elements already known to operate well
in concurrent environments: the database and/or the
operating system.

20 September 2008 ACM QUEUE rants: feedback@acmqueue.com

To make this concrete, in a typical MVC (model-view-
controller) application, the view (typically implemented
in environments such as JavaScript, PHP, or Flash) and
the controller (typically implemented in environments
such as J2EE or Ruby on Rails) can consist purely of
sequential logic and still achieve high levels of concur-
rency, provided that the model (typically implemented
in terms of a database) allows for parallelism. Given that
most don’t write their own databases (and virtually no
one writes their own operating systems), it is possible to
build (and indeed, many have built) highly concurrent,
highly scalable MVC systems without explicitly creating a
single thread or acquiring a single lock; it is concurrency
by architecture instead of by implementation.

ILLUMINATING THE BLACK ART
What if you are the one developing the operating system
or database or some other body of code that must be
explicitly parallelized? If you count yourself among the
relative few who need to write such code, you presum-
ably do not need to be warned that writing multithreaded
code is hard. In fact, this domain’s reputation for dif-
ficulty has led some to conclude (mistakenly) that writing
multithreaded code is simply impossible: “No one knows
how to organize and maintain large systems that rely on
locking,” reads one recent (and typical) assertion.5 Part
of the difficulty of writing scalable and correct multi-
threaded code is the scarcity of written wisdom from
experienced practitioners: oral tradition in lieu of formal
writing has left the domain shrouded in mystery. So in
the spirit of making this domain less mysterious for our
fellow practitioners (if not also to demonstrate that some
of us actually do know how to organize and maintain
large lock-based systems), we present our collective bag of
tricks for writing multithreaded code.

Know your cold paths from your hot paths. If there
is one piece of advice to dispense to those who must
develop parallel systems, it is to know which paths
through your code you want to be able to execute in
parallel (the hot paths) versus which paths can execute
sequentially without affecting performance (the cold
paths). In our experience, much of the software we

write is bone-cold in terms of concurrent execution: it
is executed only when initializing, in administrative
paths, when unloading, etc. Not only is it a waste of time
to make such cold paths execute with a high degree of
parallelism, but it is also dangerous: these paths are often
among the most difficult and error-prone to parallelize.

In cold paths, keep the locking as coarse-grained as
possible. Don’t hesitate to have one lock that covers a
wide range of rare activity in your subsystem. Conversely,
in hot paths—those that must execute concurrently to
deliver highest throughput—you must be much more
careful: locking strategies must be simple and fine-
grained, and you must be careful to avoid activity that
can become a bottleneck. And what if you don’t know if a
given body of code will be the hot path in the system? In
the absence of data, err on the side of assuming that your
code is in a cold path and adopt a correspondingly coarse-
grained locking strategy—but be prepared to be proven
wrong by the data.

Intuition is frequently wrong—be data intensive. In
our experience, many scalability problems can be attrib-
uted to a hot path that the developing engineer originally
believed (or hoped) to be a cold path. When cutting
new software from whole cloth, you will need some
intuition to reason about hot and cold paths—but once
your software is functional, even in prototype form, the
time for intuition has ended: your gut must defer to the
data. Gathering data on a concurrent system is a tough
problem in its own right. It requires you first to have a
machine that is sufficiently concurrent in its execution
to be able to highlight scalability problems. Once you
have the physical resources, it requires you to put load
on the system that resembles the load you expect to see
when your system is deployed into production. Once the
machine is loaded, you must have the infrastructure to be
able to dynamically instrument the system to get to the
root of any scalability problems.

The first of these problems has historically been acute:
there was a time when multiprocessors were so rare that
many software development shops simply didn’t have
access to one. Fortunately, with the rise of multicore
CPUs, this is no longer a problem: there is no longer any
excuse for not being able to find at least a two-processor
(dual-core) machine, and with only a little effort, most
will be able (as of this writing) to run their code on an
eight-processor (two-socket, quad-core) machine.

