
46 September 2008 ACM QUEUE rants: feedback@acmqueue.com

software
 transactional transactional

 memory

why is it
 only a

 research
 toy?

ACM QUEUE September 2008 47 more queue: www.acmqueue.com

Călin Ca̧scaval, Colin Blundell,
Maged Michael, Harold W. Cain,
Peng Wu, Stefanie Chiras,
and Siddhartha Chatterjee

The overhead posed by STM may likely overshadow its promise.

TM (transactional memory)1 is a concurrency control paradigm that provides atomic
and isolated execution for regions of code. TM is considered by many researchers to be
one of the most promising solutions to address the problem of programming multicore
processors. Its most appealing feature is that most programmers only need to reason
locally about shared data accesses, mark the code region to be executed transaction-
ally, and let the underlying system ensure the correct concurrent execution. This model
promises to provide the scalability of fi ne-grain locking, while avoiding common pitfalls
of lock composition such as deadlock. In this article we explore the performance of a
highly optimized STM and observe that the overall performance of TM is signifi cantly
worse at low levels of parallelism, which is likely to limit the adoption of this program-
ming paradigm.

Different implementations of transactional memory systems make tradeoffs that
impact both performance and programmability. Larus and Rajwar2 present an overview
of design tradeoffs for implementations of transactional memory systems. Here are some
of the design choices:
• STM (software-only TM)3,4,5,6,7,8,9 is the focus of this article. While offering fl exibility
and no hardware cost, it leads to overhead in excess of most users’ tolerance.
• HTM (hardware-only TM)10,11,12,13,14,15,16 suffers from two major impediments: high
implementation and verifi cation costs lead to design risks too large to justify on a niche
programming model; and hardware capacity constraints lead to signifi cant performance

48 September 2008 ACM QUEUE rants: feedback@acmqueue.com

degradation when overfl ow occurs, and proposals for
managing overfl ows (for example, signatures17) incur false
positives that add complexity to the programming model.
Therefore, from an industrial perspective, HTM designs
have to provide more benefi ts for the cost on a more
diverse set of workloads (with varying transactional char-
acteristics) for hardware designers to consider implemen-
tation. (Reuse of hardware for other purposes can also
justify its inclusion, as may be the case for Sun’s imple-
mentation of Scout Threading in the Rock processor.18)

• Hybrid systems19,20,21,22 are the most likely platform
for the eventual adoption of TM by a wide audience,
although the exact mix of hardware and software support
remains unclear. A special case of the hybrid system is the
hardware-accelerated STM. In this scenario, the trans-
actional semantics are provided by STM, and hardware
primitives are used only to speed up critical performance
bottlenecks in the STM system. Such systems could offer
an attractive solution if the cost of hardware primitives is
modest and may be further amortized by other uses.

Independent of these implementation decisions, there
are transactional semantics issues that break the ideal
transactional programming model for which the commu-
nity had hoped. TM introduces a variety of programming
issues that are not present in lock-based mutual exclu-
sion. For example, semantics are muddled by:
• Interaction with nontransactional codes, includ-
ing access to shared data from outside of a transaction
(tolerating weak atomicity) and the use of locks inside a
transaction (breaking isolation to make locking opera-
tions visible outside transactions).
• Exceptions and serializability—how to handle excep-
tions and propagate consistent exception information
from within a transactional context, and how to guaran-
tee that transactional execution respects a correct order-
ing of operations.

• Interaction with code that cannot be transactionalized,
as a result of either communication with other threads or
a requirement barring speculation.
• Livelock, or the system guarantee that all transactions
make progress even in the presence of confl icts.

In addition to the intrinsic semantic issues, there are
also implementation-specifi c optimizations motivated
by high transactional overheads, such as programmer
annotations for excluding private data. Furthermore,
the nondeterminism introduced by aborting transac-
tions complicates debugging—transactional code may be
executed and aborted on confl icts, which makes it dif-
fi cult for the programmer to fi nd deterministic paths with
repeatable behavior. Both of these dilute the productivity
argument for transactions, especially software-only TM
implementations.

Given all these issues, we conclude that TM has not
yet matured to the point where it presents a compel-
ling value proposition that will trigger its widespread
adoption. While TM can be a useful tool in the parallel
programmer’s portfolio, it is not going to solve the paral-
lel programming dilemma by itself. There is evidence that
it helps with building certain concurrent data structures,
such as hash tables and binary trees. In addition, there are
anecdotal claims that it helps with workloads; however,
despite several years of active research and publication in
the area, we are disappointed to fi nd no mentions in the
research literature of large-scale applications that make
use of TM. The STAMP23 (Stanford Transactional Appli-
cations for Multiprocessing) and Lonestar24 benchmark
suites are promising starts but have a long way to go to be
representative of full applications.

