XRPC: Distributed XQuery and Update Processing with
Heterogeneous XQuery Engines

Ying Zhang and Peter Boncz
Centrum voor Wiskunde en Informatica

Amsterdam, The Netherlands
Y.Zhang@cwi.nl, P.Boncz@cwi.nl

ABSTRACT

We demonstrate XRPC, a minimal XQuery extension that
enables distributed querying between heterogeneous XQuery
engines. The XRPC language extension enhances the exist-
ing concept of XQuery functions with the Remote Procedure
Call (RPC) paradigm. XRPC is orthogonal to all XQuery
features, including the XQuery Update Facility (XQUF).
Note that executing XQUF updating functions over XRPC
leads to the phenomenon of distributed transactions. XRPC
achieves heterogeneity by an open SOAP-based network pro-
tocol, that can be implemented by any engine, and an XRPC
Wrapper that allows even XRPC-oblivious XQuery engines
to handle XRPC requests efficiently. XRPC is fully imple-
mented in the open-source MonetDB/XQuery engine, and
is demonstrated here to co-operate with Saxon, Galax and
X-Hive through the XRPC wrapper.

This demonstration will focus on the following features
of XRPC: (%) glue-less interaction between AJAX style web-
based applications with XQuery databases thanks to the
SOAP-based nature of the XRPC network protocol, (i) the
efficiency of XRPC communication also for voluminous inter-
server communication thanks to the Bulk RPC feature that
optimizes network communication and exposes set-at-a-time
opportunities to the underlying XQuery engines, (iii) the
interoperability between different XQuery engines that can
handle both distributed transactions (both read-only requests
and updates) (iv) support and performance trade-offs of two
different isolation levels for distributed transactions among
different XQuery engines.

Categories and Subject Descriptors

H.2.4 [Systems]: Query processing, Distributed databases;
H.2.3 [Languages]: Query Languages

General Terms

Design, Experimentation, Languages, Performance

Copyright is held by the author/owner(s).
SIGMOD’08, June 9-12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

1331

WS-AtomicTransaction protocol for distributed updates

mSﬁQ%

peeri peer2 _/.//
MonetDB MonetDB
/XQuery /XQuery

+XRPC

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

JavaScript

web browser

Figure 1: browser-initiated XRPC query, visiting
peers 2,3 twice; updating peers 1-3 with atomic com-
mit (dashed box area).

1. THE XRPC LANGUAGE EXTENSION

The XQuery 1.0 language [1] only provides a data ship-
ping model for querying XML documents distributed over
the Internet. The built-in function fn:doc() fetches an XML
document from a remote peer to the local server, where it
subsequently can be queried. The recent W3C working draft
of XQuery Update Facility (XQUF) [5] introduces a built-
in function fn:put() for remote storage of XML documents,
which again implies data shipping.

For distributed queries, a function shipping approach sig-
nificantly enhances optimization possibilities. Therefore, we
designed and implemented XRPC [8], a minimal XQuery
extension that enables distributed XQuery processing with
different XQuery engines, by naturally extending the exist-
ing concept of XQuery functions with the RPC paradigm.
XRPC was carefully designed to be simple and easy to im-
plement in existing engines on the one hand, yet on the
other hand to fully respect the full semantics of the exist-
ing XQuery language, including such diverse feature areas
as XML typing, but also XQUF updating functions. As
the goal of XRPC is to allow different XQuery engines to
co-operate, its network protocol is explicitly part of the pro-

posal. This protocol is based on SOAP messages over HTTP,
which also means that XRPC database servers can seam-
lessly integrate in Service Oriented Architectures (SOA). In
our demo, we showcase “glue-less” access of web applications
to MonetDB/XQuery, using XHTML pages that contain em-
bedded JavaScript XRPC SOAP calls (i.e. AJAX). An exam-
ple scenario is shown in Figure 1.

The XRPC Syntax. Remote function applications in XRPC
take the XQuery syntax: execute at {Expr}{FunApp (Param-
List)}, where ExzprSingle is an XQuery xs:string expression
that specifies the URI of the peer on which the function
FunApp is to be executed. Hence, the destination of an
XRPC call is not hard coded, instead, it can be calculated
by any XQuery ExprSingle.