Even as the physical situation has improved, however,
the second of these problems—knowing how to put load
on the system—has worsened: production deployments
have become increasingly complicated, with loads that

Real-world
CONCURRENCY

ACM QUEUE September 2008 21 more queue: www.acmqueue.com

are difficult and expensive to simulate in development.
As much as possible, you must treat load generation and
simulation as a first-class problem; the earlier you tackle
this problem in your development, the earlier you will be
able to get critical data that may have tremendous impli-
cations for your software. Although a test load should
mimic its production equivalent as closely as possible,
timeliness is more important than absolute accuracy: the
absence of a perfect load simulation should not prevent
you from simulating load altogether, as it is much better
to put a multithreaded system under the wrong kind of
load than under no load whatsoever.

Once a system is loaded—be it in development or in
production—it is useless to software development if the
impediments to its scalability can’t be understood. Under-
standing scalability inhibitors on a production system
requires the ability to safely dynamically instrument its
synchronization primitives. In developing Solaris, our
need for this was so historically acute that it led one of us
(Bonwick) to develop a technology (lockstat) to do this
in 1997. This tool became instantly essential—we quickly
came to wonder how we ever resolved scalability prob-
lems without it—and it led the other of us (Cantrill) to
further generalize dynamic instrumentation into DTrace,
a system for nearly arbitrary dynamic instrumentation of
production systems that first shipped in Solaris in 2004,
and has since been ported to many other systems includ-
ing FreeBSD and Mac OS.6 (The instrumentation method-
ology in lockstat has been reimplemented to be a DTrace
provider, and the tool itself has been reimplemented to be
a DTrace consumer.)

Today, dynamic instrumentation continues to provide
us with the data we need not only to find those parts
of the system that are inhibiting scalability, but also to
gather sufficient data to understand which techniques
will be best suited for reducing that contention. Proto-
typing new locking strategies is expensive, and one’s
intuition is frequently wrong; before breaking up a lock
or rearchitecting a subsystem to make it more parallel,
we always strive to have the data in hand indicating that
the subsystem’s lack of parallelism is a clear inhibitor to
system scalability!

Know when—and when not—to break up a lock.
Global locks can naturally become scalability inhibitors,
and when gathered data indicates a single hot lock, it
is reasonable to want to break up the lock into per-CPU
locks, a hash table of locks, per-structure locks, etc. This
might ultimately be the right course of action, but before
blindly proceeding down that (complicated) path, care-
fully examine the work done under the lock: breaking

up a lock is not the only way to reduce contention, and
contention can be (and often is) more easily reduced by
decreasing the hold time of the lock. This can be done
by algorithmic improvements (many scalability improve-
ments have been achieved by reducing execution under
the lock from quadratic time to linear time!) or by finding
activity that is needlessly protected by the lock. Here’s a
classic example of this latter case: if data indicates that
you are spending time (say) deallocating elements from a
shared data structure, you could dequeue and gather the
data that needs to be freed with the lock held and defer
the actual deallocation of the data until after the lock is
dropped. Because the data has been removed from the
shared data structure under the lock, there is no data race
(other threads see the removal of the data as atomic), and
lock hold time has been decreased with only a modest
increase in implementation complexity.

Be wary of readers/writer locks. If there is a novice
error when trying to break up a lock, it is this: seeing
that a data structure is frequently accessed for reads and
infrequently accessed for writes, one may be tempted
to replace a mutex guarding the structure with a read-
ers/writer lock to allow for concurrent readers. This seems
reasonable, but unless the hold time for the lock is long,
this solution will scale no better (and indeed, may scale
worse) than having a single lock. Why? Because the
state associated with the readers/writer lock must itself
be updated atomically, and in the absence of a more
sophisticated (and less space-efficient) synchronization
primitive, a readers/writer lock will use a single word
of memory to store the number of readers. Because the
number of readers must be updated atomically, acquiring
the lock as a reader requires the same bus transaction—a
read-to-own—as acquiring a mutex, and contention on
that line can hurt every bit as much.

There are still many situations where long hold times
(e.g., performing I/O under a lock as reader) more than
pay for any memory contention, but one should be sure
to gather data to make sure that it is having the desired
effect on scalability. Even in those situations where a
readers/writer lock is appropriate, an additional note of
caution is warranted around blocking semantics. If, for
example, the lock implementation blocks new readers
when a writer is blocked (a common paradigm to avoid
writer starvation), one cannot recursively acquire a lock as
reader: if a writer blocks between the initial acquisition as
reader and the recursive acquisition as reader, deadlock
will result when the recursive acquisition is blocked. All
of this is not to say that readers/writer locks shouldn’t be
used—just that they shouldn’t be romanticized.

