X

X

X

UNIVERSITY OF AMSTERDAM

Faculty of Science

MASTER’S THESIS

Two implementation techniques for
Domain Specific Languages compared:

OMeta/JS vs. JavaScript

Author: Host organization:
Nickolas Heirbaut Centrum Wiskunde & Informatica
Date approval: Supervisor:
8 October 2009 Dr. Tijs Van Der Storm

Centrum Wiskunde & Informatica

Contents

Abstract 4

Preface

1 Introduction 6
1.1 Motivation L e 6
1.2 Research questions e 7
1.3 Organization of this thesis L 7

2 Background and context 8
2.1 Domain-specific languages 8

2.1.1 Imtroduction e 8
2.1.2 Development phases e 9
2.1.3 Implementation strategies L L L. 10
2.2 OMeta 13
2.2.1 Imtroduction L 13
2.2.2 Parsing Expression Grammar 13
2.2.3 OMeta: an extended PEG 16
2.3 Waebric e 19
2.3.1 Imtroduction 19
2.3.2 Example. 19
2.3.3 Embedded markup 20
2.3.4 Juxtaposition L 21
2.3.5 Around parameterization L 21

3 Research method

3.1 Maintainability
3.1.1 Program code metrics Lo
3.1.2 Grammar metrics

3.2 Efficiency e

3.3 Functionality

3.4 Hypotheses e

3.5 Threats to validity L
3.5.1 Waebric as reference DSL oo
3.5.2 Mapping of metrics
3.5.3 OMeta as compiler-generator

4 Vanilla implementation

4.1 Lexical analysis .
4.1.1 Process .
4.1.2 Example .

4.1.3 Difficulties

4.2 Syntactic analysis

4.2.1 Parsing algorithm o o o
4.2.2 Abstract Syntax Tree o
423 Design
4.24 Exampleo e e

4.3 Semantic analysis

4.3.1 Environments L Lo
4.3.2 Treewalking
4.3.3 Typechecking L
4.3.4 Interpreting L

5 OMeta implementation

5.1 Lexical and syntactic analysis L oL

5.1.1 Example .

5.2 Semantic analysis

23
25
25
29
34
35
35
37
37
38
39

40
41
41
42
43
44
44
44
45
46
48
48
49
50
52

5.2.1 Treewalking e

522 Example. e
6 Results
6.1 Maintainabilityo
6.1.1 Vanilla implementation L oL
6.1.2 OMeta implementation L.
6.2 Efficiency
6.3 Functionality
7 Analysis
7.1 Maintainability oL
7.2 Efficiency e
7.3 Functionality e
8 Conclusions
8.1 Maintainabilityo

8.2 Efficiency . .
8.3 Functionality

8.4 Overall quality

Bibliography

A Metrics

62
62
62
63
65
69

70
70
72
73

74
74
(0]
(6]
76

79

80

Abstract

During the development of a domain-specific language, little attention is given to its
implementation. The variety of implementation techniques is however large including
preprocessing, embedding, (extensible) compiler / interpreter, application generators
and commercial off-the-shelf tools. Choosing a suitable implementation technique is
essential as it can affect the total effort required to implement a DSL largely, not to
mention end-user productivity, efficiency and maintainability. In most cases, trade-offs
has to be made when choosing the proper technique. While these trade-offs are much
discussed among implementors, they are compared over diverse application domains and
without the support of empirical evidence making an objective comparison difficult, if
not impossible.

The purpose of this paper is to provide an in-depth quality analysis for two imple-
mentation techniques with JavaScript as target language. The first implementation
involves the application of traditional GPL interpreter techniques to develop a lexer,
parser, typechecker and interpreter. The second implementation applies the compiler-
generator technique where certain phases of the interpreter technique are automated
using OMeta/JS - a tool particularly well-suited for building language implementations
- to generate a lexer, parser and a typechecker based on a formal specification.

Comparison shows that the interpreter technique results in higher performance and func-
tionality, while the OMeta implementation is more maintainable and requires significant
less effort from the implementor. As a result, we propose to use the OMeta implemen-
tation for rapidly prototyping domain-specific languages or when error reporting is not
important. The interpreter technique is best applicable for DSLs targeted to production
environments or when high performance is desired.

The research provided in this thesis is a contribution to the DSL Benchmark Implemen-
tation project which aims to provide an extensive quality overview of various implemen-
tation strategies, each carried out in different programming languages. The project is an
important addition to the field of domain-specific languages and improves and extends
earlier work on DSL implementation techniques.

Preface

This thesis is the result of my graduation project at the Centrum Wiskunde & Informat-
ica (CWI) in fulfillment of the thesis requirements for the degree of Master in Software
Engineering at the University of Amsterdam.

In this preface I would like to thank everybody involved in the program Master Software
Engineering for the valuable knowledge they provided me on the many aspects of software
engineering. Special thanks to Prof. dr. Paul Klint for offering a chance to contribute to
the DSL Benchmark Implementation Project at the CWI, and Dr. Tijs Van Der Storm
for his valuable feedback and supervision during the entire project.

I would also like to thank the author of OMeta/JS, Alessandro Warth, for reviewing the
OMeta/JS implementation and answering all my questions regarding OMeta.

Finally a note of thanks to my parents for the opportunity they gave me to follow this
program and for their moral support throughout the program.

Nickolas Heirbaut,
Sint-Niklaas, September 2009

Chapter 1

Introduction

1.1 Motivation

Since the emergence of domain-specific languages (DSLs) in the late 50’s (APT, BNF),
many articles have been written on the development of DSL’s. It is however only recently
that research has been done into the implementation of DSLs including preprocessing,
embedding, (extensible) compiler / interpreter, application generators and commercial
off-the-shelf tools [21].

Choosing a suitable implementation technique is essential as it can affect the total effort
required to implement a DSL largely, not to mention end-user productivity, efficiency
and maintainability. In most cases, trade-offs has to be made when choosing the proper
technique. While these trade-offs are much discussed among implementors, they are com-
pared over diverse application domains and without the support of empirical evidence
making an objective comparison difficult, if not impossible.

A recent study from Kosar et al. [16] has provided the first empirical results by comparing
ten different DSL implementation approaches on a quantitative manner. In particular,
implementation effort and end-user productivity was measured as a base for cost-benefit
analysis. There are however other measures that should be considered when choosing
a suitable approach such as the level of functionality, maintainability and efficiency. In
response to this, the Centrum Wiskunde & Informatica (CWI) in Amsterdam started
the DSL Benchmark Implementation project which aims to provide an extensive quality
overview of various implementation strategies, each carried out in different programming
languages. Each implementation strategy in this project implements the same reference
DSL Waebric, a language for generating xHTML markup.

The research provided in this thesis is an addition to the DSL Benchmark Implemen-
tation Project and analyzes the quality of two DSL implementation techniques with
JavaScript as target language. The first implementation involves the use of traditional

GPL interpreter techniques to develop a lexer, parser, checker and interpreter. The
second implementation applies the compiler-generator technique which is similar to the
previous technique except that certain phases are automated using language develop-
ment tools or so-called compiler-compilers such as ANTLR, JavaCC, Yacc and OMeta.
In this research, OMeta/JS is used to generate a lexer, parser and checker based on a
formal specification similar to BNF notation.

1.2 Research questions

Based on the foregoing, the following research question is defined:

RQ1 How does the quality of a DSL implementation in OMeta/JS relates to the
quality of a hand-written JavaScript interpreter?

To define the term quality in the previous research question, the following subquestions
should be answered as well:

RQ1.1 How maintainable is each implementation in terms of lines of code, method
size, McCabe complexity, Halstead Effort and Maintainability Index?

RQ1.2 How efficient is each implementation in terms of duration of regression
tests?

RQ1.3 How functional is each implementation in terms of acceptance tests, sup-
ported notation and error reporting?

1.3 Organization of this thesis

The organization of this thesis is as follows. Chapter 2 briefly introduces the notion of
domain-specific languages, the compiler-generator OMeta and the reference DSL Wae-
bric. Chapter three provides an overview of the research method that was applied in
the case study. The implementation of the interpreter and compiler-generator technique
are discussed in chapter 4 and 5 respectively. Chapter 6 discusses the results extracted
from each implementation whereas chapter 7 analyzes these results. At last, chapter 8
provides concluding remarks based on the analysis phase.

Chapter 2

Background and context

2.1 Domain-specific languages

2.1.1 Introduction

A domain-specific language (DSL) is a small, usually declarative language specially de-
signed for a particular application domain. A general-purpose language (GPL) such as
Java or C on the contrary aims to target many application domains. In [3], the term lit-
tle languages was introduced to identify a DSL as a language specialized to a particular
problem domain which does not include many features found in conventional languages.
A more formal definition of the term DSL was proposed in [34]:

”A domain-specific language (DSL) is a programming language or executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular
problem domain.”

DSLs are also known as special purpose, little, small, specialized, task-specific or appli-
cation languages. The notations provided in DSLs are tailored towards the application
domain, offering substantial gains in expressiveness and ease of use compared with GPLs
for the domain in question, with corresponding gains in productivity and reduced main-
tenance costs [1]. Therefore, DSLs can be used without the need for knowledge about
general programming, enabling end-user programming. The most common DSLs are
HTML (markup), YACC (language grammar), GraphViz DOT (graph drawing), SQL
(database), Make (incremental rebuilds), VHDL (hardware design), LaTeX (typeset-
ting), MATLAB (technical computing) and BNF (syntax specification).

An important benefit of a DSL is that it allows solutions to be expressed at the level of
the problem domain, enabling domain experts to understand, validate, modify and often

even develop DSL programs [34]. This, together with enhanced productivity, reliability,
reusability, maintainability [33][15] and portability [11] make DSLs an interesting way
to solve software engineering problems. The costs however, for designing, implementing
and maintaining a DSL are one of the main disadvantages since expertise is required in
both domain and language development. More disadvantages includes the potential loss
of efficiency compared with hand-coded software, the costs of education for DSL users
and the difficulty defining language constructs and scope [34].

2.1.2 Development phases

DSL development includes several phases which are discussed by Mernik et al. [21] in
detail. A brief overview is given below:

e Decision phase

A first step in the development of a DSL involves the identification of software which is eligible
for DSL use. Mernik et al. proposes several patterns that help the identification process such
as product lines, task automation, data structure traversal, GUI construction etc. If found,
then the decision has to be made by a quantitative treatment of the trade-offs. Key factor
herein is the return on investment of the DSL as it should pay for itself by more economical
software development and/or maintenance later. Beside economic interests, the level of domain
knowledge and programming expertise of the (end-)users should be taken into account when
choosing to develop and implement a DSL.

e Analysis phase
During this phase, the problem domain is identified and domain knowledge is gathered. In-
puts are various sources of explicit or implicit domain knowledge, such as technical documents,
knowledge provided by domain experts, existing GPL code and customer surveys. Most in-
formation is gathered informally, but sometimes domain analysis methodologies are used (e.g.
FODA [Kang et al. 1990]). If code extraction is used, then the domain knowledge is mined
from legacy GPL code by inspection and/or by using software tools.

e Design phase

It’s in the design phase that the actual DSL is shaped based on the information gathered
in the analysis phase. The easiest way to design a DSL is to reuse an existing language,
possible benefiting from easier implementation and familiarity for users. Three patterns can
be distinguished. With the piggyback design pattern, only a part of the existing language
is reused, while the specialization pattern reuses the existing language but limits it. The
third technique reuses and expands the existing DSL with new features that address domain
concepts. The results of the design phase is a DSL description than can be specified either
formally (i.e. semantic definition) or informally (i.e. natural language, illustrative).

e Implementation phase
In the fourth phase, the formal or informal specification is implemented. Care should be taken
when choosing a suitable implementation as it can affect the total effort required to implement
a DSL largely. The patterns identified by [Mernik] includes (extended) compiler/interpreter,
application generator, preprocessor, embedding, Commercial Off-The-Shelf (COTS), or a com-
bination of them.

2.1.3 Implementation strategies

The previous section introduced all phases of the DSL development process. In this
section, a more closer look is given to the implementation phase based on earlier work
of Spinellis [31] and Mernik et al. [21].

Interpreter/compiler

In an interpreter /compiler approach, the DSL is implemented in a general-purpose lan-
guage (GPL) ”from scratch” using standard GPL interpreter/compiler techniques. In-
terpreting or compiling includes phases such as lexical, syntactic and semantic analysis.
Since the implementation is performed ”from scratch”, the technique is sometimes called
the ”vanilla” approach.

In the case of the interpreter, the DSL constructs are recognized and interpreted using
standard fetch-decode-execute cycle. Interpreters are mostly used if execution speed is
not important or if the language has a dynamic character such as JavaScript, Ruby or
Python. Interpreters have the advantage of greater simplicity, greater control over the
execution environment and easier extension over compilers.

If the compiler approach is applied, then constructs are translated to base language con-
structs and library calls, allowing complete static analysis on the DSL program/specifi-
cation.

Note that Spinellis [31] argues that the development of DSLs is radically different from
GPL development and therefore didn’t included these techniques in his research. In [21]
and [16] however, it is observed that such techniques are widely used in practice and
have adopted these standard GPL techniques in their research. In this research, the
observations of [21] and [16] are adopted as well.

Compiler generator

The compiler generator technique is similar to the compiler/interpreter technique, except
that one or more phases are implemented using language development tools or so-called
compiler-compilers or compiler-generators. Many phases of the compiler are similar to
those of the interpreter, making compiler-generators applicable for interpreters as well.
The implementation effort can be reduced since one or more phases are automated using
tools, thus minimizing the disadvantages of standard interpreter or compiler techniques.
Most common form of compiler generators are parser generators using BackusNaur Form
(BNF) notation. Compiler generators are numerous and widely used such as ANTLR,
Lex/Yacc, JavaCC and OMeta.

10

Extensible compiler/interpreter

The extensible compiler/interpreter technique extends traditional GPL compilers or in-
terpreters with domain-specific optimization rules and/or domain-specific code genera-
tion. Interpreters tends to be easier extensible then compilers. However, extension of
either one is not an easy task as the extensions usually turns out to be a very difficult
and expensive because conventional compilers often lack extensibility and reusability
[39]. Furthermore, caution is required on domain-specific notations as it can interfere
with existing ones. Nevertheless, if extension is done properly, the implementor can
benefit from the reuse of the complete existing compiler infrastructure. Examples of
extensible compilers are Polyglot and JastAdd.

Preprocessing

The preprocessing technique translates the DSL to constructs in the existing language
(the base language). The amount of preprocessing mainly depends on the nature of the
preprocessor. Four subpatterns are considered:

e Macro processing
Translation is performed using macro definitions which converts certain strings (macro calls)
into special output. Examples are M4, GEMA, gpp and SNOBOL for general-purpose or CPTA
for XML and HTML.

e Source-to-source transformation
The DSL source code is transformed (translated) into base language source code. Program
transformations can be defined as manual procedures or with the use of program transformation
systems such as Stratego/XT, TXL, DMS and ASF+SDF.

e Lexical processing
Lexical scanning is applied when only simple lexical scanning required, without the use of
complicated tree based syntax analysis. Lexical processing is the lowest-level preprocessing.
An example of it use is the textual inclusion of files. C preprocessor is the most common
example of lexical processing.

Due to the absent of semantic analysis, implementation is very easy. This is also the main dis-
advantage as static checking and optimizations at domain level are impossible. Static analysis
on the other hand is limited to that done by the base language processor resulting in error
reporting in terms of base language concepts.

e Pipeline
The pipeline processor handles the sub languages of a DSL and translates them to the input
language of the next stage.

Embedding

The embedded approach uses existing mechanisms in the GPL to build a library of
domain-specific operations by defining new abstract data types and operators. This

11

technique is advisable when the DSL is both syntactically and semantically a subset
of an existing host language. The advantage is that the compiler or interpreter of the
GPL can be reused. Conversely, a less closer syntax notation and problematic error
reporting is obtained. This approach has gained significant popularity in the functional
programming community [12].

Commercial Off-The-Shelf (COTS)

Existing tools and/or notations are applied to a specific domain. For example, the
general-purpose Powerpoint tool has been applied in a domain-specific setting for dia-
gram editing [38]. XML is another example where a DTD or XML scheme are used to
specify the grammar of the DSL. By building around existing tools, the effort required
to implement the DSL can be reduced. In an XML setting for instance, the DOM and
SAX parser can be used for parsing while XLST can be used for code transformation.

Hybrid

The hybrid method uses a combination of the previously discussed approaches in order
to implement the DSL.