Examples. As a running example, we assume a set of
XQuery database systems (peers) that each store a movie
database in an XML document filmDB.xml with contents
similar to:

<films>
<film><name>The Rock</name>
<actor>Sean Connery</actor></film>
<film><name>Green Card</name>
<actor>Gerard Depardieu</actor></film>
</films>

We assume an XQuery module film.xq stored at exam-
ple.org, that defines a function filmsByActor():

module namespace file="films";
declare function film:filmsByActor($actor as xs:string) as node()*
{ doc("filmDB.xml")//name]../actor=$actor] };

With XRPC, we can execute this function on a remote peer,
e.g. x.example.org, to get a sequence of films in which Sean
Connery plays in the film database stored on the remote
peer.

import module namespace f="films” at "http://example.org/film.xq";
<films> {
execute at {"xrpc://x.example.org”}
{f:filmsByActor("Sean Connery”)}
} </films>

which yields: <films><name>The Rock</name></films>.

The XRPC URI scheme. We introduce a new URI scheme,
accepted in the destination URI of execute at. The generic
form of such a URI is: xrpc://<host>[:port][/[path]], where,
xrpc:// indicates the network protocol, <host>[:port] indi-
cates the remote peer, and [/[path]] is an optional local
path at the remote peer. This URI scheme can be used
to identify a remote peer that is running an XQuery en-
gine and is able to handle XRPC requests. An xrpc:// URI
can also be used inside a fn:doc() to retrieve XML docu-
ments from the XML database on a remote host, instead
of from the file system of the host. That is, the query
doc("xrpc://example.org/doc.xml”) results in an HTTP request
for getting the document “doc.xml” to the XRPC handler on
host example.org. When xrpc:// URIs are present in a query,
an XQuery optimizer could possibly split a query in sub-
expressions (as XQuery functions), and decide to execute
some of these functions on the remote peer using XRPC L

1This demo uses distribution through explicit “execute at”
statements; automatic XQuery distribution is ongoing work.

1332

2. THE SOAP XRPC MESSAGE FORMAT

Our XRPC proposal also encompasses a SOAP [7] based
network protocol, the SOAP XRPC protocol, which specifies
the format of XRPC request and response messages. We use
a literal SOAP format, with XML serialized according to the
W3C standard, and full support for validation.

In an XRPC request message, the actual parameters of
each single function call are enclosed by a call element. The
SOAP XRPC protocol allows multiple call elements in a single
request element so that multiple iterations of XRPC calls to
the same function can be sent together (i.e. Bulk RPC, see
below).

Since a parameter in XQuery can be a heterogeneously
typed sequence, we enclose each parameter in a sequence
element and annotate the type of each value. Atomic values
are represented with atomic-value, and are annotated with
their (simple) XML Schema Type in the xsi:type attribute,
e.g. the sequence (3.1, “abc”) would become:

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:double">3.1</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:string">abc</xrpc:atomic-value>
</xrpc:sequence>

XML nodes are passed by value in an element element.

<xrpc:sequence>
<xrpc:element><name>The Rock</name></xrpc:element>
</xrpc:sequence>

Enclosing elements for other nodes types (e.g. document,
text, attribute) are defined in the XML schema XRPC.xsd?.

Bulk RPC. XRPC calls can be included in arbitrarily nested
for-loops, thus, a naive implementation that makes a single
RPC call at a time would easily generate a large amount
of messages, resulting in high network latency and band-
width usage. A crucial feature of the SOAP XRPC protocol
is bulk RPC, that allows to compute multiple applications
of the same function (with different parameters) in a single
request/response network interaction, by including multiple
call elements in a single XRPC request message. Moreover,
bulk RPC also exposes set-at-at-time opportunities to the
remote XQuery engine: a function that performs a selection
can, when invoked with a bulk RPC, be handled with a join
strategy.

We have implemented XRPC in the open-source relational
XQuery DBMS MonetDB/XQuery [2] based on the Pathfinder
compiler [6]. In our implementation, we generate bulk RPC
requests for any XRPC call found in an XQuery. All itera-
tions of applications of the same function in a for-loop are
partitioned by their destinations. For each unique destina-
tion, a single bulk XRPC request is generated containing
parameter values of all iterations for this destination, and
then, all request messages are sent in parallel to their des-
tinations. Each destination only sends back one response
message containing results of all iterations.