22 September 2008 ACM QUEUE rants: feedback@acmqueue.com

Consider per-CPU locking. Per-CPU locking (that is,
acquiring a lock based on the current CPU identifier) can
be a convenient technique for diffracting contention,
as a per-CPU lock is not likely to be contended (a CPU
can run only one thread at a time). If one has short hold
times and operating modes that have different coherence
requirements, one can have threads acquire a per-CPU
lock in the common (noncoherent) case, and then force
the uncommon case to grab all the per-CPU locks to
construct coherent state. Consider this concrete (if trivial)
example: if one were implementing a global counter that
is frequently updated but infrequently read, one could
implement a per-CPU counter protected by its own lock.
Updates to the counter would update only the per-CPU
copy, and in the uncommon case in which one wanted to
read the counter, all per-CPU locks could be acquired and
their corresponding values summed.

Two notes on this technique: first, it should be
employed only when the data indicates that it’s neces-
sary, as it clearly introduces substantial complexity into
the implementation; second, be sure to have a single
order for acquiring all locks in the cold path: if one case
acquires the per-CPU locks from lowest to highest and
another acquires them from highest to lowest, deadlock
will (naturally) result.

Know when to broadcast—and when to signal. Virtu-
ally all condition variable implementations allow threads
waiting on the variable to be awakened either via a signal
(in which case one thread sleeping on the variable is
awakened) or via a broadcast (in which case all threads
sleeping on the variable are awakened). These constructs
have subtly different semantics: because a broadcast will
awaken all waiting threads, it should generally be used
to indicate state change rather than resource availability.
If a condition broadcast is used when a condition signal
would have been more appropriate, the result will be a
thundering herd: all waiting threads will wake up, fight
over the lock protecting the condition variable, and
(assuming that the first thread to acquire the lock also
consumes the available resource) sleep once again when
they discover that the resource has been consumed.
This needless scheduling and locking activity can have

a serious effect on performance, especially in Java-based
systems, where notifyAll() (i.e., broadcast) seems to have
entrenched itself as a preferred paradigm; changing these
calls to notify() (i.e., signal) has been known to result in
substantial performance gains.7

Learn to debug postmortem. Among some Cassan-
dras of concurrency, a deadlock seems to be a particular
bogeyman of sorts, having become the embodiment of
all that is difficult in lock-based multithreaded program-
ming. This fear is somewhat peculiar, because deadlocks
are actually among the simplest pathologies in software:
because (by definition) the threads involved in a deadlock
cease to make forward progress, they do the implementer
the service of effectively freezing the system with all state
intact. To debug a deadlock, one need have only a list of
threads, their corresponding stack backtraces, and some
knowledge of the system. This information is contained
in a snapshot of state so essential to software develop-
ment that its very name reflects its origins at the dawn of
computing: it is a core dump.

Debugging from a core dump—postmortem debug-
ging—is an essential skill for those who implement
parallel systems: problems in highly parallel systems are
not necessarily reproducible, and a single core dump is
often one’s only chance to debug them. Most debuggers
support postmortem debugging, and many allow user-
defined extensions.8 We encourage practitioners to under-
stand their debugger’s support for postmortem debugging
(especially of parallel programs) and to develop exten-
sions specific to debugging their systems.

Design your systems to be composable. Among the
more galling claims of the detractors of lock-based sys-
tems is the notion that they are somehow uncomposable:
“Locks and condition variables do not support modular
programming,” reads one typically brazen claim, “build-
ing large programs by gluing together smaller programs[:]
locks make this impossible.”9 The claim, of course,
is incorrect. For evidence one need only point at the
composition of lock-based systems such as databases and
operating systems into larger systems that remain entirely
unaware of lower-level locking.

There are two ways to make lock-based systems com-
pletely composable, and each has its own place. First (and
most obviously), one can make locking entirely internal
to the subsystem. For example, in concurrent operating
systems, control never returns to user level with in-kernel
locks held; the locks used to implement the system itself
are entirely behind the system call interface that con-
stitutes the interface to the system. More generally, this
model can work whenever a crisp interface exists between

Real-world
CONCURRENCY

ACM QUEUE September 2008 23 more queue: www.acmqueue.com

software components: as long as control flow is never
returned to the caller with locks held, the subsystem will
remain composable.