We base these conclusions on our work over the past
two years building a state-of-the-art STM runtime system
and compiler framework, the freely available IBM STM.25
Here, we describe this experience, starting with a discus-
sion of STM algorithms and design decisions. We then
compare the performance of this STM with two other
state-of-the-art implementations (the Intel STM26 and the
Sun TL2 STM27), as well as dissect the operations executed
by the IBM STM and provide a detailed analysis of the
performance hotspots of the STM.

SOFTWARE TRANSACTIONAL MEMORY
STM implements all the transactional semantics in
software. That includes confl ict detection, guaranteeing
the consistency of transactional reads, preservation of
atomicity and isolation (preventing other threads from
observing speculative writes before the transaction suc-
ceeds), and confl ict resolution (transaction arbitration).

software
 transactional

 memory
why is it only a research toy?

ACM QUEUE September 2008 49 more queue: www.acmqueue.com

The pseudocode for the main operations executed by a
typical STM is illustrated in fi gure 1. It shows two STM
algorithms: one that performs full validation and one
that uses a global version number (the additional state-
ments marked with the gv# comment).

The advantage of STM for system programmers is that
it offers fl exibility in implementing different mecha-
nisms and policies for these operations. For end users,
the advantage of STM is that it offers an environment
to transactionalize (i.e., port to TM) their applications
without incurring extra hardware cost or waiting for such
hardware to be developed.

On the other hand, STM entails nontrivial drawbacks
with respect to performance and programming semantics:

Overheads. In general, STM results in higher sequen-
tial overheads than traditional shared-memory program-
ming or HTM. This is the result of the software expansion
of loads and stores to shared mutable locations inside
transactions to tens of additional instructions that consti-
tute the STM implementation (for example, the STM_READ
code in fi gure 1). Depending on the transactional char-
acteristics of a workload, these overheads can become
a high hurdle for STM to achieve performance. The

sequential overheads (that is, confl ict-free overheads that
are incurred regardless of the actions of other concurrent
threads) must be overcome by the concurrency-enabling
characteristics of transactional memory.

Semantics. To avoid incurring high STM overheads,
nontransactional accesses (i.e., loads and stores occurring
outside transactions) are typically not expanded. This has
the effect of weakening—and hence complicating—the
semantics of transactions, which may require the pro-
grammer to be more careful than when strong transac-
tional semantics are supported. The following are some of
the weakened guarantees that are usually associated with
such STMs:
• Weak atomicity. Typically, the STM runtime libraries
cannot detect confl icts between transactions and non-
transactional accesses. Thus, the semantics of atomicity
are weakened to allow undetected confl icts with non-
transactional accesses (referred to as weak atomicity28),
or equivalently put the burden on the programmer to
guarantee that no such confl icts can possibly take place.
• Privatization. Some STM designs prohibit the seamless
privatization of memory locations (that is, the transition
from being accessed transactionally to being accessed

1FIGUR
E

STM Operations

Pseudo-code for STM begin
STM_BEGIN()
 read global version number /* gv# */

Pseudo-code for STM validate
STM_VALIDATE()
 read global version number /* gv# */
 if global version number changed /* gv# */
 for each read set entry
 if metadata changed return FALSE
 return TRUE

Pseudo-code for STM read barrier
STM_READ(A)
 if already written goto written path
 read metadata of A
 if metadata is locked goto confl ict path
 log A and its metadata in the read set
 read value at A
 if ! STM_VALIDATE() goto confl ict path
 return val

Pseudo-code for STM end
STM_END()
 lock metadata for write set
 if already locked goto confl ict path
 if ! STM_VALIDATE() goto confl ict path
 /* Success guaranteed */
 increment global version number /* gv# */
 execute writes
 update/unlock metadata for write set

50 September 2008 ACM QUEUE rants: feedback@acmqueue.com

privately—or nontransactionally in general, by using
locks). For some STM designs, once a location is accessed
transactionally, it must continue to be accessed that way.
Sometimes, the programmer can ease the transition by
guaranteeing that the fi rst access to the privatized loca-
tion—such as after the location is no longer accessible by
other threads—is transactional.

• Memory reclamation. Some STM designs prohibit the
seamless reclamation of the memory locations accessed
transactionally for arbitrary reuse, such as using malloc
and free. With such STM designs, memory allocation and
deallocation for locations accessed transactionally are
handled differently than for other locations.
• Legacy binaries. STM needs to observe all memory
activities of the transactional regions to ensure atomicity
and isolation. STM designs that achieve this observation
by code instrumentation generally cannot support trans-
actions calling legacy codes that are not instrumented (for
example, third-party libraries) without seriously limiting
concurrency, such as by serializing transactions.