12

0O O UL i~ W N+

— = =
WD R OO

2.2 ODMeta

2.2.1 Introduction

OMeta is an object-oriented language designed by Alessandro Warth particularly well-
suited as a language development tool to create tokenizers, parsers, visitors and tree
transformers. OMeta can be considered as a parser-generator and is therefore applicable
in a compiler-generator approach. OMeta’s key insight is the realization that all of the
passes in a traditional compiler are essentially pattern matching operations [36]:

e a lexical analyzer finds patterns in a stream of characters to produce a stream of
tokens;

e a parser matches a stream of tokens against a grammar (which itself is a collection
of productions, or patterns) to produce abstract syntax trees (ASTSs);

e a typechecker pattern-matches on ASTs to produce ASTs annotated with types;
e more generally, visitors pattern-match on ASTs to produce other ASTs;
e finally, a (naive) code generator pattern-matches on ASTs to produce code.

Figure 2.1 shows a grammar written in OMeta syntax that recognizes simple arithmetic
expressions.

ometa Calculator{

digit =0 | ... | 9,

number = digit+,

addExpr = addExpr ’+’ mulExpr
| addExpr ’-’ mulExpr
| mulExpr,

mulExpr = mulExpr ’*’ primExpr
| mulExpr ’/’ primExpr
| primExpr,

primExpr = ’(’ expr ’)’
| number,

expr = addExpr

}

Figure 2.1: OMeta Recognizer

2.2.2 Parsing Expression Grammar

OMeta is based on Parsing Expression Grammars (PEGs) which are used to describe
formal languages in terms of sets of rules for recognizing strings in languages [8]. The

13

language of parsing expressions is shown in Table 2.1. Formally, a parsing expression
grammar is described as a quadruple G = (V, Vi, R, eg) where Viy and Vp are disjoint
sets of symbols known as non-terminals and terminals respectively, R is a finite set of
parsing rules (production rules) of the form (Vi — R) and eg is known as the start
symbol expression (eg ¢ Vy — V).

Notation Expression
Sequencing e ez
Prioritized choice e1| ez
Repetition > 0 ex
Repetition > 1 e+
Grouping (e)
Negation e
Look-ahead &e
Rule application r
Character matching x!

Table 2.1: Inductive definition PEGs
e is a parsing expression and r is a non-terminal

Terminal symbols are literal strings forming the input of a formal grammar which cannot
be broken down into smaller units using the rules of the grammar. By contrast, symbols
that can be broken down into other symbols are called non-terminal symbols.

mulExpr = mulExpr ’*’ number

Figure 2.2: Production rule with one terminal and three non-terminals

The production rule shown in figure 2.2 has one terminal (**’) and three non-terminals
(mulExpr, mulExpr and number).

Ordered choice operator

PEGs are stylistically similar to context-free grammars (CFGs) much like Extended
Backus Naur Form (EBNF) notation. The fundamental difference is that a PEG’s choice
operator is ordered whereas CFGs use nondeterministic choice between alternatives. The
choice operator lists alternative patterns to be tested in order, unconditionally using the
first successful match. This is a very desirable property because it promises a unique in-
terpretation of each parsing rule in the language resulting in an unambiguous grammar.
Consider the following example with two production rules:

14

[\

= =
vV Vv
pop
— o
-
o P

Figure 2.3: Illustration of prioritized choice in OMeta

Both production rules are similar but the choice operator is positioned differently. For
CFGs, both production rules are identical. If the input to be recognized is ’a b’ in the
given example, then line 1 matches the first alternative whereas line 2 matches the second
alternative. For PEGs line 1 and 2 are differently, moreover, the second alternative will
never succeed because the first choice is always taken if the input string to be recognized
begins with an ’a’. Thus, when ’a b’ is used as input, then line 1 matches the first choice
whereas line 2 also matches the first choice (since the input starts with ’a’) but will fail
because 'b’ was not expected in that choice.

Semantic actions

A recognizer as presented in figure 2.1 can be transformed into a parser by adding
semantic actions. These are specified using the — operator and written in OMeta’s host
language, usually the language in which OMeta implementation was written!. An action
is a function or function object that is called if a match is found in the particular context
where it is attached. In other words, the semantic action is executed if the corresponding
rule matches the input.

An illustration of semantic actions is provided in figure 2.4 where JavaScript code is
added to the semantic action of the production rule. The semantic action consists of an
array whose first element is a string (e.g. ’add’) and whose other elements are sub-trees
(e.g. x). Note that the results of the non-terminals exp and fac are bounded to an
identifier, x and y respectively, and are then accessed in the semantic action code. If
no semantic action code is provided, then the value from the last successful match is
returned. The semantic action code allows the creation of any kind of object beside
arrays enabling the creation of user-defined Abstract Syntax Trees (ASTSs).

addExpr = addExpr:x ’+’ mulExpr:y — [’add’, x, y]
| addExpr:x ’-’ mulExpr:y — [’sub’, x, y]
| mulExpr

Figure 2.4: Semantic Actions in OMeta

!OMeta has been implemented in JavaScript, Squeak Smalltalk and COLA supplemented with third-
party implementations in C#, Python, Scheme, Lisp and Factor. All examples provided in this thesis
are written in OMeta’s JavaScript implementation, referred as OMeta/JS.

15

T W N =

Semantic predicates

OMeta also supports semantic predicates used to determine the validity of applying a
production. They are written in the host language and have access to the binded identi-
fiers as well. An example is shown in figure 2.5 which describes a digit whose input has
to be a character ranging from zero to nine. In JavaScript, the evaluation of a character
is done using its ASCII character code value.

digit = char:d 7(d >= ’0’ && d <= ’9’)

Figure 2.5: Semantic predicate

2.2.3 OMeta: an extended PEG

The standard functionality given by PEGS has been extended in OMeta in a number
of areas. OMeta not only operates on a stream of characters, it also allows pattern
matching on arbitrary datatypes such as lists and strings. This make OMeta a suitable
language for implementing transformations on unstructured data (e.g. parsers) as well
as structured data (e.g. visitors)[35]. Figure 2.6 shows an interpreter written in OMeta
performing pattern matching on lists which allows arithmetic operations. The corre-
sponding input for this interpreter is provided by the output of the CalcParser in figure
2.1. Tt is also possible to combine a parser and interpreter by adjusting the semantic
code to perform arithmetic operations immediately, skipping the parsing step.

interp = [’num’ anything:x] -> x
[’add’ interp:x interp:yl -> (x + y)
[’sub’ interp:x interp:yl] -> (x - y)
[’mul’ interp:x interp:yl] -> (x * y)
[’div’ interp:x interp:y] -> (x / y)

Figure 2.6: Pattern matching on lists

Parameterized rules

Parameterized rules are another neat extension in OMeta which allows to define generic
production rules by taking one or more arguments. A parameterized rule consists of
a non-terminal extended with one or more parameters which are linked to a termi-
nal or non-terminal in the grammar. Parameterized rules can used to create features
that are not supported by the language. For example, OMeta does not support regu-
lar expressions but it can be mimicked using parameterized rules. Figure 2.7 shows a
regular-expression-style character class using parameterized rules (cRange) enabling the

16

eI N

[\

reuse of the semantic predicate.

digit = cRange(’0’, ’9°),
upperCaseletter = cRange(’A’, °Z’),
lowerCaseLetter = cRange(’a’, ’z’),

cRange :x :y char:c 7(c >= x && c <= y)

Figure 2.7: Parameterized rules

Higher-order rules

OMeta also provides a mechanism for implementing higher-order rules, i.e. rules that
take other rules as argument. Higher-order rules are used in combination with parameter-
ized rules and force the production rule passed in to be matched to the grammar. An ex-
ample is given in figure 2.8 to create lists using a separator (e.g. apple;lemon;pineapples).
The first production rule uses the non-terminal listOf and passes the non-terminal fruit-
name and the semicolon through. The third production line defines the non-terminal
listOf with two arguments, rule and sep. The production body then applies the first
argument (fruitname) to match the corresponding production rule given at line 2. Op-
tionally, the semicolon separator and non-terminal fruitname are consumed and applied.
This can be repeated unlimited. The separator token is differently applied using the
token() construct since it is considered as a terminal which can not be matched to a
non-terminal.

fruitlist
fruitName
list0f :rule :sep

listOf (#fruitName, ’;’),
letter+,
apply(rule) (token(sep) apply(rule))=

Figure 2.8: Higher-order production rules

Inheritance

Another interesting feature of OMeta is the ability to create new grammars that inherits
from existing grammars. Using inheritance, the new grammar inherits all production
rules of the base grammar, including the semantic predicates and code. The inherited
production rules can be overridden if necessary to change its behavior. The rule appli-
cation in the new grammar is obtained using the (A) operator behaves exactly like a
super-send in traditional OO-languages.

17

N O U Wi

ometa ScientificCalculator <: Calculator{

mulExpr = mulExpr:x ’*’ expExpr:y -> (x * y)
| mulExpr:x ’/’ expExpr:y -> (x / y)
| expExpr,
expExpr = expExpr:x A’ AprimExpr:y -> Math.pow(x,y)
| AprimExpr
3

Figure 2.9: Grammar inheritance in OMeta

Figure 2.9 shows the implementation of a Scientific Calculator which extends from the
basic calculator (figure 2.1) discussed previously. The scientific calculator adds func-
tionality for exponentials by creating a new production rule expEzpr. Due to the order
of mathematical application, the exponential should be matched after multiplication.
The mulExpr is for this purpose modified and refers now to expExpr instead to the
primExpr. The expression rule itself is created at line 5 and accepts the exponential
notation using the A operator. The code at line 6 provides a feedback mechanism to
the primary expression so the order of mathematical application is continued. Note
that the non-terminal primExpr is not defined in the ScienticCalculator but is inherited
from the parent grammar. The non-terminal of a parent grammar is accessed using the
super-send operator (A) such as on line 6.

18

2.3 Waebric

2.3.1 Introduction

Waebric is a domain-specific language for factoring xHTML webpages. Waebric was
created as a response to the limitations of xHTML, template languages and WYSI-
WYG HTML editors. In Waebric, a website is factored much more like conventional
programming languages using (parameterized) function declarations and corresponding
calls instead of the conventional HTML tags (e.g. <div>). In Waebric, markup elements
are the equivalent of HTML tags and are specified using an identifier that corresponds
to the xHTML element name optionally followed by parentheses (e.g. div()). The corre-
sponding attributes of a xHTML tag are provided between the parentheses of the markup
element in the form "key = value”, e.g. div(width=200). The built-in operators echo,
comment and cdata are used to produces text content, XML comments and CDATA
sections respectively.

Apart from markup, Waebric also supports the creation of strings, symbols, lists and
records (key/value). List can be iterated using the each statement while values of a
recordlist are obtained using the dot-notation (e.g. product.price).

2.3.2 Example

A basic Waebric example is provided in figure 2.10. The example starts with the dec-
laration of the module which states that the code should be contained in the file home-
page.wae. After the module definition, code is supplied to define where the generated
xHTML code should be outputted to the filesystem. This information is contained
between the keyword site and end. In the example, the function home is called and
executed and its result is stored in a file named indez.html. If desired, more output files
can be generated by specifying them in the site declaration.

The site definition is followed by the declaration of the home function containing one
argument msg. The notation of a function declaration is similar to traditional pro-
gramming languages. Waebric uses the keyword def followed by the function name and
optional arguments, and closed with the keyword end. The body of a function is used to
define the actual markup or to call other functions which on their turn generate markup.

Note that the notation of a function call is identical to the notation of a markup element.
In fact, Waebric makes no difference in processing them. A function call is only a function
call if there is a corresponding function declaration. Hence, if a function call is made to
an undefined function then it is interpreted as a markup element. On the contrary, if a
markup element is created but there is a function with the same name as the markup
element, then the function is processed. Hence, the markup element is in such case a
function call. This process is also referred as shadowing.

19

0 O Ui Wi

=~ W N =

module homepage

site
index.html: home("Hello World!")
end

def home (msg)
html{
head title msg;
body echo msg;
b

end

Figure 2.10: Waebric example

To allow the generation of nested xHTML tags, markup elements are defined in a chain,
such as shown at line 9 and 10 of figure 2.10. An xHTML element can be foreseen
of multiple children using curly brackets (line 8-11). The Waebric program generates
a html tag with two children, the head and body tag. Within the head tag there is a
title tag nested which contains the value of the variable msg, here ”"Hello World!”. The
body tag contains the text ”Hello World!” which was outputted directly using the echo
statement. Figure 2.11 illustrates the generated xHTML code for the example in figure
2.10.

<html>
<head><title>Hello World!</title></head>
<body>Hello World!</body>

</html>

Figure 2.11: xHTML code of Waebric Example

2.3.3 Embedded markup

Until now, markup and datatypes were defined in a statement context (i.e. in the func-
tion body). Markup can also be defined inside text in order to highlight words, output
the value of variables or to generate other markup (including function calls). If markup
is used in such context, then it is referred as embedded markup. An example is provided
in figure 2.12. The example echo’s the message ”Click here to contact us” where the
word "here” is provided with a link to an e-mail address.

20

N O Ok W

echo "Click <a(href=’mailto:info@cwi.nl) ’here> to contact us"

Figure 2.12: xHTML code of Waebric Example

2.3.4 Juxtaposition

Special attention is required when using markup and datatypes with respect to markup
juxtaposition. If a chain of markup elements is specified, then all elements are processed
as markup apart for the last element which is processed as a variable. To override this
behavior and use markup explicitly in the last element, one should use parentheses. For
a single markup element without parentheses (e.g. div) in an embedded context, the
rule is that it is processed as a variable whereas in a statement context it is processed as
markup. In order to use markup in an embedded context, parentheses should be used.
Note that a single markup element in a statement context cannot be transformed to a
variable reference. Instead, the echo statement should be used with a string containing
embedded markup. Figure 2.13 shows several examples to demonstrate the juxtaposi-
tion rules:

div; //markup

div div; //markup, variable
div div(); //markup , markup
echo "<div>"; //variable

echo "<div()>"; //markup

echo "div div"; //markup, variable
echo "div div()"; //markup, markup

Figure 2.13: xHTML code of Waebric Example

2.3.5 Around parameterization

Example 2.10 illustrated how data was passed through a function using arguments in
the function call. Waebric also supports around parameterization allowing markup to
be passed through as well. The markup that needs to be passed through is not specified
as an argument of the function call but by defining it right after the function call. This
implies that all markup and data that is specified after a function call in the current
statement is automatically passed through the function in question. The function itself
is not required to use this markup, but if requested it can access the markup and data
using the yield statement.

Example 2.14 illustrates how the yield statement is used. The main function first creates
the layout structure by calling the layout function. The layout function itself creates an
html element with a head and body element. The body element outputs the yield state-

21

01O Ui Wi =

ment which corresponds to the markup that was specified in the main function after the
call of the layout function, here a call to the function content. The main advantage of
such construction is that the layout function can now be reused by other web pages as
well, eliminating the use of duplicate code.

def main
layout ("Welcome to my homepage!") {
content () ;
X

end

// Create basic layout for the webpage
def layout(title)
html {
head {
css("blueprint.css", "screen, projection");
title title;
}
body yield;
}

end

//Create content for the webpage
def content

//Body content
end

Figure 2.14: Example yield statement

22

Chapter 3

Research method

This chapter discusses the experiment used in this thesis in order to provide an answer
to the research questions defined in section 1.2. The main goal is to determine the
quality of two DSL implementation techniques based on maintainability, functionality
and efficiency metrics. The experiment is organized in three phases:

e Factoring an implementation of Waebric using the interpreter technique
e Factoring an implementation of Waebric using the compiler-generator technique

e Metric extraction for both implementations

The first technique chosen for this research is the interpreter approach in which tra-
ditional GPL interpreter techniques are applied to implement the DSL (vanilla imple-
mentation). The phases of this technique includes lexing, parsing, typechecking and
interpreting. The second implementation applies the compiler-generator technique and
involves the use of the language development tool OMeta to automate certain steps of
the interpreter technique (OMeta implementation). In particular the lexing, parsing and
typechecking phases are automated based on a formal grammar. A detailed description
of each implementations is provided in chapter 4 and 5. To ensure optimal comparison,
the following conditions were imposed with respect to the implementations:

e The implementations are developed by the same DSL implementor

The implementations are carried out in the host language JavaScript

The implementations implements the reference DSL Waebric

The implementations endure a code review

The implementations minimizes the use of libraries written in other languages as
much as possible

23

e The implementations are based on the formal grammar specified in SDF provided
by the CWI

e The optimal implementation is considered to be the ASD+SDF implementation
provided by the CWI

After completion, the quality is measured for each implementation based on software
metrics. A definition of software metrics is given by Paul Goodman [9]:

"Software metrics are the continuous application of measurement-based tech-
niques to the software development process and its products to supply mean-
ingful and timely management information, together with the use of those
techniques to improve that process and its products”

The software metrics used in this research are organized into three groups: maintain-
ability, functionality and efficiency. Attention is needed when using metrics given to its
definitions and counting rules as they are sometimes ambiguously defined in literature.
This is especially true if comparison is made between different languages or if metrics
are extracted with different tools or methodologies. Therefore, a standard definition
and measurement technique for each metric is given in the following sections to create a
uniform basis of estimate for each implementation.