Second (and perhaps counterintuitively), one can
achieve concurrency and composability by having no
locks whatsoever. In this case, there must be no global
subsystem state—subsystem state must be captured in
per-instance state, and it must be up to consumers of the
subsystem to assure that they do not access their instance
in parallel. By leaving locking up to the client of the sub-
system, the subsystem itself can be used concurrently by
different subsystems and in different contexts. A concrete
example of this is the AVL tree implementation used
extensively in the Solaris kernel. As with any balanced
binary tree, the implementation is sufficiently complex
to merit componentization, but by not having any global
state, the implementation may be used concurrently by
disjoint subsystems—the only constraint is that manipu-
lation of a single AVL tree instance must be serialized.

Don’t use a semaphore where a mutex would suf-
fice. A semaphore is a generic synchronization primi-
tive originally described by Dijkstra that can be used to
effect a wide range of behavior. It may be tempting to use
semaphores in lieu of mutexes to protect critical sections,
but there is an important difference between the two
constructs: unlike a semaphore, a mutex has a notion of
ownership—the lock is either owned or not, and if it is
owned, it has a known owner. By contrast, a semaphore
(and its kin, the condition variable) has no notion of
ownership: when sleeping on a semaphore, one has no
way of knowing which thread one is blocking upon.

The lack of ownership presents several problems when
used to protect critical sections. First, there is no way of
propagating the blocking thread’s scheduling priority
to the thread that is in the critical section. This ability
to propagate scheduling priority—priority inheritance—is
critical in a realtime system, and in the absence of other
protocols, semaphore-based systems will always be
vulnerable to priority inversions. A second problem with
the lack of ownership is that it deprives the system of the
ability to make assertions about itself. For example, when
ownership is tracked, the machinery that implements
thread blocking can detect pathologies such as deadlocks
and recursive lock acquisitions, inducing fatal failure (and
that all-important core dump) upon detection. Finally,
the lack of ownership makes debugging much more
onerous. A common pathology in a multithreaded system
is a lock not being dropped in some errant return path.
When ownership is tracked, one at least has the smoking
gun of the past (faulty) owner—and, thus, clues as to the

code path by which the lock was not correctly dropped.
Without ownership, one is left clueless and reduced to
debugging by staring at code/the ceiling/into space.

All of this is not to say that semaphores shouldn’t be
used (indeed, some problems are uniquely suited to a
semaphore’s semantics), just that they shouldn’t be used
when mutexes would suffice.

Consider memory retiring to implement per-chain
hash-table locks. Hash tables are common data structures
in performance-critical systems software, and sometimes
they must be accessed in parallel. In this case, adding a
lock to each hash chain, with the per-chain lock held
while readers or writers iterate over the chain, seems
straightforward. The problem, however, is resizing the
table: dynamically resizing a hash table is central to its
efficient operation, and the resize means changing the
memory that contains the table. That is, in a resize the
pointer to the hash table must change—but we do not
wish to require hash lookups to acquire a global lock to
determine the current hash table!

This problem has several solutions, but a (relatively)
straightforward one is to retire memory associated with

old hash tables instead of freeing it. On a resize, all
per-chain locks are acquired (using a well-defined order
to prevent deadlock), and a new table is then allocated,
with the contents of the old hash table being rehashed
into the new table. After this operation, the old table is
not deallocated but rather placed in a queue of old hash
tables. Hash lookups then require a slight modification to
operate correctly: after acquiring the per-chain lock, the
lookup must check the hash-table pointer and compare
it with the hash-table pointer that was used to determine
the hash chain. If the hash table has changed (that is,
if a hash resize has occurred), it must drop the lock and
repeat the lookup (which will acquire the correct chain
lock in the new table).

There are some delicate issues in implementing
this—the hash-table pointer must be declared volatile,

There is universal
agreement that

writing
multithreaded code

is difficult.

24 September 2008 ACM QUEUE rants: feedback@acmqueue.com

and the size of the hash table must be contained in the
table itself—but the implementation complexity is modest
given the alternatives, and (assuming hash tables are
doubled when they are resized) the cost in terms of
memory is only a factor of two. For an example of this
in production code, the reader is directed to the file
descriptor locking in Solaris, the source code for which
can be found by searching the Internet for “flist_grow.”