EVALUATION
Throughout this section we use the following set of
benchmarks:
• b+tree is an implementation of database indexing
operations on a b-tree data structure for which the data

software
 transactional

 memory
why is it only a research toy?

8421

2.5

2.0

1.5

1.0

0.5

0

delaunay

sc
al

ab
ili

ty
 n

or
m

al
iz

ed
to

 s
eq

ue
nt

ia
l

Intel
IBM
Sun TL2

8421

2.5

2.0

1.5

1.0

0.5

0

kmeans
Intel
IBM
Sun TL2

842
threads

1

2.5

2.0

1.5

1.0

0.5

0

vacation

sc
al

ab
ili

ty
 n

or
m

al
iz

ed
to

 s
eq

ue
nt

ia
l

Intel
IBM
Sun TL2

842
threads

1

2.5

2.0

1.5

1.0

0.5

0

genome
Intel
IBM
Sun TL2

Scalability Results for Three STM Runtimes on a Quad-Core Intel Xeon Server2

ERUG IF

ACM QUEUE September 2008 51 more queue: www.acmqueue.com

is stored only on the tree leaves (a b+ tree). This imple-
mentation uses coarse-grained transactions for every tree
operation. Each b+ tree operation starts from the tree root
and descends to the leaves. A leaf update may trigger a
structural modification to rebalance the tree. A rebalanc-
ing operation often involves recursive ascent over the
child-parent edges. In the worst case, the rebalancing
operation modifies the entire tree. Our workload inserts
2,048 items in a b+ tree of order 20. For this code we have
only a transactional version that is not manually instru-
mented; therefore, experimental results are presented
only in configurations where we can use our compiler to
provide instrumentation.
• delaunay implements the Delaunay Mesh Refinement
algorithm described in Kulkarni et al.29 The code produces
a guaranteed quality Delaunay mesh. This is a Delaunay
triangulation with the additional constraint that no angle
in the mesh be less than 30 degrees. The benchmark
takes as input an unrefined Delaunay triangulation and
produces a new triangulation that satisfies this constraint.
In the TM implementation of the algorithm, multiple
threads choose their elements from a work queue and
refine the cavities as separate transactions.
• genome, kmeans, and vacation are part of the STAMP
benchmark suite30 version 0.9.4. For a detailed description
of these benchmarks, see STAMP.31

Baseline performance. Figure 2 presents a performance
comparison of three STMs: IBM,32,33 Intel,34 and Sun TL2.35
The runs are on a quad-core, two-way hyperthreaded
Intel Xeon 2.3-GHz box running Linux Fedora Core 6. In

these runs, we used the manually instrumented versions
of the codes, which aggressively minimize the number
of barriers for the IBM and TL2 STMs. Since we do not
have access to low-level APIs for the Intel STM, its curves
are from codes instrumented by the Intel STM compiler,
which incurs additional barrier overheads as a result of
compiler instrumentation.36 The graphs are scalability
curves with respect to the serial, nontransactionalized
version. Therefore, a value of 1 on the y-axis represents
performance equal to the serial version.

The performance of these STMs is mostly on par, with
the IBM STM showing better scalability on delaunay and
TL2 obtaining better scalability on genome. The overall
performance obtained is very low, however: on kmeans
the IBM STM barely attains single-threaded performance
at four threads, while on vacation none of the STMs actu-
ally overcomes the overhead of transactional memory
even with eight threads.

Compiler instrumentation. The compiler is a neces-
sary component of an STM-based programming environ-
ment that is to be adopted by mass programmers. Its
basic role is to eliminate the need for programmers to
manually instrument memory references to STM read
and write barriers. While offering convenience, compiler
instrumentation does add another layer of overheads to
the STM system by introducing redundant barriers, often
resulting from the conservativeness of compiler analysis,
as observed in Yoo.37

1.0

0.8

0.6

0.4

0.2

0

genome

number of threads

sp
ee

du
p

STM manual
STMXLC

863 52 741863 52 741

1.0

0.8

0.6

0.4

0.2

0

vacation

number of threads

sp
ee

du
p

STM manual
STMXLC

Scalability for Manual and Compiler Instrumented Benchmarks on AIX PowerPC 3
ERUGIF

52 September 2008 ACM QUEUE rants: feedback@acmqueue.com

Figure 3 provides another baseline: the overhead of
compiler instrumentation. The performance is measured
on a 16-way POWER5 running AIX 5.3. For the STMXLC
curve, we use the uninstrumented versions of the codes
and annotate transactional regions and functions using
the language extensions provided by the compiler.38

Compiler over-instrumentation is more pronounced
in traditional, unmanaged languages such as C and
C++, where a typical compiler instrumentation without
interprocedural analysis may end up instrumenting every
memory reference in the transactional region (except
for stack accesses). For
example, our compiler
instrumentation more
than doubled the number
of dynamic read barriers
in delaunay, genome, and
kmeans. Interprocedural
analysis can help improve
the tightness of compiler
instrumentation for some
cases but is generally
limited by the accuracy of
global analysis.