3. THE XRPC WRAPPER

XRPC is not MonetDB/XQuery-specific: every XQuery
engine that implements the SOAP XRPC protocol should
be able to participate distributed XRPC queries. However,

2See http://monetdb.cwi.nl/XQuery/XRPC.xsd.

import module namespace f=“funs” at “http://example.org/funs.xq”;
declare namespace env="http://www.w3.org/2003 /05 /soap-envelope”;
declare namespace xrpc="http://monetdb.cwi.nl/XQuery"”;

<env:Envelope ...>
<env:Body>
<xrpc:response xrpc:module=“funs” xrpc:method=%“get Person”> {
for $call in doc(“/tmp/requestX X X.xml”)/ /xrpc:call
let $paraml := n2s($call/xrpc: sequence[l])
let $param?2 := n2s($call/xrpc: sequence[2])
return s2n(f: get Person($paraml, $param?2))
}</xrpc:response>
</env:Body>
</env:Envelope>

Table 1: XQuery generated for the getPerson()
XRPC request

cross-system distributed querying can be achieved even with-
out XRPC integrated into an XQuery processing engine.

What is needed is a
Simple XRPC Wrapper response | XRPC Wrapper
that can be run on 4ﬂ

_request ———

top of an XQuery sys-
tem. The XRPC Wrapper generated query
is a SOAP service han-

dler, whose architecture %

is shown to the right. It

stores an incoming XRPC request message in a temporary
file, generates an XQuery for the request, and executes it us-
ing an XQuery processor. The generated query is crafted to
compute the result of a bulk XRPC by calling the requested
function on the parameters found in the message, and to
generate the SOAP response message in XML using element
construction. Note that this XRPC Wrapper only allows to
handle calls using normal XRPC-incapable XQuery systems,
it can not make outgoing XRPC calls from them.

We illustrate how such an XRPC Wrapper works by an
example. The following function returns the person node
from an XMark document ($d) whose @id attribute matches
a given $id:

declare function getPerson($d as xs:string,
$id as xs:string) as node()?
{ zero-or-one(doc($d)//person[@id=$id]) };

Table 1 shows the query generated by XRPC Wrapper to
handle a getPerson request. The XRPC protocol includes
information about the arity of the function (as well as its
return type), so it is easy to generate the right amount of
param parameters in the call. The brunt of the work is done
by two marshaling functions:

declare function n2s($n as node()) as item*
declare function s2n($seq as item*) as node()

The n2s() function converts an XRPC sequence node into
an item sequence, where each item gets the right type. It
traverses over all children of a sequence node using a series
of if..then XQuery statements that select on the xsi:type at-
tribute found in the atomic-value nodes. The s2n() function
converts the function return value into a correct XRPC se-
quence node. It iterates over the input item sequence, and
for each item it uses an XQuery typeswitch to generate the
right SOAP node.

In this demo, we will show the XRPC Wrapper in ac-
tion with different XQuery engines, where Galax, Saxon
and X-Hive co-operate with XQuery queries initiated by
MonetDB/XQuery instances.

1333

4. DISTRIBUTED XRPC TRANSACTIONS

XRPC allows XQUF [5] expressions to be executed on re-
mote peers, by means of XRPC calls to updating functions,
thus providing distributed transaction functionality. For
such distributed updating queries, XRPC provides two differ-
ent isolation levels, no isolation and repeatable reads, to meet
the needs of different kinds of applications. The latter level
provides repeatable reads for all XRPC requests to the same
peer made in a single query and uses a distributed 2-Phase
Commit (2PC) protocol to ensure atomic commit. The se-
mantics of these levels is formally defined in [8], including
necessary extensions to the basic SOAP XRPC protocol to
support them. Each XRPC query can specify the desired
isolation level using the XQuery declare option feature to
set xrpc:isolation to none or repeatable. Here, we briefly ex-
plain how repeatable reads with atomic commit is supported
for updating XRPC queries on different XQuery engines.