24

3.1 Maintainability

Maintainability indicates the ease with which a program (i.e. an implementation) can be
modified in order to correct defects, meet new requirements, make future maintenance
easier or cope with a changed environment. Maintainability is generally measured using
a combination of size and complexity metrics. The list of metrics considered in this
experiment is provided in table 3.1. Note that class and package count are not measured
since JavaScript is a prototype-based language in which classes or packages are not
present.

The maintainability metrics are only measured on those part of the code which are fac-
tored by the implementor itself. This excludes external libraries and generated code as
they are not part of the implementor’s effort. Formal grammars are measured using the
metric suite of Power and Malloy[28].

Metric description

LOC Number of Lines of Code

eLOC | Number of Effective Lines of Code

MCO | Method Count

AMS | Average Method Size

ECC McCabe Extended Cyclomatic Complexity
EFF Halstead Program Effort

VOL Halstead Program Volume

MI Maintainability Index

Table 3.1: Size and complexity metrics for program code

The following sections discusses the size and complexity metrics in respect to their
counting rules and definitions. A classification is made between metrics for program
code and grammar-based metrics since these metrics are gathered differently.

3.1.1 Program code metrics
Lines of code (LOC)

LOC measures the amount of source code lines (line break characters) in a software
entity. It’s one of the oldest metric found in literature and is still used routinely as the
basis for measuring programmer productivity (LOC per programmer per month) [7].
LOC measures all lines in the software where code appears while comments and blank
lines are excluded in this metric. A downside of this metric is that it’s sensible for code
conventions and formatting.

25

Effective Lines of Code

Effective Lines of Code (eLOC) is very similar to LOC but excludes standalone braces
and parenthesis. The use of braces and parenthesis is a very common practice and is en-
couraged in some languages (e.g. Java [22]). Ignoring standalone parenthesis and braces
is reasonable since it does not represent actual work performed by the programmer. LOC
and eLOC are highly correlated and therefore redundant in an analytic context [30].

Method Count

Method count (MCO) is measured as the amount of subroutines or functions in the
program. In JavaScript, functions are defined using the keyword function. By counting
the total amount of occurrences of this keyword, the method count is obtained. Note that
JavaScript is prototype-based in which classes are not present. Classes are mimicked in
JavaScript using objects in order to modularize the code. Since these objects are specified
identical to functions, the method count is increased when using mimicked classes.

Average Method Size

The average method size metric combines the LOC metric and MCO by measuring
the average lines of code per method (AMS). A high AMS might indicate that (some)
methods are too complex. AMS is calculated by diving the total lines of code (LOC) by
the number of methods.

Average Method Size (AMS) = ##]WL%
ethods

McCabe Cyclomatic Complexity

The most known method for measuring the complexity of a software system is the
cyclomatic conditional complexity (CC) created by Thomas McCabe in 1976. It directly
measures the number of linearly independent paths through a program’s source code
[20]. The computation of CC is based on the control-flow graph of a program:

McCabe's Cyclomatic Complexity (CC) = E — N + 2P
where

CC = Cyclomatic Complexity
FE = Number of edges of the graph
N = Number of nodes of the graph

P = Number of connected components

The complexity of a program is at least one since there is at least one execution path
in each program. CC is independent of physical size, and complexity only depends on

26

the decision structure (branches) of a program [20]. An alternative for measuring CC is
counting every decision point or branch in the program. The decision points considered
in JavaScript include if, else if, switch, case, for, while, do while and catch.

While it is possible to count the complexity of the whole program, CC is mostly expressed
as the average CC per method. The higher the complexity number, the more complex
the code is. Based on such number, McCabe stated that a function with a complexity
of more then 10 is considered to be complex as the risk of errors increases significantly.

Over time, Myers [23] extended McCabe’s complexity metric by including Boolean op-
erators in the decision count, the so-called Extended McCabe Cyclomatic Complexity
(ECC). Whenever a Boolean operator (&& and ||) is found within a conditional state-
ment, the ECC is additionally increased with one. The reasoning behind ECC is that
a Boolean operator increases the internal complexity of the branch. The ECC metric
is also applied to the formulas of Halstead and the Maintainability Index and therefore
ECC is used throughout this research.

Halstead

The measures of the late Maurice Halstead were introduced in 1977. Halstead created
several metrics which each have different meaning. Operators (e.g. arithmetical op-
erators) and operands (e.g. variables, numbers and strings) are the fundamentals of
Halstead’s metrics:

Metric description

nl | Number of distinct operators
n2 | Number of distinct operands
N1 | Total number of operators
N2 | Total number of operands

Table 3.2: Halstead primitive metrics

An important question arise about the definition of operators and operands. When
these metrics were designed, programming was procedural and in general monolithic.
Halstead stated that the determination is intuitively obvious and requires no further
explanation. Qutaish and Abran [29] pointed out that ”Intuition is insufficient to obtain
accurate, repeatable and reproducible measurement results.” A first attempt to define
operators and operands was made by Indranil Nandy who provided several guidelines
for the languages ANSI C, C++ and JAVA. Most of these guidelines are used in other
languages as well. Since no attempt were made in literature to define these constructs
for JavaScript, we apply the guidelines of Java as much as possible onto JavaScript.

A first significant metric is Halstead’s Length metric (LTH). It’s the counterpart of the
LOC metric and measures the size of a program. Research has shown that the LTH

27

metric is more accurate then LOC [17].

Program Length (LTH) = N1+ N2

Program Volume (VOL) is used to measure the information contents of a program,
measured in mathematical bits. It is calculated using the program vocabulary and
length:

Program Vocabulary (VOC) = nl + n2
Program Volume (VOL) = LTH *logy(n)

Halstead Effort is another commonly used metric to express the time needed to im-
plement or understand a program. It is not directly derived from the operators and
operands but based on program’s volume and difficulty:

1 2

Program Dif ficulty (DIFF) = % * %
n

Program Ef fort (EFF)=VOLx* DIFF

Criticism on Halstead is given in recent mathematical research [29] which observed that
the structure and the size of a program changes the properties of the Halstead metrics.
The research concluded that the original measures Volume, Difficulty and Effort can be
reduced to the measures LTH and N2 under certain conditions. The validity of the LTH
metric has been confirmed in the research.

Halstead introduced more metrics such as Halstead Time (estimated implementation
time) and Halstead Delivered Bugs (probability of bugs) but are outside the scope of
this thesis.

Despite the criticism on the Halstead measures, they are still widely used in software
measurement tools and by many authors [24] [13] [25].

Metric description

VOC Halstead Program Vocabulary
LTH Halstead Program Length
VOL Halstead Program Volume
DIFF Halstead Program Difficulty
EFF Halstead Program Effort
TIME | Halstead Program Time
BUGS | Halstead Program Bugs

Table 3.3: Halstead derived metrics

Maintainability Index

The Maintainability index (MI) is a composite metric constructed by Oman and Hage-
meister at the University of Idaho to indicate the overall system maintainability. It is

28

based on Halstead Volume (VOL) metric [10], Cyclomatic Complexity (ECC) [20] met-
ric, average number of lines of code per module (LOC), and optionally the percentage of
comment lines per module (COM). The notion module is considered to be the smallest
unit of functionality. In JavaScript, the smallest unit is a function.

Two variants of the MI are available, one that considers comments (MI4) and one that
does not (MI3).

MI3 =171 —-5.2*In(avgVOL) — 0.23 x avgV (g) — 16.2 * In(avgLOC')
MI4=171-52x%In(avgVOL) — 0.23 x avgV (g) — 16.2 * In(avgLOC) + 50 * sin(~1/2.4 x perCM)

where

avgV OL = average Halstead Volume per module
avgV (g) = average Extended Cyclomatic Complexity per module
avgLOC = average count of Line of Code per module

perCM = average Percent of Lines of Comments per module

Note that the original polynimial equations of MI used Halstead Effort instead of Vol-
ume. Due to lack of confidence in the Halstead Effort, the MI was modified in order to
incorporate the use of Halstead’s Volume. At the same time the equation was modified
to limit the weight of comments as studies had shown that MI4 was overly sensitive for
comments [18] [19].

In general, a higher MI value indicates better maintainability [26] [37]. The interpreta-
tion of the MI values is presented in table 3.4.

Maintainability | MI3 (without comments) | MI4 (with comments)
High MI3 >=50 MI4 >=85
Moderate N/A 65 <= MI4 < 85
Low MI3 <5 MI4 < 65

Table 3.4: Cutoft values Maintainability Index

3.1.2 Grammar metrics

Software metrics are usually applied to program code. The application of metrics onto
grammar-based software is less common. In literature, the topic has been addressed since
the mid 60’s by Feldman [6] and Brauer [4] shortly after the introduction of grammar-
based languages. The main problem with grammar-based software is the difference in
abstraction compared with general-purpose languages. A grammar is based on produc-
tion rules, terminals and non-terminals while program code is based on classes, functions
and statements which complicates comparison.

29

In a more recent study of Power and Malloy, metrics were interpreted in a grammati-
cal context [27] [28] which allows the mapping of grammar-based metrics onto metrics
extracted from program code. Power and Malloy inspired their metrics on earlier work
performed by Csuhaj-Varj and A. Kelemenov [5] and Brauer [4] who have applied these
metrics to measure descriptional complexity of context-free grammars.

For the mapping of size and complexity metrics, Power and Malloy reasoned as follows.
In program code, the concepts of control-flow graph and call graph are used to calculate
most size and complexity metrics. If these concepts could be applied to a grammar
as well, then it should be possible to reuse them. They continued by stating that a
grammar can be considered as program, and a program consists out of a set of procedures
with a body containing the control primitives of the language. By now corresponding
procedures with non-terminals, and procedure bodies with the right-hand side of the
production rule, they concluded that many size and complexity metrics are applicable
to grammars as well.

The next sections discusses the metrics of Power and Malloy into more detail.

Number of terminals and non-terminals

According to Csuhaj-Varj et al [5], the number of defined non-terminals in a grammar
(VAR) corresponds to the number of procedures.

Number of unique non — terminals (VAR) = #N)
Number of unique terminals (TERM) = #T

A larger number of non-terminals implies a greater maintenance overhead since changes
to the definition of one may effect many others. In implementation terms, the size of
the parse table is usually proportional to the number of terminals and non-terminals
and can affect execution speed, especially if predictive parsing algorithms are used (e.g.
OMeta).

Note that the VAR definition requires that the non-terminal is defined in the grammar.
OMeta supports a mechanism to let a grammar inherit from an existing grammar. If
a derived non-terminal is used in the new grammar, then it is not considered to be
defined in that grammar, hence the restriction to defined non-terminal for the grammar
in question. If the derived non-terminal is however overridden, then it is counted as a
defined non-terminal.

McCabe Cyclomatic Complexity

Complexity in a grammatical context is measured by counting the number of non-circular
execution paths in the grammar.

30

McCabe's Cyclomatic Complexity (CC) = Z mecabe(a)

where

mecabe(v) =0 forve (NUT),
mecabe(f¥(z)) = 1+ mecabe(z) for k € {|* +},
mecabe(f¥(z)) = mecabe(z) for k € {.}

Note that under this formula the minimum complexity is zero, in contrast to the com-
plexity measured in program code which has a minimum complexity of 1. The value is
generally implemented as the number of branching operators found in a grammar [2].
In OMeta this corresponds to the alternative and repetition operators. The optional
operator (7) is not included in OMeta.

Branch operators

Alternative |
Repetition > 0 | =
Repetition > 1 | +

Table 3.5: Branch operators in OMeta

Some confusion might arise regarding the repetition operator with separator. In some
grammar syntaxes their is a special operator available for this kind of operations. If this
operator is used, then the repetition is only valid if the specified delimiter is present
between each repetition. The example below [2] shows an SDF production rule with the
use of the repetition with separator:

"types" { TypeDefinition ";" }+ — TypeDefinitions

OMeta has a similar way to express repetition with separator:

TypeDefinitions = "types" 1listOf (#TypeDefinition, ";")

In [2] its argued that such constructs are built-in operators since it causes two possible
execution paths in the grammar, increasing the ECC with one. It’s interesting to observe
that in OMeta the equivalent listOf() is not a build-in operator. In fact it is a derived
non-terminal. The reasoning behind this is as follows. listOf() is a derived higher order
production rule originating from OMeta’s base code, a compiled grammar specifically
designed for creating parsers. In this grammar, listOf is defined as a standard production
rule, hence listOf can be defined as a non-terminal. One might argue that listOf is still

31

[\

W N =

[\

causing an extra branch in the production rule, and thus the ECC should be increased if
listOf() is used. This is in contradiction with the purpose of higher order rules: obtain-
ing reusability of code and thus reducing complexity. Consider the following example in
OMeta:

Module "module" IdCon ("." IdCon)* ModuleElementx*,
Import = "import" IdCon ("." IdCon)*

The ECC in this example equals 3 as the iterative operator is used three times. A more
optimal implementation is considered below where the IdCon(”.” IdCon)x construction
is replaced with a new non-terminal.

Module = "module" ModuleId ModuleElementx*,
Import = "import" Moduleld,
ModuleId = IdCon ("." IdCon)*

In analogy with program code, the duplicate code is moved to a new subroutine for
reusability. This results in a lower complexity ECC = 2. A similar result is obtained if
parameterized production rules are used:

Module = "module" ModulelId ModuleElement=*,
Import = "import" Moduleld,

ModuleId = 1listO0f (\#IdCon, "."),

list0Of :rule :sep = rule (sep rule)*

In the example above, the value of ECC remain status quo but the grammar is now
capable of using other constructs that uses repetitions with a separator. In analogy with
program code, the duplicate code is abstracted for use in other scenario’s as well.
Finally, if higher order production rules are taken into consideration and a base grammar
is inherited, then the result would be as follows:

Module = "module" ModuleId ModuleElement*,
Import = "import" Moduleld,
ModuleId = 1listOf (#IdCon, ".")

Here, the listOf() rule was removed as it is inherited from the parent grammar (not
shown), causing the ECC to decline with one. Conversely, the complexity of the parent
grammar is now increased with one. The analogy with program code is also applicable
here: the generalized code is moved to the super class, making it accessible for all derived
instances, hence complexity is removed from the program in question and moved to
another part in the software.

32

Conclusion is that listOf() should not be considered as an operator but instead as a
non-terminal, even if the non-terminal is defined in the parent grammar. In the latter,
the complexity is not increased for the grammar in question.

Average RHS size

Average right-hand size (RHS) is the counterpart of average method size (AVS) for
program code. It is estimated by counting the number of terminals and non-terminals
in the body of each production and divide it by the amount of defined non-terminals
(VAR). RHS is a formal alternative to measure the average lines-of-code (LOC) per
method.

ZTL*)H.GP S’éZ@(O{)

Average RHS size (RHS) = AN

Depending on the type of parser, a high RHS value might involve performance issues as
more symbols must be placed on the parse stack. The RHS can easily be decreased by
replacing some of it by a new non-terminal. Therefore, the RHS metric should always
be considered in association with the amount of terminals and non-terminals.

Lines of code*

Measuring the lines of code for grammar-based software is not provided in the metric
suite of Power and Malloy. Such metric is however widely used and useful for comparison.
We therefore propose a new metric, LOC*, which counts all code within the grammar
based on the average method size and the method count metrics of Power and Malloy
earlier presented. By multiplying these two values, it is possible to count all code lines
in the grammar. This provides a base for better comparison between the metrics for
program code and grammar.

Lines of Code* (LOC*) = (VAR x RHS)

Halstead

Halstead’s Volume and Effort metrics are calculated as functions of the number of op-
erators and operands a program contains. In a grammatical context, the operators
corresponds to the the standard grammatical operations and the operands as the termi-
nals and non-terminals in a given grammar. An overview of the operators and operands
used in the calculation of Halstead’s formulas is given in table 3.6.

33

Description Operator | Example
Sequence Expr = Symboll Symbol2

Alternative | Expr = Symboll | Symbol2

Repetition > 0 * Text = °"’ Letterx "’

Repetition > 1 + Num = Digit+

Negation ~ Var = ~Keyword

Lookahead ~r or & | ExprFollows = &Expr

Semantic predicate ? LargeNum = Num:n ? (o > 1000)
Semantic action — or! Sum = Num:a "+" Num:b — a + b
Assignment operator = Expr = Literal

List [.] ["Expr" Symboll Symbol2]

Parentheses rules (...) Keyword = super(#Keyword) | "import"

Table 3.6: Halstead operators and operands in OMeta

The sequence operator, also called the concatenation or juxtaposition operator is always
implicit in OMeta/JS. It composes the various terminals and non-terminals into a pro-
duction body. If OMeta would use explicit concatenation (using dot as operator), the
result would look as follows:

Module = "module" . ModuleId . ModuleElementx*

Four operators can be identified in the example above, the assignment operator, two
sequence operators and one repetition operator.