Be aware of false sharing. There are a variety of differ-
ent protocols for keeping memory coherent in caching
multiprocessor systems. Typically, these protocols dictate
that only a single cache may have a given line of memory
in a dirty state. If a different cache wishes to write to the
dirty line, the new cache must first read-to-own the dirty
line from the owning cache. The size of the line used for
coherence (the coherence granularity) has an important
ramification for parallel software: because only one cache
may own a line a given time, one wishes to avoid a situ-
ation where two (or more) small, disjoint data structures
are both contained within a single line and accessed in
parallel by disjoint caches. This situation—called false
sharing—can induce suboptimal scalability in otherwise
scalable software. This most frequently arises in practice
when one attempts to defract contention with an array of
locks: the size of a lock structure is typically no more than
the size of a pointer or two and is usually quite a bit less
than the coherence granularity (which is typically on the
order of 64 bytes). Disjoint CPUs acquiring different locks
can therefore potentially contend for the same cache line.

False sharing is excruciating to detect dynamically: it
requires not only a bus analyzer, but also a way of trans-
lating from the physical addresses of the bus to the virtual
addresses that make sense to software, and then from
there to the actual structures that are inducing the false
sharing. (This process is so arduous and error-prone that
we have experimented—with some success—with static
mechanisms to detect false sharing.10) Fortunately, false
sharing is rarely the single greatest scalability inhibitor
in a system, and it can be expected to be even less of an
issue on a multicore system (where caches are more likely
to be shared among CPUs). Nonetheless, this remains an
issue that the practitioner should be aware of, especially

when creating arrays that are designed to be accessed in
parallel. (In this situation, array elements should be pad-
ded out to be a multiple of the coherence granularity.)

Consider using nonblocking synchronization routines
to monitor contention. Many synchronization primitives
have different entry points to specify different behavior if
the primitive is unavailable: the default entry point will
typically block, whereas an alternative entry point will
return an error code instead of blocking. This second vari-
ant has a number of uses, but a particularly interesting
one is the monitoring of one’s own contention: when an
attempt to acquire a synchronization primitive fails, the
subsystem can know that there is contention. This can be
especially useful if a subsystem has a way of dynamically
reducing its contention. For example, the Solaris kernel
memory allocator has per-CPU caches of memory buffers.
When a CPU exhausts its per-CPU caches, it must obtain
a new series of buffers from a global pool. Instead of
simply acquiring a lock in this case, the code attempts to
acquire the lock, incrementing a counter when this fails
(and then acquiring the lock through the blocking entry
point). If the counter reaches a predefined threshold, the
size of the per-CPU caches is increased, thereby dynami-
cally reducing contention.

When reacquiring locks, consider using generation
counts to detect state change. When lock ordering
becomes complicated, at times one will need to drop
one lock, acquire another, and then reacquire the first.
This can be tricky, as state protected by the first lock
may have changed during the time that the lock was
dropped—and reverifying this state may be exhausting,
inefficient, or even impossible. In these cases, consider
associating a generation count with the data structure;
when a change is made to the data structure, a genera-
tion count is bumped. The logic that drops and reacquires
the lock must cache the generation before dropping the
lock, and then check the generation upon reacquisition:
if the counts are the same, the data structure is as it was
when the lock was dropped and the logic may proceed; if
the count is different, the state has changed and the logic
may react accordingly (for example, by reattempting the
larger operation).

Use wait- and lock-free structures only if you abso-
lutely must. Over our careers, we have each implemented
wait- and lock-free data structures in production code, but
we did this only in contexts in which locks could not be
acquired for reasons of correctness. Examples include the
implementation of the locking system itself,11 the sub-
systems that span interrupt levels, and dynamic instru-
mentation facilities.12 These constrained contexts are the

Real-world
CONCURRENCY

ACM QUEUE September 2008 25 more queue: www.acmqueue.com

exception, not the rule; in normal contexts, wait- and
lock-free data structures are to be avoided as their failure
modes are brutal (livelock is much nastier to debug than
deadlock), their effect on complexity and the mainte-
nance burden is significant, and their benefit in terms of
performance is usually nil.