STM operations perfor-
mance. Given this baseline,
we now analyze in detail
which operations in the
STM cause the overhead.
For this purpose, we use a
cycle-accurate simulator of
the PowerPC architecture
that provides hooks for
instrumentation. The STM
operations and subop-
erations are instrumented
with these simulator
hooks. The reason for this

environment is that we want to capture the overheads
at the instruction level and eliminate any other nonde-
terminism introduced by real hardware. The simulator
eliminates all other bookkeeping operations introduced
by instrumentation and provides an accurate breakdown
of the STM overheads.

We study the performance of two STM algorithms: one
that fully validates (fv) the read set after each transac-
tional read and one that uses a global version number
(gv#) to avoid the full validation, while maintaining the
correctness of the operations. The fv algorithm provides
more concurrency at a much higher price. The gv# is
deemed as one of the best tradeoffs for STM implementa-
tions.

Figure 4 presents the single-threaded overhead of
these algorithms over sequential runs, illustrating again
the substantial slowdowns that the algorithms induce.
Figure 5 breaks down these overheads into the various
STM components. For both algorithms, the overhead of
transactional reads dominates because of the frequency
of read operations relative to all other operations. The
effectiveness of the global version number in reducing
overheads is shown in the lower read overhead of gv#.

software
 transactional

 memory
why is it only a research toy?

8

7

6

5

4

0

ru
nt

im
e

(n
or

m
.

to
 s

eq
ue

nt
ia

l)

fv
gv#

3

2

1

vacationdelaunay kmeansb+tree genome

Single-Threaded Overhead of the STM Algorithms

118.1 43.8 49.2

4

E RUGI F

ACM QUEUE September 2008 53 more queue: www.acmqueue.com

Figure 6 gives a fine-grained breakdown of the over-
heads of the transactional read operation. As expected,
the overhead of validating the read set dominates trans-
actional read time in the fv configuration. For both algo-
rithms, the isync operations (necessary for ordering the
metadata read and data read, as well as the data read and
validation) form a substantial component. In applications
that perform writes before reads in the same transaction
(delaunay, kmeans), the time spent checking whether a
location has been written by prior transactional writes
in the same transaction forms a significant component
of the total time. Interestingly, reading the data itself
is a negligible amount of the total time, indicating the
hurdles that must be overcome for the performance of
these algorithms to be compelling.

Figure 7 gives a similar breakdown of the transactional
commit operation. As before, the fv configuration suffers
from having to validate the read set. Other dominant
overheads for both configurations are those of having to
acquire the metadata for the write set (which involves a
sequence of load-linked/store-conditional operations) and

the sync operations that
are necessary for ordering
the metadata acquires,
data writes, and metadata
releases. Once again, the
data writes themselves
form a small component of
the total time.

Overhead optimiza-
tions. There have been
many proposals on
reducing STM overheads
through compiler or
runtime techniques. Most
of these techniques are
complementary to hard-
ware acceleration for STM.
• Redundant barrier
elimination. One technique
is to eliminate barriers
to thread-local objects
through escape analysis.
Such analysis is typically
quite effective in identify-
ing thread-local accesses
that are close to the object
allocation site. It can elimi-
nate both read and write
barriers but is often more

effective on write barriers. For example, we observe that
an intraprocedural escape analysis can eliminate 40 to 50
percent of write barriers in vacation, genome, and b+tree.
Its impact on performance is more limited, however:
from negligible to 12 percent. To target redundant read
barriers, a whole-program analysis called Not-Accessed-
In-Transaction39 eliminates some barriers to read-only
objects in transactions.
• Barrier strength reduction. These optimizations do not
eliminate barriers but identify at runtime special locations
that require only lightweight barrier processing, such as
dynamic tracking of thread-local objects40,41 and runtime
filtering of stack references and duplicate references.42

• Code generation optimizations. One common tech-
nique is to inline the fast path of barriers. It has the
potential benefit of reducing function-call overhead,
increasing ILP, and exposing reuse of common sub-bar-
rier operations. In our experiments, compiler inlining
achieved less than 2 percent overall improvement across
our benchmark suite.

fv gv#fv gv#fv gv#fv gv#fv gv#

other
read
end
free
malloc
write
begin
stack_range
descriptor check
kernel

Percentage of Time Spent in Different STM Operations

100

80

90

70

50

60

40

0

pe
rc

en
t

of
 c

yc
le

s
(n

or
m

.
to

 f
v)

30

20

10

vacationdelaunay kmeansb+tree genome

5
ERUGIF

54 September 2008 ACM QUEUE rants: feedback@acmqueue.com

• Commit sequence optimizations. Eliminating unneces-
sary global version number updates43 improves the overall
performance of several micro-benchmarks by up to 14
percent.