Note that the operators for separating production rules (comma), grouping (parentheses)
and binding (colon) are ignored as they do not perform operations on the operands nor
complicate the grammar. The argument separators for ”calling” parameterized non-
terminals are also excluded since it’s a specific notation for OMeta/JS not for OMeta
in general. The hash symbol used for referring to non-terminals in some special cases is
ignored for the same reason.

3.2 Efficiency

The efficiency of a program is determined with the use of performance tests which
measures the execution speed in milliseconds for each implementation. The lower the
execution time, the faster a Waebric program is converted to xHTML markup. Execution
speed is measured on the main components of each implementation such as the lexer,
parser, checker and interpreter to identify possible bottlenecks. Since the execution
time of an implementation mostly depends on its input, 8 different test programs were
developed with sizes ranging from 54 to 10.000 lines of code. Each test is executed 100
times to minimize the effects of background tasks of the operation system. The average
execution time of these 100 tests is then calculated and used for analysis.

34

3.3 Functionality

Functionality of a Waebric program is measured using acceptance tests and the level of
error reporting towards end-users.

The acceptances tests includes a collection of 104 Waebric programs which each exer-
cises a particular functionality of the DSL and results in a failure or acceptance. FEach
implementation reads the Waebric program and converts it to xHTML markup. The
results of each implementation is then compared with the results of the reference imple-
mentation in ASF4+SDF! using a file comparison utility DiffMerge?. The test is accepted
if no differences are found. The functionality metric is expressed as a percentage of the
number of accepted tests versus the number of failed tests. The objective of this metric
is to achieve 100% acceptance.

The second level at which functionality is measured is the support of error reporting.
This is measured using a series of Waebric programs which each contains exactly one
error. For each of these errors, the implementation should throw an (expected) error.
The error message should meet the following requirements:

e Provide a correct description of what is causing the error

e Provide a description is terms of the problem domain (e.g. missing a semicolon
after the statement)

e Provide the exact position of the error in the input file (line and column number)
e Provide a relevant part of the parser stack for error debugging

The more each error message includes these requirements, the better the level of error
reporting is considered.

3.4 Hypotheses

”Maintenance of a DSL implementation is reduced when using OMeta instead
of traditional interpreter techniques.” (1)

Formal grammars (e.g. BNF) allows the development of implementations at a higher
abstraction level compared to third-generation programming languages such as COBOL,
Java, JavaScript and C#. A formal grammar describes what the implementation should
do rather than how this should be achieved. Abstracting away the implementation
details allows the programmer to focus on the problem domain. This generally results

"Mttp://www.meta-environment .org
“http://www.sourcegear.com/diffmerge

35

http://www.sourcegear.com/diffmerge
http://www.meta-environment.org

in a much smaller code base and thus maintenance effort can be reduced [1]. This might
however be counteracted by the expressiveness that formal grammars yields as a result
of higher abstraction. A higher expressiveness usually results in more complex code and
thus affects maintainability negatively. Despite this observation, it is believed that the
effects of a smaller code base are larger then the effects caused by higher expressiveness.
The assumption is therefore made that maintainability of formal grammars is higher
compared to general programming languages. Since the OMeta is based on formal
grammars, it follows that the OMeta implementation results in a better maintainability.

”A DSL implementation carried out with the interpreter technique has a
higher performance compared to OMeta” (2)

In traditional interpreter techniques, implementors have great control on how the imple-
mentation is carried out. Such freedom is however not provided in compiler-generators
since implementation details are deliberately abstracted away from the implementor.
The implementor can utmost adjust a few global settings that affect the way the imple-
mentation is carried out, but not to such extent as with the interpreter technique. The
limited freedom could have a negative effect on the performance of compiler-generators.

On the other hand, one might say that compiler-generators are specifically designed for
implementing DSLs and utilize several mechanisms which improve performance posi-
tively. Compiler-generators do however need to balance between functionality and per-
formance and it is possible that some performance improvements cannot be implemented
as otherwise functionality would be lost. OMeta for instance has chosen not to imple-
ment the memoization feature for parameterized production rules which guarantee linear
execution time as OMeta wants to keep its footprint small. Compiler generators might
also generate code which contains a certain degree of overhead, resulting in even more
performance loss.

But even if compiler-generators would include the most superior optimization techniques,
then it would still be possible to implement these techniques in traditional interpreter
techniques given the freedom of implementation they provide. It is therefore assumed
that the interpreter technique provides better performance results than the compiler-
generator techniques.

”Closer syntax notation and better error reporting is obtained when applying
the interpreter technique instead of OMeta” (3)

A higher abstraction might not only affects complexity and performance, it might also
affects the level of error reporting. BNF for example does not support mechanisms that
allows the integration or customization of error messages towards end-users. Instead, the
end-user is left over to the generalized error messages provided by the compiler-generator
itself. Such messages are usually experiences as cryptic and incomprehensible. This is

36

in contrast with the interpreter technique by which error messages can be implemented
anywhere required and with clear and understandable messages in terms of the problem
domain and in the language of the end-users. Since OMeta’s syntax is similar to that of
BNF [36], it is assumed that it’s level of error reporting is equally and thus inferior to
the vanilla implementation.

BNF also includes a flaw whereby symbols such as [<, >, |, ::=] in the DSL might conflict
with BNF’s syntax itself. If OMeta derive these limitations, then the level of supported
syntax notation might be at risk. Programming languages have no such limitations
since they are supposed to read any character from plain text. Based on this, supported
syntax notation is considered lower in OMeta.

3.5 Threats to validity

3.5.1 Waebric as reference DSL

To keep comparison proportional, the experiment uses a reference DSL that is imple-
mented in both implementation approaches. One might ask how representative the
proposed reference DSL Waebric is compared to other DSLs. The more representative
Waebric is, the better the results of this research can be generalized and applied to other
projects as well. With representative it is meant that the reference DSL shouldn’t be
too simple nor too complex compared to other DSLs. In order to identify the position
of Waebric between other DSLs, a comparison is made based on the characteristics of
Waebric’s in relation with simple and complex DLSs.

Complex DSLs can be identified as languages which leans much more to GPLs then to
DSLs. This is possible if the concepts it supports are similar to those of GPLs, if the
application domain is comparable to that of a GPL or if understanding the DSL requires
the same amount of effort as with GPLs. COBOL is a an example of such language
where it is disputable whether it is a DSL or a GPL due to the wide application domain
and extensive GPL concepts it includes. SQL on the other hand has no relation with
GPLs regarding syntax notations or the concepts it contains, but is so extensive that its
learning curve is probably equally steep to that of a GPL.

More simple DSLs are languages with a narrow application domain, limited syntax nota-
tions and/or flat learning curve. The DOT language could be categorized in this group
due to its simple notation and very specific application domain (graph visualization)

To determine the position of Waebric, the following features where identified to allow
comparison:

e Parameterized function declarations and function calls

e Limited control flow support including if-else and each statements

37

Limited datatype support including numbers, string (text), symbols, lists and
records

Dotted-pair notation for field expressions

Capability to import other Waebric programs

Access to variables and functions in text (Embedded)

Around parameterization of functions

It is noticeable that Waebric does support some of the features and concepts found
in general-purpose languages such as function declarations, control flow and datatypes.
This is however not to such extend that Waebric can be classified as a GPL since GPLs
have much more features and concepts than Waebric such as file system access, class-
es/prototypes, customized datatypes, error handling, etc. Moreover, the concepts that
are adopted by Waebric from GPLs are limited to the very basics. The limited support
for control flow and limited computation with data as described in Waebric’s description
confirms this viewpoint [32].

Waebric’s application domain is identical to that of HI'ML as they both target towards
web development, more specifically (x)HTML markup. The extent of its domain is
similar to that of DOT and SQL which have a specific application domain. Contrary,
DSLs such as COBOL, VHDL and MATLAB have a much wider application domain.

A final comparison is made based on Waebric’s learning curve. When Waebric is com-
pared to languages such as SQL or COBOL, then it’s fair to state that Waebric is easier
to understand. Compared with more simple DSLs such as the DOT language, then
Waebric is probably a lot harder to learn. This is especially true since the end-users of
Waebric are mostly web developers who have little or no knowledge in general program-
ming. Not only do they have to learn the concepts of Waebric, they are also required
to understand the concepts of general programming which are included in Waebric such
as the (parameterized) function declarations, around parameterization using the Yield
statement, dotted-pair notation and datatypes.

Identifying the position of Waebric between other DSLs is not an easy task and proba-
bly requires a more extensive comparison than here provided. Nevertheless, comparison
showed that Waebric features average characteristics regarding learning curve, expres-
siveness and application domain and that there are no extreme characteristics that might
questioning its representativeness.

3.5.2 Mapping of metrics

In section 3.1.2 it was discussed that the metric suite of Power and Malloy was used in
order to extract metrics from formal grammars such as used in OMeta. The metric suite

38

adapted object-oriented software metrics that are commonly used to measure program
complexity and applied these metrics to measure complexity of formal grammars.

The research that was carried out by Power and Malloy validated these metrics based on
a case study where four types of grammars where compared. Based on this, they stated
that the metric suite allows integration in existing metrication processes. What the case
study didn’t included was a comparison between program code and grammar-based soft-
ware in order to prove the equality of the metric suite with traditional software metrics.
Such comparison is important to validate that there is a one-on-one mapping between
the metric suite and traditional software metrics. The absence of this experiment might
indicate that it was never the intent of the authors to allow such mapping. At least one
example that contradictory the one-on-one mapping is the observation that the counting
rules of the McCabe Cyclomatic complexity in Power and Malloy’s metric suite are not
identical to the original MCC, namely the minimum value is zero instead of one.

Drawing conclusions from metrics is extremely risky and requires many relativization
during comparison, especially if metrics are compared over different levels of abstrac-
tions such as here presented in this research. The absence of empirical evidence that
supports the one-on-one mapping may invalidate comparison. It is therefore impor-
tant to take these issues into account during comparison and to draw conclusions with
extreme caution, even if results show clear differences.

3.5.3 OMeta as compiler-generator

The list of available compiler-generators is large with more then hundreds if not thou-
sands of different tools. Each of those compiler-generators utilizes different host lan-
guages, parsing algorithms, IDEs and/or syntax notations. OMeta for instance targets
to languages such as JavaScript, Squeak, C+#, Scheme, Lisp, Python or Ruby using
a variant of Packrat parsers while Yacc is a LALR parser only targeted to C. Pars-
ing algorithms have great impact on performance while syntax notation have impact
on functionality and/or productivity. Maintainability is affected by the way how ac-
tion code is organized (internal or external) while implementation effort is determined
by the tool itself such as the presence or absence of an IDE. A comparison between
compiler-generators is however beyond the scope of this thesis and belongs to the DSL
Benchmark Implementation project as a whole in which this research is only an addi-
tion. This research will therefore not generalize its results to all compiler-generators
since more research is required to confirm this.

39

Chapter 4

Vanilla implementation

This chapter discusses the implementation of Waebric using traditional interpreter tech-
niques, further appointed as the ”vanilla implementation”. An overview of the different
phases is provided in figure 4.1. The first phase involves lezical analysis or lexing in
which the source of a Waebric program is read as a sequence of characters and converted
into a sequence of tokens. A token is a categorized block of text such as a number, iden-
tifier, keyword or symbol. The second phase - syntactic analysis or parsing - verifies that
the tokens form an allowable expression in respects to Waebric’s syntax notation and
converts the tokens into an internal data structure or Abstract Syntax Tree (AST). The
final phase is concerned with semantic analysis in which the semantics of the internal
data structure are validated (typechecking) and converted to xHTML markup (interpret-

ing).

Typechecker

Character Lexer -Tokens: Parser AST.

Error report

Waebric file

Interpreter

HTML

Figure 4.1: Phases of the vanilla implementation

A detailed description of each phase is provided in the following sections.

40

4.1 Lexical analysis

A lexical analyzer or simply lexer reads characters from the input, groups them into
”lexemes”, and produce as output a sequence of tokens for each lexeme in the source
program [1]. A token is a pair consisting of a token name and an optional attribute (e.g.
<text, "Hello world!”>). The block of text corresponding to the token is known as a
lexeme. Table 4.1 gives an overview of the tokens that are considered in Waebric. Note
that whitespace and comments are ignored during tokenization.

Type Example

Natural 47

Symbol +{),>

Single quote text ’Sample

Double quoted text | ”Hello world”
Identifier my Variable

Keyword def, end, if, else, each

Table 4.1: Waebric Tokens

The most important consideration to perform lexical analysis before parsing is the sim-
plicity it introduces at design level. The separation of lexical and syntactic analysis
often allows to simplify at least one of these tasks and enables individual efficiency
improvements on both components. Additionally, portability is enhanced since input-
device-specific peculiarities can be restricted to the lexical analyzer.

4.1.1 Process

A simplified representation of the implementation is provided in figure 4.2. The process
starts with evaluating the value of a character in order to determine which type of token
it represents. Such evaluation is based on regular expressions or expected starting and /or
ending character.

Once the lexer has determined which type of token it is dealing with, it starts tokenizing
the character by storing its value in a token. Then, for each subsequent character
that matches the expected input of this token, the character’s value is appended to the
existing token. From the moment that an unexpected character or ending character is
found, tokenization of the current token stops and the token is added to a tokenlist.

Finally, a new character is read from the input stream and evaluated so a new tokeniza-
tion process can take place. This process is repeated until all characters are consumed
after which the tokenlist is passed on to the parser.

A character that is not recognized or not expected by the lexical analyzer results in a
warning after which tokenization continues by evaluating the next character at the input.

41

Waebric program

character

return next character to process:

Procedure to

yes——Pp| process
whitespace

Is whitespace?

no

Procedure to

yes——P» process
naturals

Procedure to

yes—P» process
identifiers

Is identifier?

no

Lexical exception:
lllegal character

Figure 4.2: Flowchart lexical analysis

4.1.2 Example

Consider the following line of code from a Waebric program:

echo "Hello world!";

For this small example, the process of lexing is as follows:

1. Character e is read from the input and evaluated. Evaluation concludes that only
identifiers and keywords start with a letter. A new token is created with e as value

2. The next character c¢ is read from the input and evaluated. Since ¢ is a valid
character in an identifier/keyword, the character’s value is added to the token.
The token has now ec as value

3. Tokenization continues until a space is read from the input. A space is considered

42

= N =

to be invalid for an identifier /keyword, hence tokenization stops. The value of the
current token is now echo

4. The value of the token is now compared against a list of reserved keywords in order
to determine whether it is an identifier or a keyword.

5. The token is converted to a KeywordToken since echo is a reserved keyword. The
token is added to the tokenlist.

6. Tokenization continues whereby the space character is ignored and a double quote
is read from the input. The double quote is considered as the starting symbol of a
Text block, hence a new TextToken is created with an empty string as value. The
double quote itself is ignored.

7. All subsequent characters are processed and added to the value of the TextToken
until a new double quote appears.

8. The TextToken has now Hello world! as value and is added to the tokenlist

9. The semicolon is read from the input, processed as a SymbolToken and added to
the tokenlist.

4.1.3 Difficulties

Given the previous example, it is relatively simple to recognize tokens when they occur
at the input. There are however circumstances in which the evaluation and tokenization
is more complex due to Waebric’s syntax notation. Consider the following example in
which the output path of a Waebric program is defined in a site definition.

site
module/index.htm: main(); //1st site mapping
module/about.htm: about () //2nd site mapping
end

The problem is that the reserved keyword module is used in the path of the output file
whereby the lexer will categorize it as a KeywordToken. To prevent such behavior, the
last processed KeywordToken is retrieved from the tokenlist and evaluated. If the value
equals site, then it is assumed that the token is an IdentifierToken since it is part of an
output path. While a path can contain keywords, the information that is provided after
the path, e.g. main(), should not. Therefore, an additional condition is necessary which
checks whether a colon was already processed. Even more complexity is introduced since
more then one output path can be specified in a site definition by using multiple site
mappings separated with a semicolon such as shown in the example. As a result, an
extra condition was necessary on the semicolon.

43

While solution is relatively easy in this example, it does affect separation of concern
since syntactical knowledge of Waebric is introduced at lexical stage instead of syntactic
stage and thus affects portability. A possible solution to prevent such complexity lies
in modifying the DSL by which the path should be surrounded by double quotes. In
such case, the whole path would be recognized as a TextToken. If modification of DSL
is out of order, then an additional lexer could be created which deals with this kind of
complexity specifically. In the vanilla implementation is was chosen to leave complexity
at lexical stage since no specific recommendations where made towards portability.