Prepare for the thrill of victory—and the agony of
defeat. Making a system scale can be a frustrating pursuit:
the system will not scale until all impediments to scal-
ability have been removed, but it is often impossible to
know if the current impediment to scalability is the last
one. Removing that last impediment is incredibly gratify-
ing: with that change, throughput finally gushes through
the system as if through an open sluice. Conversely, it can
be disheartening to work on a complicated lock breakup
only to discover that while it was the impediment to
scalability, it was merely hiding another impediment,
and removing it improves performance very little—or
perhaps not at all. As discouraging as it may be, you must
return to the system to gather data: does the system not
scale because the impediment was misunderstood, or
does it not scale because a new impediment has been
encountered? If the latter is the case, you can take solace
in knowing that your work is necessary—though not suf-
ficient—to achieve scalability, and that the glory of one
day flooding the system with throughput still awaits you.

THE CONCURRENCY BUFFET
There is universal agreement that writing multithreaded
code is difficult: although we have attempted to elucidate
some of the lessons learned over the years, it nonetheless
remains, in a word, hard. Some have become fixated on
this difficulty, viewing the coming of multicore comput-
ing as cataclysmic for software. This fear is unfounded, for
it ignores the fact that relatively few software engineers
actually need to write multithreaded code: for most, con-
currency can be achieved by standing on the shoulders of
those subsystems that already are highly parallel in imple-
mentation. Those practitioners who are implementing a
database or an operating system or a virtual machine will
continue to need to sweat the details of writing multi-
threaded code, but for everyone else, the challenge is not
how to implement those components but rather how
best to use them to deliver a scalable system. While lunch
might not be exactly free, it is practically all-you-can-
eat—and the buffet is open! Q

REFERENCES

1. Sutter, H., Larus, J. 2005. Software and the concur-
rency revolution. ACM Queue 3(7): 54-62.

2. DeWitt, D., Gray, J. 1992. Parallel database systems:
the future of high-performance database systems.
Communications of the ACM 35(6): 85-98.

3. Oskin, M. 2008. The revolution inside the box. Com-
munications of the ACM 51(7): 70-78.

4. Barroso, L. A., Gharachorloo, K., McNamara, R.,
Nowatzyk, A., Qadeer, S., Sano, B., Smith, S., Stets,
R., Verghese, B. 2000. Piranha: a scalable architecture
based on single-chip multiprocessing. In Proceedings of
the 27th Annual International Symposium on Computer
Architecture: 282-293.

5. Shavit, N. 2008. Transactions are tomorrow’s loads
and stores. Communications of the ACM 51(8): 90.

6. Cantrill, B. 2006. Hidden in plain sight. ACM Queue
4(1): 26-36.

7. McKusick, K. A. 2006. A conversation with Jarod Jen-
son. ACM Queue 4(1): 16-24.

8. Cantrill, B. 2003. Postmortem object type identifica-
tion. In Proceedings of the Fifth International Workshop
on Automated Debugging.

9. Peyton Jones, S. 2007. Beautiful concurrency. In Beau-
tiful Code, ed. A. Oram and G. Wilson. Cambridge,
MA: O’Reilly.

10. See reference 8.
11. Cantrill, B. 2007. A spoonful of sewage. In Beautiful

Code, ed. A. Oram and G. Wilson. Cambridge, MA:
O’Reilly.

12. See reference 6.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BRYAN CANTRILL is a Distinguished Engineer at Sun
Microsystems, where he has worked on concurrent systems
since coming to Sun to work with Jeff Bonwick on Solaris
performance in 1996. Along with colleagues Mike Shapiro
and Adam Leventhal, Cantrill developed DTrace, a facility
for dynamic instrumentation of production systems that
was directly inspired by his frustration in understanding the
behavior of concurrent systems.
JEFF BONWICK is a Fellow at Sun Microsystems, where he
has worked on concurrent systems since 1990. He is best
known for inventing and leading the development of Sun’s
ZFS (Zettabyte File System), but prior to this he was known
for having written (or rather, rewritten) many of the most
parallel subsystems in the Solaris kernel, including the syn-
chronization primitives, the kernel memory allocator, and the
thread-blocking mechanism.
© 2008 ACM 1542-773/08/0900 $5.00