Such optimizations have a positive impact on STM
performance. The results presented here, however,
indicate how much further innovation is needed for the
performance of STM systems to become generally appeal-
ing to users.

RELATED WORK
The fi rst STM system was
proposed by Shavit and
Touitou44 and is based on
object ownership. The
protocol is static, which is
a signifi cant shortcoming
that has been overcome
by subsequently proposed
STM systems.45 Confl ict
detection is simplifi ed
signifi cantly by the static
nature because confl icts
can be ruled out already
when ownership records
are acquired (at transaction
start).

DSTM46 is the fi rst
dynamic STM system; the
design follows a per-object
runtime organization
(locator object). Variables
(objects) in the applica-
tion heap refer to a locator
object. Unlike in a design
with ownership records
(for example, Harris and
Fraser47), the locator does

not store a version number but refers to the most recently
committed version of the object. A particularity of the
DSTM design is that objects must be explicitly opened (in
read-only or read-write mode) before transactional access;
also, DSTM allows for early release. The authors argue that
both mechanisms facilitate the reduction of confl icts.

The design principles of the RSTM48 (Rochester STM)
system are similar to DSTM in that it associates transac-
tional metadata with objects. Unlike DSTM, however, the
system does not require the dynamic allocation of trans-
actional data but colocates it with the nontransactional
data. This scheme has two benefi ts: fi rst, it facilitates
spatial access locality and hence fosters execution perfor-
mance and transaction throughput; second, the dynamic
memory management of transactional data (usually done
through a garbage collector) is not necessary, and hence
this scheme is amenable to use in environments where
memory management is explicit.

Recent work has explored algorithmic optimizations
and/or alternative implementations of the basic STM
algorithms described in this article. Riegel et al. propose
the use of realtime clocks to enhance the scalability of

software
 transactional

 memory
why is it only a research toy?

Percentage of Time Spent in STM Read Sub-Operations

100

80

90

70

50

60

40

0

pe
rc

en
t

of
 c

yc
le

s
(n

or
m

.
to

 f
v)

30

20

10

vacationdelaunay kmeansb+tree genome

return
validate
sync
read data
add metadata
to read set
check if meta-
data locked
read metadata
calculate
metadata
check read
after write
setup
call
other

fv gv#fv gv#fv gv#fv gv#fv gv#

6

E RUGIF

ACM QUEUE September 2008 55 more queue: www.acmqueue.com

STMs that use a global version number.49 JudoSTM50 and
RingSTM51 reduce the number of atomic operations that
must be performed when committing a transaction at
the cost of serializing commit and/or incurring spurious
aborts because of imprecise conflict detection. Several
proposals have been made for STM systems that operate
via dynamic binary rewriting in order to allow the usage
of STM on legacy binaries.52, 53, 54

Yoo et al.55 analyze the overhead in the execution
of Intel’s STM.56,57 They identify four major sources of
overhead: over-instrumentation, false sharing, amorti-
zation costs, and privatization-safety costs. False shar-
ing, privatization-safety, and over-instrumentation are
implementation artifacts that can be eliminated by using
either finer-granularity bookkeeping, more refined analy-
sis, or user annotations. Amortization costs are inherent
overheads in STM that, as we demonstrated here, are not
likely to be eliminated.

A large amount of research effort has been spent in
analyzing the operations in TM systems. Recent soft-
ware optimizations have managed to accelerate STM

performance by 2 to 15
percent. We believe such
analysis is a good practice
that should be extended
to every piece of system
software, especially open
source. However, the gains
are only a minor dent in
the overheads we observed,
indicating the challenge
that lies before the com-
munity in making STM
performance compelling.

CONCLUSION
Based on our results, we
believe that the road ahead
for STM is quite challeng-
ing. Lowering the overhead
of STM to a point where it
is generally appealing is a
difficult task, and signifi-
cantly better results have
to be demonstrated. If we
could stress a single direc-
tion for further research,
it is the elimination of
dynamically unnecessary
read and write barriers—

possibly the single most powerful lever toward further
reduction of STM overheads. Given the difficulty of simi-
lar problems explored by the research community such as
alias analysis, escape analysis, and so on, this may be an
uphill battle. Because the argument for TM hinges upon
its simplicity and productivity benefits, we are deeply
skeptical of any proposed solutions to performance prob-
lems that require extra work by the programmer.