4.2 Syntactic analysis

The second phase of an interpreter involves syntactic analysis or parsing. The parser
uses the first tokens produced by the lexical analyzer to create a tree-like intermediate
representation (AST) that depicts the grammatical structure of the token stream [1].

4.2.1 Parsing algorithm

There are two commonly used methodologies to create parsers: top-down and bottom-
up. Top-down parsers build the parse tree from the top (root) to the bottom (leaves)
while bottom-up parsers start from the leaves and work their way up to the root. In
either case, the input to the parser is scanned from left to right, one token at a time. The
vanilla implementation uses a LL(*) parser which is based on the top-down methodology.
A LL parses the input from Left to right and constructs a Leftmost derivation of the
sentence. In other words, a LL parser starts from the root element and then replaces
each token with the most left token first. The * in LL(*) means that there is unlimited
look-ahead capability.

4.2.2 Abstract Syntax Tree

The abstract syntax tree that is created by the parser captures the essential structure
of the input in a tree form, while omitting unnecessary syntactic details [14]. Typically,
each interior node in the AST represents an operation and the children of the node
represent the arguments of the operation.

The creation of the AST in the vanilla implementation is performed using a bottom-up
approach due to the choice for top-down parsing. This may look contradicting, but it is
in fact the natural outcome when top-down parsing is applied. When parsing starts, a
root node is created. The root node is supposed to produce a value based on the value
of its children. The parser has however not visited the leaves of the root node and is
therefore unable to produce a value at that moment. Instead, the value is produced after
all children of that node are processed. As a result, leave nodes are the first nodes who

44

produces output and passes this through to their parent. The AST is in other words
created bottom-up. The result is an object which contains one or more values retrieved
from its children which on their turn contains values of their children and so on.

4.2.3 Design

The design of the parser includes nine subparsers which all process a particular part of
the code. Subparsers can create instances of other subparsers using public interfaces in
order to acquire data (i.e. AST objects) from child nodes. Figure 4.3 gives an overview
of the different subparsers and the subparsers they instantiate.

FunctionDef
Parser

Statement Expression
Parser Parser

Markup Parser Expression Embedding
Parser Parser

Expression Expression Markup

Parser Parser Parser

Figure 4.3: Overview of subparsers

Predicate
Parser

Expression
Parser

Each subparser contains a variable which holds the token that it is currently being pro-
cessed. The token provides functionality to retrieve the next or previous token in the
tokenlist enabling infinite look-back and look-ahead. The token is updated through-
out the entire parsing process, even when tokens are processed by instances of other
subparsers. The latter is done by passing-in an instance of the parent parser to the
subparser. The subparser updates the value of the parent parser after subparsing is
completed and then returns the AST object back to the parent parser. The instance
of the parent parser in the subparser is also used to prevent the creation of cyclic de-
pendencies and allows separation of data and parsing algorithm, similar to the visitor
pattern.

Root parser Instance of root parser—», Sub parser

LRequested AST objectQ

Figure 4.4: Relation parser and subparser

45

0
If-Else-
Statement
1 8.

If-Statement Else-Statement
2 5.
Echo-Statement

Echo-Statement

Predicate

(ix

3 10

6
echo input;

4 1" else

7
N it echo "No title";
Input Input No title

Figure 4.5: AST If-Else-Statement Figure 4.6: Syntax If-Else-Statement

IENEGCRE R

Apart from processing tokens, a public interface also provides functionality to evaluate
whether a particular token or sequence of tokens corresponds to a certain AST object.
The Expression Parser for instance has a public function isStartlfStatement in order to
evaluate whether the value of the supplied token corresponds to an if-keyword. More
complex evaluations are included as well.

4.2.4 Example

Figure 4.6 illustrates a code example of a basic If-Else-Statement in Waebric syntax. A
visual representation of the corresponding AST is provided in figure 4.5 and includes the
sequence of parsing using the numbers on the edges.

The root element of the AST is an If-Else-Statement which contains two arguments,
the If-Statement and the Else-Statement. The If-Statement includes two arguments, the
predicate which evaluates the expression, and the statements that should be executed
when the evaluation of the predicate succeeds. In the example their is only one statement
that belongs to the If-Statement, namely an Echo-Statement. The Echo-Statement on
its turn contains one argument, namely a value that equals the value of the variable
nput.

The Else-Statement is similar processed, however there is no predicate which needs to be
evaluated and the value of the Echo-Statement is not a variable but a TextExpression.

The process of constructing the If-Else-Statement AST is given in figure 4.7.

Parsing starts with consuming the first token in the tokenlist, here (keyword,if). The
parser now assumes that the following tokens are part of an If-Else-Statement and start

46

12)

return new IfElseStmt(pred, ifStmt, elseStmf)

If-Else-
Statement
K o3
_ - If-Statement </~ _
e e -7 > ~ o

~
return new EchoStatement(stmf)

5 \

\

10
1

L \
return new String(input) 4 7 return new String(input)
'

\

\ /
\ /
) Gy

Figure 4.7: Process of creating an AST for the If-Else-Statement

parsing the arguments required to construct an If-Else-Statement, i.e. a predicate, an
if-statement and an else-statement.

In Waebric, a keyword if is always followed by a predicate, hence this construction is
parsed first. A predicate on its turn always starts with a left bracket and ends with a right
bracket. Between the parenthesis, constructions are expected such as an Expression,
NotPredicate, TypePredicate, OrPredicate or AndPredicate. As a result, a Predicate
AST object has only one value (e.g. a NotPredicate) since left and right brackets are
unnecessary syntactic details which are left out of the AST object.

The predicate parser starts matching the first expected token, the left bracket, to the
current token (symbol, le ftbracket) in the tokenlist. Since there is a match, the token
is consumed and a new token is taken from the tokenlist. The parser evaluates this
token, here (identifier, input), and concludes that it is a valid token and it should be
processed as an Expression by the Expression parser.

The Expression Parser analyses the current token and concludes that it is a VarExpres-
sion since the token is a single identifier. As a result, the token is passed to the Variable
parser which creates a new AST object of type VarExpression with as value input.

The VarExpression is returned to the Expression parser which on its turn returns the
object to the Predicate parser. Note that the Expression Parser does not encapsulate

47

the value retrieved from the Variable parser into a new object.

The next step includes the encapsulation of the VarExpression object into a Predicate
object in order to return it to the If-Else-Statement. Before the Predicate object is
returned, the right bracket of the predicate construct must be matched. Since the token
(symbol, rightbracket), appears as next in the tokenlist, parsing succeeds and the object
can be returned

The process continues similar for the two remaining arguments (If- and Else-Statement)

4.3 Semantic analysis

Until now, the Waebric program was validated on it’s lexical and syntactic correctness.
Lexical analysis was based on characters and text blocks (token) while syntactic analysis
evaluated the sequence of these tokens in a grammatical context. The last phase involves
semantic analysis by which the semantics of the parse tree are evaluated in order to
understand its meaning.

Semantic analysis is performed at two levels, typechecking and interpreting. Typecheck-
ing involves the the validation of the syntactic well-formedness of the Waebric program
while interpreting involves the creation of xHTML markup. Both components uses the
parse tree as input.

The common concepts involved in semantic analysis are discussed in section 4.3.1 and
4.3.2 after which the typechecker and interpreter are discussed in section 4.3.3 and 4.3.4
respectively.

4.3.1 Environments

Lexical and syntactic analysis approached the Waebric program statically by storing data
into a tokenlist or parse tree. Semantic analysis on the other hand processes its input
dynamically since its data may change during execution. An example is a variable which
is defined at the beginning of the program but is then changed further in the program.
To store this kind of data, a new hierarchical structure was created, also appointed as
environment objects.

Each environment object stores data such as the variable and functions it contains, the
semantic errors that occurred in that environment or the dependencies that were used
for that environment. Using a public interface, the interpreter or typechecker are able
to add data to or retrieve data from the environment. The environment object itself
allows the creation of new environments in order to create a hierarchy of environments
with always one root environment containing all other environments.

48

CO O Ui W N+

4.3.2 Tree walking

Semantic analysis requires the traversal of the parse tree. The Visitor Pattern is a com-
monly used design pattern to perform such task as it separate the (traversal) algorithm
from the data. The Visitor pattern enables the definition of a new operation on the
AST structure without changing the AST objects themselves. Implementing the Visitor
Pattern requires the creation of a visitor which describes how the AST structure should
be traversed and the addition of a generic call-back function is each of the AST objects.
The visitor contains functions for each AST object in the AST structure that should
be traversed. The code that is supplied within these functions determines which child
nodes of the corresponding AST object should be visited using the call-back function
accept.

An example is given in figure 4.8 for a visitor implemented in Java. When the AST
structure is passed in to the InterpreterVisitor, then the visitor uses polymorphism in
order to distinguish which method in the visitor should be visited. In the current im-
plementation, the AST object module would be passed-in, which causes the first visitor
function to be executed. The code inside this visitor retrieves the child AST object
funcDef, and forces this AST object to be traversed as well using the accept function.
By passing in an instance of the current InterpreterVisitor using this, the accept func-
tion will be able to call back the visitor and process the function definition. When this
happens, function two of the InterpreterVisitor is executed which contains more code to
allow the traversal of the children of the function definition .

public class InterpreterVisitor{

public void Visit (Module module){
var funcDef = module.functionDefinitions [0]
funcDef .accept (this)

}

public void Visit (FunctionDef func){
//code

}

public void Visit (IfElseStmt stmt){
//code

}

Figure 4.8: Traditional visitor pattern

The implementation of the Visitor Pattern in JavaScript is however different since
JavaScript does not provides polymorphism due to its weakly typed design. As a result,
the Visitor Pattern was modified in order to benefit from the separation between data
and algorithm. The modifications involves the creation of different visitor objects for
each AST object such as presented in figure 4.9. Due to the modifications in the Vis-

49

0 O Ui Wi

NI N I o I e e e i e T B e S N e
N = O OO0 Uik WN OO

function InterpreterVisitor (){

function ModuleVisitor (env){
this.env = env
this.visit = function(module){
var funcDef = module.functionDefinitions [0]
funcDef .accept (new FuncDefVisitor (this.env))
}
}
function FuncDefVisitor (env){
this.env = env
this.visit = function(funcDef){
//code
}
}
function IfElseStmt (env){
this.env = env
this.visit = function(ifElseStmt){
// code

Figure 4.9: Modified Visitor Pattern

itor Pattern, the corresponding visitor object should be instantiated when calling the
accept function instead of passing through the complete visitor using the this keyword.
Note that the modifications do involve some code overhead compared to the traditional
Visitor Pattern.

A second modification to the Visitor Pattern involves the use of parameterized visitor
objects which accepts a variable in order to pass additional data. This modification
is not specific for JavaScript since it can be implemented in the traditional pattern as
well. Passing additional data is desirable in order to provide each visitor object access to
the environment object to store semantic information such as discussed in section 4.3.1.
The alternative involved the use of a global environment object for the complete visitor,
but had the disadvantage that the currently processed environment should be updated
continuously which is more error prone.

4.3.3 Typechecking

A typechecker evaluates the meaning of the parsing tree in order to provide warning
messages towards the end-user when certain constructs in the language are not valid.
An example of a semantic error is a duplicate function definition. A semantic error may
affect the output of the interpreter, but it may never prevent the interpreter to produce

50

—_

O © 0O Ui WwWwN

output. The following semantic errors are considered for Waebric [32]:

Undefined functions If for a markup-call, f |, no function definition can be found in
the current module or one of its (transitive) imports, and, if f is not a tag defined
in the XHTML 1.0 Transitional standard, then this is an error.

Duplicate functions Multiple function definitions with the same name are disallowed.

Arity mismatches If a function is called with an incorrect number of arguments (as
follows from its definition), this is an error.

Undefined variables If a variable reference x cannot be traced back to an enclosing
let-definition or function parameter, this is an error.

Non-existing module If for an import directive import m no corresponding file m.wae
can be found, this a an error.

The typechecker here presented implements the Visitor Pattern in order to traverse
through the parsing tree and adds additional code inside the visitor objects to perform
the typechecking. First, semantic information from the AST is stored inside the en-
vironments objects whereas later the semantic information is validated for generating
previously mentioned errors. The visitor is built in such way that each node in the parse
tree is visited, starting from the top.

The process of typechecking is illustrated using an example which validates the Waebric
program for undefined variables. First, the typechecker collects all defined variables from
the parse tree and adds them to the environments objects. In Waebric, variables are
defined inside the formals of a function definition, in an each statement or in a variable
binding construction. A code snippet is provided in figure 4.10 which collects variables
from the arguments (formals) of a function definition.

function FuncDefVisitor (env){

this.env = env
this.visit = function (funcDef){
new_env = this.env.addEnvironment (’func-def’);
for (var i = 0; i < funcDef.formals.length; i++) {
var formal = funcDef.formals[i];

new_env.addVariable (formal) ;

Figure 4.10: Storing arguments of function as semantic information

o1

SO W N

0

After data collection, the typechecker visits the AST nodes at which a variable can be
accessed (variable references) in order to evaluate whether that variable was earlier de-
fined in the environment. If for some reason the variable isn’t found in the environment
(e.g. due to spelling mismatch), then a warning message is generated towards the end-
user that the variable is undefined. Figure 4.11 illustrates the validation process of a
variable reference using the VarExpressionVisitor.

function VarExpressionVisitor (env){
this.env = env
this.visit = function(variable){
//Check if variable exists
if (this.env.getVariable(variable) == null) {
this.env.addException(new UndefVarException(variable,
this.env));

Figure 4.11: Validating whether a variable is defined

4.3.4 Interpreting

Interpreting is the final phase in the vanilla implementation and converts the parse tree
to xHTML code. The interpreter is implemented similar to the typechecker using the
Visitor Pattern and environment objects to store semantic information.

Process

Section 4.3.2 discussed that the parse tree is traversed with the use of the Visitor Pat-
tern. What the pattern does not describes is in which sequence the AST nodes should
be visited. For the purpose of the typechecker, the complete parsing tree was visited in
a sequence similar to that of the LL parsers. Traversing through the complete parsing
tree is however not desirable in the interpreter since certain AST nodes are not required
to be visited. An example is an If-Else-Statement by which the interpreter evaluates
the predicate in order to determine the branch that should be executed. If the com-
plete parsing tree is traversed in an interpreter, then both branches would be visited
resulting in unwanted xHTML markup. Therefore, the interpreter only visit AST nodes
required for generating the correct xHTML markup. This is one for the main reasons
why typechecking is not performed during interpreting itself.

An example of the visitor for an If-Else-Statements is given in figure 4.12. First, the
value of the predicate is evaluated using an auxiliary subroutine. If evaluation succeeds,

52

T W N =

then the If-Statement is visited and only xHTML code is generated which is provided in
the If branch.

Note that apart from the environment object a second parameter is passed to the visitor
object, namely the dom object to allow a visitor to generate xHTML code.

if (isValidPredicate(ifElseStmt.predicate, this.env)) {
ifElseStmt.ifStmt.accept (new StmtVisitor (this.env, this.dom));
} else {
ifElseStmt.elseStmt.accept(new StmtVisitor(this.env,this.dom));
}

Figure 4.12: Visiting AST nodes in the interpreter

The interpreter also differs from the typechecking visitor in such way that the start
point of traversal is different. The typechecker always starts from the root element
and traverses through all its children. The interpreter however starts traversal from the
main function in the Waebric program. If a site definition is specified, then an additional
traversal is performed for each output path specified in the site definition.

Markup generation

The JavaScript language is typically associated with a browser environment. In a
browser, JavaScript is able to create or modify HTML, xHTML or XML code using
the APT of the Document Object Model (DOM). Initially it was meant to reuse this
functionality in order to create the xHTML code in the interpreter. The DOM is how-
ever provided by the browser itself and not by JavaScript. As a result, using the DOM of
the browser would prevent the use of the interpreter outside the browser using ’off-line’
JavaScript engines such as Rhino or the V8 JavaScript Engine.

The first solution that came to mind included the use of an external library which
provides similar functionality as the DOM. However, such libraries don’t exists for
JavaScript, probably because most JavaScript code is developed for a browser which
already support xHTML creation natively using the DOM. The use of external libraries
in other programming languages was also considered, in particular JDOM which is a
Java implementation of the DOM. This would however limit the use of the interpreter
to only Java-based JavaScript engines such as Rhino. Moreover, the research method in
section 3 required that each implementation limited the use of external libraries written
in other languages as much as possible.

Another solution included the use of String objects in order to construct the xHTML
code. The disadvantage of such approach is that there is no possibility to traverse
through the xHTML code or to retrieve attributes of certain xHTML elements and as a
result would complicate the implementation of the interpreter.

93

Eventually the ENv-Js! library was chosen which simulates a complete browser environ-
ment using JavaScript code, including the DOM object. The browser environment is
loaded in the JavaScript engine and then creates a global object document by which the
DOM API can be accessed through. This allows the interpreter to generate markup.

Semantic errors

Semantic errors found during typechecking may not prevent the interpreter to produce
its output. As a result, a recovery model was created which defines which action should
be taken in case of a semantic error [32]. These actions should allow the interpreter to
continue interpreting.

Undefined functions A markup-call to an undefined function is interpreted as if it
was part of xHTML 1.0 transitional.

Duplicate functions Only the first function definition is processed. Subsequent func-
tion definitions with the same function name are skipped.

Arity mismatches If a function is called with more actual arguments than the number
of formal arguments, the superfluous arguments are ignored. If the actual argu-
ments are too few in number, the remaining formal parameters become undefined
variables.

Undefined variables The value of the variable is evaluated as the string "undef”.

Non-existing module The imported module is skipped.

"http://ejohn.org/blog/bringing-the-browser-to-the-server

54

http://ejohn.org/blog/bringing-the-browser-to-the-server

Chapter 5

OMeta implementation

This chapter discusses the implementation of Waebric using the language development
tool OMeta/JS. The process is similar to the vanilla implementation except that certain
phases are automated, in particular lexing, parsing and typechecking. An overview is
provided in figure 5.1. The lexer and parser are developed at once based on a formal
specification. A second specification was developed in order to create the typechecker.
The interpreter was reused from the vanilla implementation.

OMeta/JS 2.0

OMeta/J$ 2.0

Error report

Waebric file |
|_ _ e — Interpreter

Lexical analysis Syntactic analysis Semantic analysis
HTML

Figure 5.1: Overview of the OMeta implementation

5.1 Lexical and syntactic analysis

OMeta performs lexical and syntactic analysis at once and uses only a single specification
in order to generate the parser. The parser itself is generated by the OMeta Base
translator which takes as input the formal specification and generate as output the
parser object. The generated parser is then accessed using a public interface in order to
process the Waebric program.

The parser produces a parse tree based on the semantic action code provided in the

95

O U R W N

grammar. This enables the creation of user-defined parse trees, including statically and
dynamically typed parse trees. The OMeta implementation uses a statically typed parse
tree, identical to the one used in the vanilla implementation. This allows the reuse of
the vanilla interpreter since it operates on the level of the parse tree.

The design of the OMeta parser is illustrated in figure 5.2.

Generated parser —object

object

Waebric file

P OMeta translator

OMeta specification
Lexer and parser

Figure 5.2: Design OMeta parser

5.1.1 Example

A subset of the grammar for the Waebric parser is shown in figure 5.3. The example con-
tains 3 production rules whereof the first production rule is the root element. The root
element consists out of the terminal "module” and the non-terminals Moduleld and Mod-
uleElements. These non-terminals are defined by production rule 2 and 3 respectively.
A Moduleld consists out of a series of identifiers separated by a dot. The ModuleElement
is defined as the non-terminal Site, FunctionDef or Import using the choice operator.

Module = "module" ModulelId:id ModuleElement*:elements
-> new Module(id, elements),

ModuleId = 1istOf (#IdCon, "."):modulelId
-> new ModuleId(moduleId. join(’.’))

ModuleElement Site | FunctionDef | Import

Figure 5.3: Code example OMeta parser

The matching process in OMeta is illustrated by applying the Waebric program in figure
5.4 to the grammar in figure 5.3. The parsing algorithm used in OMeta is a packrat parser
which is similar to a recursive descent parser such as LL(k). As a result, OMeta parses
the Waebric program using a top-down approach while the AST is created bottom-up.

The parser starts by matching the Waebric program to the root element, here the non-

o6

T W N =

terminal module. In this production rule, the first expected input is the non-terminal
module. Since the input starts with the text module, there is a match.

Matching continues and expects the non-terminal Moduleld. Since this is a non-terminal,
the second production rule is applied. In this production rule, a list of identifiers is ex-
pected separated with a dot. The input homepage.cwi.nl equals the expected input, and
thus the non-terminal Moduleld is successfully matched. As a result, the semantic code
is executed which stores the module name in a new AST object and returns it to the
parent rule. As a result, the AST object is binded to the variable id.

module homepage.cwi.nl

def main
//markup
end

Figure 5.4: Waebric example

The last non-terminal is now matched in the first production rule whereby a collection
of zero or more ModuleElement is expected. Since ModuleElement is a non-terminal,
the third production rule is applied. This involves the matching of the non-terminal
Site, FunctionDef or Import. For the given example, the non-terminal FunctionDef
would be applied but is not shown in the grammar. If the FunctionDef is considered
to be matched, then the value is returned to the parent rule and binded to the variable
moduleElements in the first production rule. This variable is by default an array as a
result of the * operator in order to store each module element separately.

Eventually, the complete root element is matched and the semantic action code can
be executed. This involves the creation of a new AST object Module which takes as
arguments the variables id and elements.

5.2 Semantic analysis

Semantic analysis in OMeta only includes the creation of a typechecker since the inter-
preter is lend from the vanilla implementation. The OMeta typechecker performs the
same validation steps as the ones discussed in section 4.3.3 but uses a different mecha-
nism to traverse through the parse tree. The following sections discusses this mechanism
and illustrate its operation using a practical example.

o7

5.2.1 Tree walking

In OMeta it is relatively simple to traverse through the parse tree since such functionality
is natively supported by OMeta. Traversing is done by performing pattern matching on
list objects. Lists are the very basic form by which a parse tree can be created, e.g.
[add’, x, y]. An example was given in the background section in figure 2.6.

The main problem with list-based parse trees is that it prevents the implementor from
using its own defined parse tree. This can be counteracted by creating two grammars,
one grammar that generates the list-based parse tree and a second one which performs
pattern matching on this parse tree to transform it into user-defined AST objects. The
creation of a typechecker would involve the creation of a third grammar which performs
pattern matching on the list-based parse tree in order to find semantic errors.

The presented solution does however introduce two new problems. At first, it requires
the use of an intermediate grammar which converts the list-based parse tree to a user-
defined parse tree. This might be considered as overhead since an extra grammar needs
to be maintained. Secondly, it requires that the intermediate grammar and the type-
checker grammar performs pattern matching on each production rule of the parser. This
means that the intermediate and typechecker grammar are required to define the same
amount of production rules as the parser. Whenever a modification is made to the gram-
mar of the parser, it may require modification to both the intermediate and typechecker

grammar, which is adversely for maintainability.

object

Generated
typechecker

?

object

Error report

Generated parser

Waebric file

object

=

» OMeta translator

OMeta specification
Lexer and parser

Figure 5.5: Design OMeta typechecker

At last, a complete other solution was considered which is eventually used for the cre-
ation of the typechecker. The solution involves the use of the inheritance structure of
OMeta by which one grammar inherits from an existing grammar. Using inheritance,

o8

the new grammar inherits all production rules of the base grammar, including the se-
mantic predicates and action code. The inheritance also allowed the reuse of the parsing
algorithm of the parser whereby a visitor pattern was unnecessary.

For the typechecker this means that a new grammar was created which inherits from
the parser. Then, for each production rule wherefore a semantic action is required,
i.e. gathering or validating semantic information, the production rule of the parser
is overridden. Note that only semantic action code is needed for the typechecker to
operate. In order to let the production body intact, i.e. identical to the one of the
parent grammar, a super-send statement is used. The super statement prevents in such
way any duplicate code.

The solution has the advantage that only two grammars need to be developed and
maintained, and that the grammar of the typechecker is kept to the bare minimum
since it only contains production rules for which validation was needed. Most effort
was required to produce the action code. The action code was therefore transferred to
external libraries, and function calls were made from the semantic action code to these
libraries. This keeps the typechecker clear and maintainable.

5.2.2 Example

The operation of the typechecker is illustrated by performing a validation on undefined
variables. The validation is divided into two phases: collection and validation of semantic
information.

The collection of variables is performed by adding semantic action code at places where
variables are defined, such as in the arguments of a function definition, also named as
formals. First, the existing production rule is overridden by redefining the non-terminal
formals at the left-hand-side of the rule and by apply the production body of the parent
rule using the super-send operator at the right-hand-side. Then, the result of the rule
application is binded to a variable. The value of the variable is produced by the semantic
action code in the parser. The last phase adds semantic action code to the newly created
production rule to add the variable to the current environment.

An example of data collection is given in figure 5.6 and adds for each formal a variable
to the environment object. The last line of code in the action code is required by OMeta
to return the original AST object back to the parent grammar.

99

S T W N~

O © 0

T W N =

© 0 O Ui W N+

Formals = ~“Formals:formals
-> {
//Add each variable in the formals to the environment
for (var i = 0; i < formals.length; i++) {
var formal = formals[i];
WaebricOMetaValidator.environment.addVariable (
formal) ;
}
//Return the original AST object
formals;
},

Figure 5.6: Collection of semantic information

Expr = Text:idText -> new TextExpr (idText)
| IdCon:idCon -> new VarExpr (idCon)

| NatCon:idCon -> new NatExpr (idCon)
|

SymbolCon:idCon -> new SymbolExpr (idCon)

Figure 5.7: Parsing an expression in the OMeta parser

The last phase during typechecking validates the variables itself when they are used. In
Waebric, a variable is part of the production rule Ezpr (see figure 5.7).

The intention is to add action code only to the variable expression but not to the other
expressions. This is achieved by evaluating the type of AST object inside the semantic
action code using instanceof. If evaluation succeeds, then an external library is used to
determine whether the variable is defined in the current environment or not. A fragment
of this external library is given in figure 5.8.

Expr = T“Expr:expr

_>{
//Validate the VarExpression AST object
if (expr instanceof VarExpr){

validator.validateVarRef (expr, WaebricOMetaValidator)

}
//Return the original AST object
expr;

Figure 5.8: Validating a variable in the OMeta typechecker

60

0 O Ui Wi

Ne]

10
11
12

function WaebricVariableValidator (parser){
this.parser = parser;

this.validateVariableReference = function(varExpr){
//Search variable in current environment
if (!this.parser.env.containsVar(varExpr.variable)) {
//Create semantic exception
var exception = new UndefVarException(varExpr.variable,
.parser.environment) ;
parser.env.addException(exception);

}

this

Figure 5.9: Fragment external libraries OMeta typechecker

61

Chapter 6

Results

This chapter presents an overview of the metrics extracted from the vanilla and OMeta
implementation. A classification is made between maintainability, performance and
functionality.

6.1 Maintainability

The maintainability of each implementation is determined based on the metrics provided
in section 3.1. The extraction of metrics is automated using the metric tool JSMeter!.
The tool was modified in order to comply with the counting rules provides in section
3.1. The metrics for grammar-based code were gathered manually based on the metric
suite of Power and Malloy.

The following sections discusses the most important maintainability measures into detail.
A complete overview of all extracted metrics is given in appendix A.

6.1.1 Vanilla implementation

An overview of the maintainability metrics extracted from the vanilla implementation is
given in table 6.1.

The measurements show that the parser is the largest component in the implementation
with almost 1400 effective lines of code, followed by the interpreter with 792 lines. The
sizes of the remaining modules are nearly identical with 431 lines for the lexer, 447 for
the typechecker and 473 for the parse tree. The AST clearly uses more methods then
other modules in relation with its size with a total of 131. The parser has a few more
methods (163) but is almost 3 times larger. The high number of methods in the parser

"http://code.google.com/p/jsmeter

62

http://code.google.com/p/jsmeter

Metrics Lexer Parser AST Checker Interpreter
Lines of code 538,0 1676,0 609,0 606,0 1.018,0
Effective lines of code 431,0 1.397,0 4470 473,0 792,0
Method count 63,0 163,0 131,0 90,0 124,0
Average method size 8,5 10,3 4.7 6,7 8,2
Cyclomatic Complexity 3,0 3,3 1,9 1,9 2,6
Maintainability Index 3 83,5 74,8 104,2 91,3 83,1
Maintainability Index 4 124,9 114,2 148,0 131,5 1235
Halstead Effort 21.901,2 357.691,5 46.005,3 73.821,8 200.908,5

Table 6.1: Maintainability metrics vanilla implementation

has its reflection on distribution of the code with an average method size of only 5. The
parser on the contrary distributes its code less well with more than twice as many lines
of code per method.

When the complexity of each module is considered, measurements shows that the parse
tree and typechecker have the lowest complexity number of all modules with less then
2 branches per method on average. The interpreter has a slightly higher complexity
number (2,6) while the lexer and parser have the highest complexity with an average of
3 branches per method.

The overall maintainability of a module was measured with the MI metric whereby a
higher value indicates a better maintainability. The AST module provides the best
results with an MI3 of 104 and an MI4 of 148 when considering comments. The second
best result is on name of the typechecker with values of 91,3 (MI3) and 131,5 (MI4).
The parser has the lowest maintenance index of all modules with a MI3 of 74,8 and a
MI4 of 114,2. Still, MI results are well within the established cut-off values defined in
table 3.4.

Finally, the Halstead effort was measured in order to establish an insight to the effort
required to implement each module. The parser requires most effort of all modules with
a value of over 350.000 which corresponds to a 50% of the total halstead effort for the
vanilla implementation. The interpreter has a Halstead effort of approximately 200.000
resulting in a 28,6% share. The typechecker accounts for 10,5%, while AST and lexer
accounts for the remaining 13,6%.

6.1.2 OMeta implementation

The results of the OMeta implementation are classified per module in order to keep
results clear. The code of each module is measured in four categories. First, measure-
ment is performed at the terminals and non-terminals of the formal specification that
corresponds to the module using the counting rules of Power and Malloy. The second
category measures the semantic information in the grammar such as action code and
predicates. External libraries used in the semantic code are measured in the third cat-
egory. A final classification is made for code which is written around the module such

63

as ’factory classes’ or exception objects. The semantic action code that corresponds to
a production rule is counted as one function.

Note that the LOC and eLOC measures for grammars are not based on the metric suite
of Power and Malloy’s. The LOC and eLOC metric are calculated using the counting
rules for program code in section 3.1. The LOC* is a derived metric from the metric
suite and provides better results to compare with program code. The LOC* metric is
only listed for the grammar.

Parser

An overview of the metrics extracted from the OMeta parser is given in figure 6.2.

The grammar is the largest component in the implementation and consist out of 130
lines of code whereof 105 are effective. The LOC* metric indicates an even higher value
with 384 lines of code. The size of the semantic action code and predicates is only
slightly smaller compared to the grammar with a total of 92 effective lines. The size of
the libraries is limited to only 71 effective lines and 10 methods.

The complexity of the grammar is slightly higher compared to the semantics it contains,
but it should be noted that the grammar uses a different complexity measure then the
three other categories of code where the complexity is at least one instead of zero. The
maintainability of the semantics is the highest of all categories, followed by the additional
code for the parser and the grammar itself. The libraries have the lowest Maintainability
Index with a value of 120.6, which is still highly maintainable.

The Halstead metrics show that 61,8% of the effort is spent on the creation of the non-
semantics of the grammar while the semantic code itself requires 27,6% of total effort.
The external libraries and supporting code accounts for the remaining 10.4% effort.

Metrics Grammar Semantics Libraries Other
Lines of code 130,0 98,0 87,0 46,0
Lines of code* 384,0 N/A N/A N/A
Effective lines of code 105,0 92,0 71,0 36,0
Method count 60,0 76,0 10,0 7,0
Average method size 6,4 1,3 8,7 6,6
Cyclomatic Complexity 1,8 1,1 2,1 2,3
Maintainability Index 3 92,0 133,0 80,7 94,1
Maintainability Index 4 115,8 153,5 120,6 138,6
Halstead Effort 94.342,2 42.141,0 13.527,9 2.581,0

Table 6.2: Maintainability metrics OMeta parser

Typechecker

This section discusses the results in table 6.3 extracted from the OMeta typechecker.

64

What immediately strikes to the results is the low number of LOC and eLOC by which
the typechecker was developed, particularly the grammar itself which counts only 11
effective lines of code. If LOC* is considered, then 22 lines of code are measured which
is still low. The libraries represent the largest amount of code with a total of 170 effective
lines. There is a total of ten production rules defined and based on the production body
there are approximately 2 lines of code per method (AMS). Note that the LOC or eLOC
measures are not used to establish the average method size in a grammar since AMS is
calculated using the metric suite.

The complexity measure for the grammar equals zero since no branch operators were
used in the grammar. The complexity of the remaining code is considered low, ranging
between 1,7 to 2,3 branches per method. The Maintainability Index indicates that the
grammar has highly maintainable code with MI3 set to 131,3. The Halstead measures
indicates that most effort was required for constructing the semantics (53%) and the
libraries (36,9%) while the grammar only required 2% in the total effort for this module.