We observed that the TM programming model itself,
whether implemented in hardware or software, intro-
duces complexities that limit the expected productivity
gains, thus reducing the current incentive for migration
to transactional programming and the justification at
present for anything more than a small amount of hard-
ware support. Q

ACKNOWLEDGMENTS

We would like to thank Pratap Pattnaik for his continu-
ous support, Christoph von Praun for numerous discus-
sions and work on benchmarks and runtimes, and Rajesh
Bordawekar for the b+tree code implementation.

100

80

90

70

50

60

40

0

pe
rc

en
t

of
 c

yc
le

s
(n

or
m

.
to

 f
v)

30

20

10

vacationdelaunay kmeansb+tree genome

return
cleanup trans-
actional state
release
metadata
increment gv#
write data
validate
sync
acquire
metadata
check for
read-only
setup
call
other

fv gv#fv gv#fv gv#fv gv#fv gv#

Percentage of Time Spent in STM End Sub-Operations7
ERUG IF

56 September 2008 ACM QUEUE rants: feedback@acmqueue.com

REFERENCES

1. Herlihy, M., Moss, J.E.B. 1993. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium
on Computer Architecture (May): 289–300.

2. Larus, J.R., Rajwar, R. 2006. Transactional Memory.
Morgan Claypool.

3. Dice, D., Shalev, O., Shavit, N. 2006. Transactional
Locking II. DISC (September): 194–208.

4. Harris, T., Fraser, K. 2003. Language support for light-
weight transactions. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications
(October): 388–402.

5. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.
2003. Software transactional memory for dynamic-sized
data structures. In Proceedings of the 22nd ACM Symposium
on Principles of Distributed Computing (July): 92–101.

6. Intel C++ STM compiler, prototype edition 2.0.;
http://softwarecommunity.intel.com/articles/
eng/1460.htm/ (2008).

7. Marathe, V.J., Spear, M.F., Heriot, C., Acharya, A.,
Eisenstat, D., Scherer III, W.N., Scott, M.L. 2006. Low-
ering the overhead of software transactional memory.
Technical Report TR 893, Computer Science Depart-
ment, University of Rochester (March). Condensed
version submitted for publication.

8. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh,
C.C., Hertzberg, B. 2006. Mcrt-stm: A high perfor-
mance software transactional memory system for
a multicore runtime. In Proceedings of the 11th ACM
Symposium on Principles and Practice of Parallel Program-
ming (March): 187–197.

9. Shavit, N., Touitou, D. 1995. Software Transactional
Memory. In Proceedings of the ACM Symposium of Prin-
ciples of Distributed Computing: 204–213.

10. Blundell, C., Devietti, J., Lewis, E.L., Martin, M.M.K.
2007. Making the fast case common and the uncom-

mon case simple in unbounded transactional
memory. In Proceedings of the 34th Annual International
Symposium on Computer Architecture: 23-34.

11. Bobba, J., Goyal, N., Hill, M.D., Swift, M.M., Wood,
D.A. 2008. TokenTM: Effi cient execution of large
transactions with hardware transactional memory.
In Proceedings of the 35th International Symposium on
Computer Architecture: 127–138.

12. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D.,
Davis, J.D., Hertzberg, B., Prabhu, M.K., Wijaya,
H., Kozyrakis, C., Olukotun, K. 2004. Transactional
memory coherence and consistency. In Proceedings of
the 31st Annual International Symposium on Computer
Architecture (June): 102.

13. See reference 1.
14. Minh, C.C., Trautmann, M., Chung, J., McDonald,

A., Bronson, N., Casper, J., Kozyrakis, C., Olukotun,
K. 2007. An effective hybrid transactional memory
system with strong isolation guarantees. In Proceedings
of the 34th Annual International Symposium on Computer
Architecture: 69–80.

15. Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D.,
Wood, D.A. 2006. LogTM: Log-based transactional
memory. In Proceedings of the 12th Annual International
Symposium on High Performance Computer Architecture
(February).

16. Yen, L., Bobba, J., Marty, M.M., Moore, K.E., Volos,
H., Hill, M.D., Swift, M.M., Wood, D.A. 2007. LogTM-
SE: Decoupling hardware transactional memory
from caches. In Proceedings of the 13th International
Symposium on High-Performance Computer Architecture
(February).

17. Ceze, L., Tuck, J., Cascaval, C., Torrellas, J. 2006. Bulk
disambiguation of speculative threads in multipro-
cessors. In Proceedings of the 34th Annual International
Symposium on Computer Architecture: 237-238.

18. Tremblay, M. Chaudhry, S. 2008. A third-generation
65nm 16-core 32-thread plus 32-scout-thread CMT. In
Proceedings of the IEEE International Solid-State Circuits
Conference (February).

19. Baugh, L., Neelakantam, N., Zilles, C. 2008. Using
hardware memory protection to build a high-perfor-
mance, strongly atomic hybrid transactional memory.
In Proceedings of the 35th International Symposium on
Computer Architecture: 115–126.