Metrics Grammar Semantics Libraries Other
Lines of code 13,0 61,0 197,0 59,0
Lines of code* 22,0 N/A N/A N/A
Effective lines of code 11,0 35,0 170,0 46,0
Method count 10,0 10,0 20,0 9,0
Average method size 2,0 6,1 99 6,6
Cyclomatic Complexity 0,0 1,7 1,9 2,3
Maintainability Index 3 131,3 92,0 80,9 93,2
Maintainability Index 4 172,7 127,2 112,7 138,4
Halstead Effort 934,5 26.240,4 18.264,0 4.111,4

Table 6.3: Maintainability metrics OMeta typechecker

6.2 Efficiency

Execution speed was measured for each main component in the implementation by ex-
ecuting 8 Waebric programs ranging from 54 to 10.000 lines of code. Each test was
carried out 100 times and the average number was taken for comparison. The higher
the execution speed, the slower a Waebric program is interpreted to xHTML code.

The first series of tests uses three demo Waebric programs with sizes ranging from 54
to 967 lines of code. The second series of tests uses five Waebric programs with sizes
ranging from 1000 to 10.000 lines of code whereby each line of code contains an identical
echo-statement.

All tests were performed with the following computer configuration:

65

Computer configuration

Processor 2 x Intel(R) Xeon(R) CPU E5420 @ 2.50GHz
Memory 2 x 2048MB DDR2 PC2-5300 ECC
Operation System Microsoft Windows Server 2003 SBS
JavaScript engine Rhino 1.7R2 (2009-03-22)

Java Virtual Machine | Java 1.6.0-15 (Sun Microsystems Inc)

Table 6.4: Computer configuration

Table 6.5 lists the execution speeds for the OMeta and vanilla implementation using
three demo programs. The results of the vanilla lexer and parser are added together in
order to compare the results with the OMeta parser equally.

The results show clear differences between each implementation, all of them in favor of
the vanilla implementation. The vanilla lexer/parser is 2 to 6 times faster compared
to its opponent in the OMeta implementation while the typechecker shows an even
greater difference, up to a factor 16 for the largest Waebric program. The results of the
interpreter are almost identical since this is a shared component.

Both implementations spend most time on executing the lexical and syntactic analysis
with values ranging between 60 and 85 percent depending on input size. The execution
time of the OMeta parser and typechecker are highly sensitive to their input with a
factor 24 and 38. The interpreter is the least sensitive to program input with only a
factor two difference.

Waebric program Lexer/Parser Typechecker Interpreter
Vanilla OMeta Vanilla OMeta Vanilla OMeta
Lava (967 LOC) 3.365,4 19.514,9 155,4 2.561.2 881,8 802,7
LDTA (269 LOC) 1.222,2 6.118,2 68,7 792,4 593,1 543,6
Menus (54 LOC) 354,4 812,7 34,2 65,9 4247 4452

Table 6.5: Comparison execution speed (ms) - series 1

The execution times for the vanilla and OMeta implementation under stress test are
given in figure 6.1 and 6.2 respectively. The figure includes the relative execution times
in order to examine the scalability of each component individually as input size grows.
The absolute time values are given in figure 6.3.

The vanilla implementation executes the stress test in linear time whereby the smallest
test file was interpreted in less then two seconds and the largest in 14 seconds. Most
resources are spent on lexing with 45% to 75% of the total execution time, followed by
the parsing which takes around 20 to 25%. The execution time of the typechecker is the
lowest of all components and occupy only 2 to 7% of the total recourses. The remaining
execution time is spend on interpreting and takes between 10 and 25%. Note that as
the Waebric program grows, the relative execution time of the lexer increases in favor of
the remaining components.

66

Execution speed (%)

Execution speed (%)

Performance results vanilla implementation - series 2

W INTERPRETER @ TYPECHECKER O PARSER OLEXER
100% -
778 946 1.314
90% | 201 255
150
99
80% 1 3.106
2,531 :
1.677
70% 1 1.040
60% | S
50% |
40% -
9.455
30% - 4.110 6.441
2,018
883
20% -
10% -
0% . . .
VANILLA 1k VANILLA 2.5k VANILLA 5k VANILLA 7.5k VANILLA 10k
Figure 6.1: Execution time vanilla implementation
Performance results OMeta implementation - series 2
DINTERPRETER O TYPECHECKER I PARSER
100% -
00% [e | [0] [—zoss |
1.445 2.569 3.822 4.292
90% 1 825
80% -
70%
60%
50%
13.684 24.646 35.882 48.079
20% 1 6.319
30%
20% -
10% -
0% . ’ :
OMETA 1k OMETA 2.5k OMETA 5k OMETA 7.5k OMETA 10k

Figure 6.2: Execution time OMeta implementation

67

The results for the OMeta implementation are given in figure 6.2. The chart is mainly
dominated by the execution times from the parser with values between 83 and 92% of the
total time. The time ratio for each component remains relatevily stable over the different
tests with only a small increase at the parser in favor of the typechecker and interpreter.
The absolute values of the measures indicate that the OMeta implementation runs in
linear time. The smallest test file was interpreted in 7,6 seconds whereas the largest test
file required no less than 54 seconds.

The ratio of parsing in OMeta differs little from lexing/parsing in the vanilla implemen-
tation, while typechecking takes - relatively speaking - 2,5 times longer in the OMeta
implementation. The execution time of the interpreter is equally in both implementation
and since the vanilla implementation is faster in absolute numbers, it follows that the
vanilla interpreter takes a larger portion in the total execution time, between 10 and
20% compared to 2 to 5% in OMeta.

An overview of the execution times per module and per implementation in absolute
numbers is given in figure 6.3. The figure illustrates the linear progress of both im-
plementations. It is also clear from the figure that the vanilla implementation is much
faster then OMeta by a factor 4 in difference.

Performance comparison OMeta and Vanilla implementation
60.000,00 4

@ Interpreter O Typechecker O Parser
1.514
50.000,00 4 4.292
1.086
40.000,00 4
= 3.822
£
@
£
=
'5 30.000,00 4 714
5
g 2.569
& 48.079
20.000,00 4
490 35.882 e
1.445 3
24.646 55
946
10.000,00 -
442 778 201
825 13.684 o 12561
533 8.972
6.319 460 ﬂ 99 5.787
0,00 =Ta00 | ' 85 3.057 | | '
N S S S * S * * * 3
2@\’ : \\\z’\ ,A’L?’ q;\xc’ x"‘f’ ~\\’°<’ " ® o ® ®\’° ; \?»'&Q
N o & N N & &K X RO N
o N ¥ &8 O o Koy o

Figure 6.3: Comparison execution times

68

6.3 Functionality

Functionality is measured using a series of acceptance tests and the level of error report-
ing.

The acceptance tests are performed by running a collection of 104 acceptance tests in
each implementation. Each of these tests exercises a particular functionality of the
DSL and results in a failure or acceptance. Additionally, there are three demo Waebric
programs added to the collection of acceptance tests to achieve full code coverage. Re-
sults show that each acceptance test succeeded in both implementations, inclusive the
three additional Waebric programs. It follows that both implementations support the
complete Waebric notation.

The second level at which functionality was measured is the support of error reporting
towards the end-users. Results show that OMeta is only capable of throwing the line
position of the error. The column number or a relevant part of the parser stack are not
provided by OMeta and the only error description given towards the end-user is ”matched
failed”. The error message may be ’correct’, but it doesn’t address the concrete problem,
nor addresses it the error in the terms of the problem domain.

Better results are acquired in the vanilla implementation where 93% of the test files
result in a correct error message with corresponding parser stack, line/column position
and a description in terms of the problem domain. One error was unexpected using
an illegal character in the symboltext while an error in an embedding context failed at
lexical level and could therefore not provide a parser stack.

A complete evaluation of the error messages is provided in appendix A

69

Chapter 7
Analysis

This chapter analyzes and interprets the results presented in chapter 6. The analysis is
categorized into maintainability, efficiency and functionality.

7.1 Maintainability

The maintainability metrics extracted from the implementations presents significant
differences, especially for the lines of code and Halstead Effort metrics. The construction
of the OMeta parser only required 304 effective lines of code*® which is significant lower
then its opponent in the vanilla implementation with more then 2200 lines of code, a
factor 6.1 in difference. This can be explained by the higher abstraction level of the
OMeta grammar which is more expressiveness compared to program code. A higher
expressiveness usually results in more complex code and thus affects maintainability
negatively. The level of abstraction can be counteracted using the LOC* metric which
uses the method count (VAR) and average method size (RHS) metrics to calculate the
lines of code in a grammar. When the LOC* metric is applied, the difference in code
size decreases to a factor 5.7. In either case it’s clear that the OMeta parser uses fewer
lines of code which potentially results in more maintainable code.

The average method size indicates that the OMeta parser contains less code per function
compared to the vanilla lexer /parser. The low value is partially the result of the semantic
action code which creates the AST objects or performs limited string operations. If only
the non-semantics of the grammar are considered, then the AMS metric is more realistic
with values ranging between 6 and 7 lines of code per function. This number is relatively
high since whitespaces between the terminals and non-terminals in a production body
should be defined explicitly. Other formal specifications such as ANTLR or SDF ignore
whitespace implicitly by defining the production rule as context-free syntaz. This requires
two languages, one for the lexical syntax and one for the context-free syntax. For this
reason, OMeta has chosen not to implement this mechanism in order to create lexers

70

and parsers using the same language. The disadvantage is however that the size of the
production body increases. The more terminals and non-terminals in a production rule,
the more error prone the grammar. Note that this effect can be minimized by skipping
whitespaces as much as possible at lexical production rules (i.e. rules that consume
keywords, literals, etc).

The values of the Extended Cyclomatic Complexity metric show that the vanilla parser
uses more branches compared to the OMeta parser. This is understandable since the
vanilla parser requires many if/else statements to evaluate whether the tokens in the
tokenlist are positioned in the correct sequence. These evaluations also allows the im-
plementor to define user-defined error messages whenever an evaluation would fail. The
downside is that complexity increases if the ECC metric is considered.

OMeta performs most evaluations implicit due to the higher abstraction level at which
OMeta operates. The only complexity that is introduced inside the grammar is caused
by the choice or repetition operator. Since these operators are not much used inside the
grammar, it follows that the complexity is low.

The low complexity of the OMeta parser is also noticeable in the Maintainability Index
and Halstead effort. The MI indicates higher maintainable code for the OMeta imple-
mentation while Halstead Effort indicate that the vanilla parser requires three times
more development effort compared to the OMeta parser, which is in line with previous
observations.

The maintainability of the typechecker is remarkable similar for both implementation.
The only significant value is the lines of code metric which shows a difference of a factor
1,8 whereby OMeta has the smallest code base. The application of the LOC* metric has
little or no impact on code size since most code is situated in the libraries and not in
the grammar.

The cause of the limited code size in the OMeta typechecker is a direct consequence
of the reuse of the tree walking mechanism from the parser using OMeta’s inheritance
capabilities. This has positive impact on maintainability since the traversal of the type-
checker automatically adapts and evolves when the OMeta parser is changed. The
vanilla typechecker on the other hand implemented the tree walking mechanism by itself
using the visitor pattern through which more code was necessary. This has impact on
maintainability twice. First there is more code to maintain, and second, if something
changes at the parser (e.g. new or modified Waebric notations) it requires changes at
the typechecker as well.

Finally, the Halstead metric indicates that the OMeta typechecker requires 30% less
effort compared to the vanilla typechecker. This is however not significant enough to
draw general conclusions.

71

7.2 Efficiency

From the results it’s clear that OMeta translates Waebric programs at a much slower
speed compared to the vanilla implementation. Despite the poor results, OMeta is still
able to operate in linear time due to the use of a packrat parser [8] which memoizing
the results of intermediate parsing steps to allow backtracking. [35].

The poor performance results might be attributed to the backtracking functionality
that is provided by OMeta. Generally, backtracking affects performance negatively and
should be avoided. The only grammar that uses backtracking is the OMeta parser which
includes seven look-ahead operators which might have affect performance during tests.
These operators are necessary to distinguish certain rules from each other and cannot be
left out of the grammar. The look-ahead operators are almost always positioned at the
end of a production to indicate that a rule may not be followed by a particular character
or string. Since backtracking is only required on a string and not on a complete rule, it
is believed that the look-ahead operators have little impact on performance. Moreover,
the code review that took place with the creator of OMeta didn’t pointed out harmful
constructions in the grammar which might affect performance negatively.

Since backtracking is not the main cause for poor performance, it is assumed that
OMeta’s memoization mechanism is the culprit. The storage of intermediate parsing
steps causes the size of the parsing table to be proportional with the number of ter-
minals and non-terminals (operands) used in the grammar. Since the grammar of the
OMeta parser contains 446 operands, it is believed that performance is affected nega-
tively. The believe is strengthen by messages from members of the OMeta community
which states that performance was never OMeta’s top priority:

”OMeta is not suited to high performance parsing (at least not the current
unoptimized implementations). The beauty of OMeta is that it’s so flexible,
elegant and easy to implement ... but at the cost of performance.”

- John Leuner

In the vanilla implementation it’s noticeable that most time is spend on lexing and not
on parsing. The lexical phase is therefore the bottleneck in the vanilla implementation.
A first attempt to improve the performance of the code was made during the project
but resulted in an even worse performance. One optimization that was not carried
out includes the use of stream readers to read characters from the input. The current
implementation reads in the complete Waebric program using a Java library and after-
wards passes it as string object to the lexer. It might be more efficiency to use input
streams for this kind of operations so the complete string should not be kept in memory,
but this would contradict with the requirements from section 3 which stated that the
dependencies and functionality of external libraries should be kept to the bare minimum.

72

Despite the above observations is the vanilla implementation the most efficient of both
implementations.

7.3 Functionality

The acceptance tests performed in section 6.3 demonstrated that the complete syntax
notation is supported by both implementation. This conclusion is in variance with the
hypothesis stated in section 3.4 which presumed that OMeta wouldn’t be capable of
supporting the complete syntax notation of Waebric. The hypothesis was based on the
notion that BNF includes a flaw by which certain symbol characters in the DSL may
conflict with BNF notation itself. During implementation is became clear that OMeta
does not derives these limitation and, as a result, OMeta was able to achieve 100%
acceptance.

The second level at which functionality was measured includes the level of error reporting.
The vanilla implementation provided in 92% of the test cases the correct error message
in terms of the problem domain with corresponding line/column position and parser
stack. OMeta on the other hand was only capable of providing the end-user a message
"Match failed!”. The level of error reporting was forced up by manually by counting
the newline characters in the semantic action code in order to output at least the line
number at which parsing fails. The remaining functionality to provide a parser stack or
to point out the production rule at which matching failed is however not supported by
OMeta.

73

Chapter 8

Conclusions

This chapter provides concluding remarks on the research questions stated in section 1.2
based on the analysis presented in chapter 7.

8.1 Maintainability

RQ1.1 How maintainable is each implementation in terms of lines of code, method
size, McCabe complexity, Halstead Effort and Maintainability Index?

The evaluation of the parser and typechecker indicates that the OMeta implementation
provides better maintainable code then its opponents in the vanilla implementation. The
large differences at the parser module suggest that OMeta provides the best solution to
develop a highly maintainable parser with a minimum of resources. The results for the
typechecker are less significant since most metrics are identical apart from the (e)LOC
metric. However, when the reuse of the tree walker is taken into account, then the
OMeta typechecker might be a better choice.

As aresult, the assumption is made that the OMeta implementation is more maintainable
then the vanilla implementation which confirms the hypothesis in section 3.4 which
stated that maintenance is reduced when using OMeta instead of traditional interpreter
techniques.

74

8.2 Efficiency

RQ1.2 How efficient is each implementation in terms of duration of regression
tests?

The efficiency of the implementations was measuring using 8 regression tests with the
objective to translate the Waebric program as fast as possible. Results clearly indi-
cated that the vanilla implementation presents better performance results compared to
OMeta/JS. This observation is in line with the hypothesis made in section 3.4. Despite
better performance results for the traditional interpreter technique, performance is still
remarkable poor due to JavaScript’s implementation and the question might arise how
useful a slow implementation is in a production environment.

8.3 Functionality

RQ1.3 How functional is each implementation in terms of acceptance tests, sup-
ported notation and error reporting?

Functionality was determined by measuring the level of acceptance and error reporting.
The acceptance tests indicated no differences between the implementations, and as a
result, functionality only depends on the level of error reporting.

Error reporting is significant better when using the traditional interpreter technique
which provides error messages written in the language of the end-user and in terms of
the problem domain. This is in shrill contrast with the OMeta implementation which is
only capable of providing a generic error message ”Match failed!” with corresponding line
number. This makes OMeta probably not the best choice for a production environment
as end-users are left in the dark. This viewpoint is supported in a technical report which
states that the main purpose of OMeta is to prototype new programming languages or
extensions to existing languages [35].

As a result of previous observations, it is concluded that the interpreter technique results
in a better level of functionality and OMeta should only be chosen when error reporting is
not of great importance (e.g. prototyping). This observation is only partially supported
by the hypothesis in section 3.4 since it was presumed that the level of supported syntax
notation in OMeta would be lower.

75

8.4 Overall quality

RQ1 How does the quality of a DSL implementation in OMeta/JS relates to the
quality of a hand-written JavaScript interpreter?

Choosing a suitable DSL implementation technique is essential when developing a domain-
specific language as it can affect the total effort required to implement the DSL largely,
not to mention end-user productivity, efficiency and maintainability. The research pre-
sented in this thesis implemented the Waebric markup language using two commonly
used techniques for domain-specific languages, the interpreter and compiler generator
technique (OMeta/JS). The results gathered from these implementations exhibits large
quality differences and show that there is no such thing as the most qualitative DSL
implementation technique since each approach has its pros and cons.

The OMeta implementation has provided the best results in the field of maintainability
as a result of minimal implementation effort and the highly maintainable code it yields.
This comes with two downsides however, poor efficiency results - up to a factor four
in difference - and the lack of good error reporting towards the end-user. This makes
OMeta not useful for a production environment and OMeta should therefore be seen as
tool for prototyping new programming languages or extensions to existing languages.

The results for the interpreter technique show that this implementation technique is more
versatile compared to OMeta since it yields better performance and functionality while
maintainability is still acceptable. If the cut-off values of the Maintainability Index and
cyclomatic complexity are considered, then the vanilla implementation still has highly
maintainable code. The main disadvantage of the interpreter technique is the time and
effort required to implement a DSL. The Halstead metrics indicates that the interpreter
technique requires twice as much effort compared to the implementation in OMeta.

Based on previous observations it is recommended to use OMeta/JS for rapidly pro-
totyping domain-specific languages without the need for high performance and good
error reporting, while the interpreter technique is best applicable for DSLs targeted to
production environments or when high performance is desired.

76

Bibliography

[1]

AHo, A. V., Lam, M. S., SETHI, R., AND ULLMAN, J. D. Compilers: Principles,
Techniques, € Tools (2nd Edition). Addison Wesley, August 2006.

Arves, T., AND VISSER, J. Metrication of sdf grammars. Tech. rep., Departamento de
Informtica da Universidade Do Minho, Campus De Gualtar, Braga, Portugal, 2002.

BENTLEY, J. L. Programming pearls: Little languages. Communications of the ACM 29,
8 (August 1986), 711-721.

BRAUER, W. On grammatical complexity of context-free languages. In Proceedings of
Mathematical Foundations of Computer Science (1973), pp. 193-196.

CsuHAJ-VARJ, E., AND KELEMENOV, A. Descriptional complexity of context-free grammar
forms. Theoretical Computer Science 112, 2 (1993), 277-289.

FELDMAN, J. A., GIps, J., HORNING, J. J., AND REDER, S. Grammatical complexity
and inference. Technical report, Computer Science Departement Standford University, June
1969.

FENTON, N. E., AND NEIL, M. Software metrics: roadmap. In ICSE ’00: Proceedings of
the Conference on The Future of Software Engineering (New York, NY, USA, 2000), ACM,
pp. 357-370.

ForD, B. Parsing expression grammars: a recognition-based syntactic foundation. POPL
’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (2004), 111-122.

GOODMAN, P. Software Metrics, Best Practices for Successful IT Management. Rothstein
Associates Inc, 2004.

HALSTEAD, M. H. Elements of Software Science, vol. 7. Elsevier, 1977.

HERNDON, R. M., AND BERZINS, V. A. The realizable benefits of a language prototyping
language. IEEE Transactions on Software Engineering 14 (1988), 803—-809.

Hubak, P. Building domain specific embedded languages. ACM Computing Surveys 284,
4es (December 1996), 196.

IBM, S. A. Rational asset analyzer. http://publib.boulder.ibm.com/infocenter/
rassan/vbr5/index. jsp?topic=/com.ibm.raa.doc/common/chalstd.htm.

JONES, J. Abstract syntax tree implementation idioms. Pattern Languages of Program
Design (2003). Proceedings of the 10th Conference on Pattern Languages of Programs
(PLoP2003) http://hillside.net/plop/plop2003/papers.html.

77

http://publib.boulder.ibm.com/infocenter/rassan/v5r5/index.jsp?topic=/com.ibm.raa.doc/common/chalstd.htm
http://publib.boulder.ibm.com/infocenter/rassan/v5r5/index.jsp?topic=/com.ibm.raa.doc/common/chalstd.htm

[15]

[27]
28]

[29]

[30]
[31]

[32]

KieBURTZ, R. B., McKINNEY, L., BELL, J. M., Hook, J., Korov, A., LEwis, J.,
OrivA, D. P., SHEARD, T., SMITH, I., AND WALTON, L. A software engineering exper-
iment in software component generation. Proceedings of the 18th International converence
on Software Engineering 18 (1996), 542-553.

KosaRr, T., E. MARTNEZ LPEZ, P., A, BARRIENTOS, P., AND MERNIK, M. A preliiminary
study on various implementation approaches of domain-spefic language. ScienceDirect -
Information and Software Technology 50 (April 2007), 390-405.

LEvVITIN, A. V. How to measure software size, and how not to. Proceedings COMPSAC
(October 1986), 314-318.

Liso, A. Software maintainability metrics model: An improvement in the coleman-oman
model. Crosstalk (2001), 15-17.

LowTHER, B. The application of software maintainability metric models on industrial
software systems,. Master’s thesis, Department of Computer Science, University of Idaho,
Moscow, 1993.

McCaBE, T. J. A complexity measure. IEEE Transactions on Software Engineering SE-2,
4 (December 1976), 308-320.

MERNIK, M., HEERING, J., AND M. SLOANE, A. When and how to develop domain-specific
languages. ACM Computing Surveys 37 (2005), 316-344.

MICROSYSTEMS, S. Code conventions for the javatm programming language. http://
java.sun.com/docs/codeconv/html/CodeConventions.docb5.html, September 1997.

MyYERS, G. J. An extension to the cyclomatic measure of program complexity. ACM
SIGPLAN Notices 12, 10 (October 1977), 61-64.

OMAN, P., COLEMAN, D., AsH, D., AND LOWTHER, B. Using metrics to evaluate soft-

ware system maintainability. The Book Paradigm for Improved Software Maintenance 7, 1
(January 1990), 39-45.

OMAN, P., AND HAGEMEISTER, J. Metrics for assessing a software system’s maintainability.
Conference on Software Maintenance (November 1992), 337-344.

OMAN, P., AND HAGEMEISTER, J. ”constructing and testing of polynomials predicting
software maintainability. Journal of Systems and Software 24, 3 (March 1994), 251-266.

POWER, J., AND MALLOY, B. Metric-based analysis of context-free grammars. In Proceed-
ings 8th International Workshop on Program Comprehension (2000), pp. 171-178.

POWER, J. F., AND MALLOY, B. A. A metrics suite for grammar-based software: Research
articles. J. Softw. Maint. Evol. 16, 6 (2004), 405-426.

QutalsH, R. E. A., AND ABRAN, A. An analysis of the design and definitions of hal-

steads metrics. In Proceedings of the 15th International Workshop on Software Measurement
(IWSM’2005) 15 (September 2005), 337-352.

ROSENBERG, J. Some misconceptions about lines of code. Software Metrics, IEEE Inter-
national Symposium on 0 (1997), 137.

SPINELLIS, D. Notable design patterns for domain specific languages. Journal of Systems
and Software 56, 1 (Feb. 2001), 91-99.

VAN DER STORM, T. WAEBRIC: a Little Language for Markup Generation, June 2009.

78

http://java.sun.com/docs/codeconv/html/CodeConventions.doc5.html
http://java.sun.com/docs/codeconv/html/CodeConventions.doc5.html

[33]
[34]
[35]
[36]

[37]

[38]

[39]

VAN DEURSEN, A., AND KLINT, P. Tittle languages: Little maintenance? Journal of
Software Maintenance: Research and Practice 10, 2 (December 1998), 75-92.

VAN DEURSEN, A., KLINT, P., AND VISSER, J. Domain-specific languages: An annotated
bibliography. ACM 35(6) (2000), 26-36.

WARTH, A. Experimenting with programming languages. Tech. rep., Viewpoints Research
Institute, 2008.

WARTH, A., AND PIUMARTA, I. Ometa: an object-oriented language for pattern matching.
DLS’07 DSL (2007).

WELKER, K., OMAN, P., AND ATKINSON, G. Development and application of an auto-
mated source code maintainability index. Journal of Software Maintenance: Research and
Practice 9, 3 (May 1997), 127-1509.

WILE, D. S. Supporting the dsl spectrum. Journal of Computing and Information Tech-
nology 9, 4 (2001), 263287.

ZENGER, M., AND ODERSKY, M. Implementing extensible compilers. Workshop on Mul-
tiparadigm Programming with Object-Oriented Languages (MPOOL) (2001).

79

Appendix A

Metrics

80

DSL BENCHMARK IMPLEMENTATION PROJECT

Maintainability
Loc ELOC METHOD COUNT AVG Production Rules ~ Verage size Total MCC AvgMCC | Halstead Volume ~ AvoHalstead 1 ad Effort MI3 M4
METHOD SIZE RHS Volume
PARSER 2.214 1.828 226 736 379.862,69
Lexical 538 431 63 8,54 N/A /A 191 3,03 8.333,20 132,27 21.901,17 83,53 124,86
Syntactic 1,557 1.204 151 10,31 N/A /A 517 342 36.222,25 239,88 336.060,35 74,57 113,78
Other 119 103 12 9,92 N/A /A 28 2,33 2.266,61 188,88 21.901,17 77,52 119,41
VALIDATOR 606 473 90 169 73.821,84
Validator 606 473 90 6,73 N/A /A 169 1,88 9.220,95 102,46 73.821,84 91,27 131,47
INTERPRETER 1.018 792 124 318 200.908,95
Interpreter 1.018 792 124 8,21 N/A /A 318 2,56 19.969,98 161,05 200.908,95 83,08 123,51
AST 609 447 131 250 46.005,28
Abstract Syntax Tree 609 447 131 4,65 N/A /A 250 1,91 7.620,87 58,17 46.005,28 104,16 147,94
TOTAL (SUM) 4.447 3.540 440 1.223
TOTAL (AVG PER SUBMODULE 741 590 95 8,06 246 2,52 13.938,98 147,12 116.766,46 85,69 126,83
PARSER 361 304 153 60 6,43 225,00 152.592,01
Grammar (excl. action code) 130 105 60 6,43 60 643 108,00 1,80 6.486,90 108,12 94.342,16 91,95 115,77
Grammar internal action code 98 92 76 1,29 N/A N/A 80,00 1,05 5.117,73 67,34 42.140,98 133,23 153,52
Grammar external action code 87 71 10 8,70 N/A /A 21,00 2,10 1.869,02 186,90 13.527,86 80,72 120,64
Other 46 36 7 6,57 N/A /A 16,00 2,29 526,62 75,23 2.581,01 94,06 138,64
VALIDATOR 330 262 49 76 49.550,31
Grammar (excl. action code) 13 1 10 2,00 10 2,00 0,00 0,00 228,44 22,84 934,53 131,33 172,67
Grammar internal action code 61 35 10 6,10 N/A N/A 17 1,70 1.270,65 127,07 26.240,42 92,00 127,24
Grammar external action code 197 170 20 9,85 N/A /A 38 1,90 2.502,78 125,14 18.263,96 80,87 112,71
Other 59 46 9 6,56 N/A /A 21 2,33 760,80 84,53 4.111,40 93,23 138,44
INTERPRETER 1.018 792 124 318 200.908,95
Interpreter 1.018 792 124 8,21 N/A /A 318 2,56 19.969,98 161,05 200.908,95 83,08 123,51
AST 609 447 131 250,00 46.005,28
Abstract Syntax Tree 609 447 131 465 N/A /A 250 1,91 7.620,87 58,17 46.005,28 104,16 147,94
TOTAL (SUM) 2.318 1.805 457 70 8,43 869

TOTAL (AVG PER SUBMODULE 231,80 180,50 45,70 6,04 35,00 4,22 86,90 1,76 4.635,38 101,64 44.905,66 98,46 135,11

DSL BENCHMARK IMPLEMENTATION PROJECT
Efficiency

MODULE MODULE MODULE MODULE

TOKENIZER PARSER TYPECHECKER INTERPRETER TOTAL

VANILLA LAVA.WAE

Average 2.708,02 657,41 155,36 881,83 4.437,07
VANILLA LDTA.WAE

Average 878,22 334,00 68,72 593,14 1.899,69
VANILLA MENUS.WAE

Average 154,12 200,31 34,19 424,69 843,58
VANILLA 1k

Average 882,53 526,24 85,04 459,52 1.957,85
VANILLA 2.5k

Average 2.017,54 1.039,82 99,38 533,10 3.693,88
VANILLA 5k

Average 4.110,02 1.676,88 150,30 778,31 6.719,09
VANILLA 7.5k

Average 6.440,87 2.530,80 200,97 945,53 10.121,92
VANILLA 10k

Average 9.455,14 3.106,28 254,81 1.314,40 14.134,99
OMETA LAVA.WAE

Average 19.514,85 2.561,21 802,71 22.878,77
OMETA LDTA.WAE

Average 6.118,20 792,35 543,61 7.454,16
OMETA MENUS.WAE

Average 812,65 65,93 445,23 1.323,81
OMETA 1k

Average 6.318,77 825,38 441,75 7.585,90
OMETA 2.5k

Average 13.684,09 1.444,88 489,72 15.618,69
OMETA 5k

OMETA 5k 24.646,12 2.568,89 713,56 27.928,57
OMETA 7.5k

Average 35.881,59 3.822,23 1.085,94 40.789,76
OMETA 10k

Average 48.079,44 4.292,37 1.514,26 53.886,07

DSL BENCHMARK IMPLEMENTATION PROJECT
Results error messages

Correctness error In terms of domain (Ii:e(;::::::m) F;i:: Correctness error In terms of domain (Ii:e(;:zlil?;n) ':i:ir
No semicolon defined after statement ";" (] (%] @ (%] (~] @ @ @
Unclosed formal in function definition ")" (%] ® @ ® (<] (<] (<] (<]
Explicit semicolon after last site mapping ";" (X] (%] @ @ (] (] (] @
Using a keyword as markup @ ® @ ® @ @ (<] @
No separator site path/markuo (%] (] @ (] (] (<]
lllegal character in SymbolText ">" @ @ (X] (%] (X] (%]
Wrong type predicate (input.test?) (X] (] @ (] (~] o (<] o
No ending quote in a text expression (%] (%] @ (<] (] (]
No ending semicolon after the let-statement @ @ (] (] (] (<]
Unclosed function definition "end" (%} (X] @ ® (<] @ (<] @
lllegal character in text expression "<" (X] (%] @ @ (] (] (] @
lllegal character in formals "<" (X] ® @ ® (~] (<] (<] (<]
Unclosed embedding ">" (%] (%] @ (%] (<] (X]
Defining an each statement with a typo @ @ (~] (<] (] (<]
Wrong separator variable / list in each statement (X] (] (] (~] o (<] (<]

	Abstract
	Preface
	Introduction
	Motivation
	Research questions
	Organization of this thesis

	Background and context
	Domain-specific languages
	Introduction
	Development phases
	Implementation strategies

	OMeta
	Introduction
	Parsing Expression Grammar
	OMeta: an extended PEG

	Waebric
	Introduction
	Example
	Embedded markup
	Juxtaposition
	Around parameterization

	Research method
	Maintainability
	Program code metrics
	Grammar metrics

	Efficiency
	Functionality
	Hypotheses
	Threats to validity
	Waebric as reference DSL
	Mapping of metrics
	OMeta as compiler-generator

	Vanilla implementation
	Lexical analysis
	Process
	Example
	Difficulties

	Syntactic analysis
	Parsing algorithm
	Abstract Syntax Tree
	Design
	Example

	Semantic analysis
	Environments
	Tree walking
	Typechecking
	Interpreting

	OMeta implementation
	Lexical and syntactic analysis
	Example

	Semantic analysis
	Tree walking
	Example

	Results
	Maintainability
	Vanilla implementation
	OMeta implementation

	Efficiency
	Functionality

	Analysis
	Maintainability
	Efficiency
	Functionality

	Conclusions
	Maintainability
	Efficiency
	Functionality
	Overall quality

	Bibliography
	Metrics