20. Damron, P., Federova, A., Lev, Y., Luchangco, V.,
Moir, M., Nussbaum, D. 2006. Hybrid transactional
memory. In Proceedings of the 12th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (October).

software
 transactional

 memory
why is it only a research toy?

ACM QUEUE September 2008 57 more queue: www.acmqueue.com

21. Saha, B., Adl-Tabatabai, A.R., Jacobson, Q. 2006.
Architectural support for software transactional
memory. In Proceedings of the 39th Annual International
Symposium on Microarchitecture (December): 185-196.

22. Shriraman, A., Spear, M.F., Hossain, H., Marathe,
V.J., Dwarkadas, S., Scott, M.L. 2007. An integrated
hardware-software approach to flexible transactional
memory. In Proceedings of the 34th Annual International
Symposium on Computer Architecture: 104–115.

23. STAMP benchmark suite. 2007. http://stamp.stanford.
edu/.

24. The Lonestar benchmark suite. 2008. http://iss.ices.
utexas.edu/lonestar/.

25. (IBM) XL C/C++ for Transactional Memory for AIX.
2008. www.alphaworks.ibm.com/tech/xlcstm/.

26. See reference 6.
27. See reference 3.
28. Blundell, C., Lewis, C., and Martin, M.M.K. 2006.

Subtleties of transactional memory atomicity seman-
tics. IEEE TCCA Computer Architecture Letters 5(2).

29. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan,
G., Bala, K., Chew, P.L. 2007. Optimistic parallelism
requires abstractions. In Proceedings of the PLDI:
211–222.

30. See reference 14.
31. See reference 23.
32. See reference 25.
33. Wu, P., Michael, M.M., von Praun, C., Nakaike, T.,

Bordawekar, R., Cain, H.W., Cascaval, C., Chatterjee,
S., Chiras, S., Hou, R., Mergen, M., Shen, X., Spear,
M.F., Wang, H.Y., Wang, K. 2008. Compiler and run-
time techniques for software transactional memory
optimization. To appear in Concurrency and Computa-
tion: Practice and Experience.

34. See reference 6.
35. See reference 3.
36. Yoo, R.M., Ni, Y., Welc, A., Saha, B. Adl-Tabatabai,

A-R., Lee, H-H.S. 2008. Kicking the tires of software
transactional memory: why the going gets tough. In
Proceedings of the 20th Annual Symposium on Parallelism
in Algorithms and Architectures.

37. See reference 36.
38. See reference 25.
39. Shpeisman, T., Menon, V., Adl-Tabatabai, A-R., Balen-

siefer, S., Grossman, D., Hudson, R., Moore, K.F., Saha,
B. 2007. Enforcing isolation and ordering in STM.
In Proceedings of the Programming Language Design and

Implementation Conference: 78–88.
40. Harris, T., Plesko, M., Shinnar, A., Tarditi, D. 2003.

Optimizing memory transactions. In Proceedings of the

Programming Language Design and Implementation Confe-
rence: 388–402.

41. See reference 39.
42. See reference 40.
43. Zhang, R., Budimlić, Z., Scherer III, W.N. 2008. Com-

mit phase in timestamp-based STM. In Proceedings of
the 20th Annual Symposium on Parallelism in Algorithms
and Architectures: 326–335.

44. Shavit, N., Touitou, D. 1995. Software transactional
memory. In Proceedings of the 14th ACM Symposium on
Principles of Distributed Computing: 204–213.

45. See reference 3.
46. See reference 5.
47. See reference 4.
48. See reference 7.
49. Riegel, T., Fetzer, C., Felber, P. 2007. Time-based

transactional memory with scalable time bases. In
Proceedings of the 19th ACM Symposium on Parallelism in
Algorithms and Architectures (June).

50. Olszewski, M., Cutler, J., Steffan, J.G. 2007. JudoSTM:
A dynamic binary-rewriting approach to software
transactional memory. In Proceedings of the 16th Inter-
national Conference on Parallel Architecture and Compila-
tion Techniques: 365-375.

51. Spears, M.T., Michael, M.M., von Praum, C. 2008.
RingSTM: Scalable transactions with a single atomic
instruction. In Proceedings of the 20th ACM Symposium
on Parallelism in Algorithms and Architectures: 275-284.

52. Felber, P., Fetzer, C., Mueller, U., Riegel, T., Suesskraut,
M., Sturzrehm, H. 2007. Transactifying applications
using an open compiler framework. In Proceedings of
the ACM SIGPLAN Workshop on Transactional Compu-
ting (August).

53. See reference 50.
54. Wang, C. Chein, W-Y, Wu, Y., Saha, B., Adl-Tabatabai,

A.R. 2007. Code generation and optimization for
transactional memory constructs in an unmanaged
language. In Proceedings of International Symposium on

Code Generation and Optimization: 34-48.
55. See reference 36.
56. See reference 6.
57. See reference 8.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

CĂLIN CAŞCAVAL is a research staff member and man-
ager of the Programming Models and Tools for Scalable
Systems at IBM’s T.J. Watson Research Center, where he has
worked on several large-scale parallel computer projects. He

58 September 2008 ACM QUEUE rants: feedback@acmqueue.com

developed the chip simulator for the Cyclops processor and
worked on system software for the Blue Gene/C machine.
Since 2003, he has been leading the Compilers team in the
PERCS project (IBM’s entry in the DARPA HPCS program). As
part of this effort he is leading the development of the IBM
xlUPC compiler and the Continuous Program Optimization
project. He is also the project lead for transactional memory
evaluation in IBM Research. He obtained an M.S. in com-
puter engineering from Technical University Cluj-Napoca,
Romania, in 1991, M.S. in computer science from West
Virginia University in 1995, and Ph.D. from the University of
Illinois at Urbana-Champaign in 2000.
COLIN BLUNDELL is a fi fth-year graduate student at the
University of Pennsylvania, where he is pursuing his Ph.D.
under the supervision of Professor Milo Martin. His primary
reseach interests are in multiprocessor performance and
programmability, including memory consistency, cache
coherence protocols, and hardware mechanisms for enabling
optimistic concurrency.
HAROLD “TREY” CAIN is a research staff member at IBM’s
T.J. Watson Research Center, where he conducts research
on the microarchitecture and memory system of highly
multithreaded processors. He has coauthored more than 20
publications in the areas of multiprocessor memory system
design, processor microarchitecture, simulation methodol-
ogy, and the characterization of commercial server applica-
tions. Cain holds a Ph.D. and M.S. in computer science from
the University of Wisconsin, and a B.S. from the College of
William and Mary. His graduate research was selected as a
2004 “Top Pick” in computer architecture by IEEE Micro. His
accent comes from the hills of eastern Kentucky.
MAGED M. MICHAEL is a research staff member at IBM’s
T.J. Watson Research Center. He received a Ph.D. in com-
puter science from the University of Rochester. His research
interests are primarily in concurrent algorithms, concurrent
programming, and concurrent memory management. He is

the designer of well-known concurrent algorithms, including
lock-free malloc, hazard pointers, and nonblocking algo-
rithms for common data structures. His algorithms are used
in commercial standard libraries, runtime systems, middle-
ware, and realtime systems.
PENG WU is a research staff member at IBM’s T.J. Watson
Research Center and a member of the programming models
and tools for scalable systems group. Her work has been
centered around building a high-performance and high-
productivity programming environment. Her past work on
simdization has resulted in the fi rst product release of an XL
compiler with simdization capability and more than a dozen
patents. More recently, she has been working on compiler
and language supports for transactional memory and thread-
level speculation. She received a Ph.D. in computer science
from the University of Illinois at Urbana-Champaign in 2001.
STEFANIE CHIRAS is a manager in IBM’s Systems and
Technology Group, leading a team responsible for technol-
ogy and mainframe test. Prior to this role she was a research
staff member in IBM Research, managing a team develop-
ing next-generation memory systems and incorporating
emerging memory technologies. She joined IBM Research in
2001 as part of the Back End of Line Reliability team, after a
postdoctoral position at Princeton University in the Princeton
Materials Institute. She holds an M.S. and Ph.D. in materials
science from the University of California at Santa Barbara.
SIDDHARTHA CHATTERJEE is director of the Austin
Research Laboratory, one of IBM’s eight worldwide research
laboratories. He also serves as the research area strategist
for systems architecture. He has held technical, manage-
rial, executive, strategy, and staff positions during his time
in the IBM Research Division. Most recently, he was senior
manager of the Systems Solutions and Architecture group
at IBM’s T.J. Watson Research Center. Earlier, he was the
leader of the Blue Gene performance team. Chatterjee
received a B.Tech. in electronics and electrical communi-
cations engineering in 1985 from the Indian Institute of
Technology, Kharagpur, and Ph.D. in computer science in
1991 from Carnegie Mellon University. Before joining IBM
Research, he was a visiting scientist at the Research Institute
for Advanced Computer Science (RIACS) in Mountain View,
California, from 1991 through 1994, and was assistant and
associate professor of computer science at the University of
North Carolina at Chapel Hill from 1994 through 2001. He
is currently an adjunct professor of computer science at the
University of Texas at Austin.
© 2008 ACM 1542-7730 /08/0900 $5.00

software
 transactional

 memory
why is it only a research toy?