To ensure repeatable reads, during the execution of an up-
dating XRPC query qup, each participating peer maintains
the same database state (i.e. all persistently stored XML
documents) for the query. This can be done using systems
that either use (lock-based) serialization, snapshot isolation,
or multi-version concurrency control. The XRPC update re-
quests generated by a query are not applied immediately
to the database state used by that query while it runs.
Rather, these requests are collected, in correspondence with
the XQUF formal definition of a pending update list, that
grows while the query runs. When the update query de-
cides to commit, all peers in the transaction effectuate all
updates in this list.

To provide atomic distributed commit, we have chosen to
use the SOAP-based 2PC industry standard WS-AtomicTrans-
action [4], which defines an API with functions such as Pre-
pare() and Commit(). It is embedded in the WS-Coordinator
framework [3] that allows to register a collection of peers
that participate in a distributed transaction, and subse-
quently run a transaction protocol (in this case WS-Atomic-
Transaction) on those peers. In XRPC, peer p, that starts
the query ¢ is the one that registers the participating peers
at the WS Coordinator service and initiates the Prepare and
Commit phases. For this registration task, it thus needs to
know a full list of peers that participated in the transaction.
Due to nested XRPC calls (i.e. remote functions calling in
turn other remote functions), the query originator may not
be aware of all peers involved and therefore we extended the
SOAP XRPC protocol to piggyback a list of unique partici-
pating peers in their response messages.

To provide updating XRPC queries with repeatable reads
and atomic commit, XRPC systems must implement these
web service 2PC interfaces and offer them over the same
HTTP SOAP server that runs XRPC (this is the case in
MonetDB/XQuery).

4.1 Heterogeneous Distributed 2PC

To enable heterogeneous distributed transactions, that is,
performing XQUF updates on multiple peers that run differ-
ent XQuery engines, the WS-AtomicTransaction 2PC inter-
faces are implemented in our XRPC Wrapper. This involves
extending the XRPC Wrapper with some concurrency con-
trol, XRPC message logging and recovery functionality, that
is used on top of the transactional capabilities of the under-
lying XQuery engine.

To provide the repeatable reads isolation level, the underly-

ing XQuery engine must provide repeatable read consistency
or better and support multi-query transactions (with explicit
start-transaction and commit/abort commands). For read-
only queries under repeatable reads, the XRPC Wrapper
keeps a separate client connection open to the XQuery en-
gine in which all XQuery requests with the same query ID
are executed. This connection is kept open for the time-
out period as specified in the XRPC requests. The XRPC
Wrapper also keeps a log of recently expired query ID-s (and
an in-memory hash-table for fast lookups) such that it can
properly generate error message for late requests. Note that
query ID-s contain a global timestamp, on which a reason-
able maximum timeout can be enforced, so the size of the
hash table should remain limited.

Updating queries can generate XRPC requests to both nor-
mal (read-only) XQuery functions as well as updating func-
tions as defined by the XQUF, and are processed as follows.

1. When an XRPC request is received:

(a) check the query ID id carried by the request to
see if a connection (4 for this query has already
been created, and if not, create a new one, start-
ing a new transaction (as mentioned, an error is
generated for expired ID-s). Also, a new subdi-
rectory D;q is created in the logging directory of
the XRPC Wrapper;

if the called function is a read-only function, ex-
ecute it using the underlying XQuery engine and
send its result back to the caller®. If the execu-
tion fails, add the query ID to the expired query
log and remove D,q4.

otherwise, save the XRPC request message to the
logging subdirectory D;q and send a response mes-
sage to the caller to indicate success without actu-
ally executing the updating function (this is pos-
sible, as updating XQuery functions do not return
aresult). The rationale is that in order to provide
repeatable reads, we must execute all updates to-
gether, at the end of the transaction; otherwise
their effects would be visible for subsequent re-
quests belonging to the same transaction.

2. When a Prepare request with ID id is received, then:

(a) if ID is expired, send Aborted to the coordinator;

(b) otherwise, if there are no request messages saved
in the logging directory D4, send ReadOnly to the
coordinator, and then remove the logging direc-
tOI‘y D¢d4.

otherwise, construct a single query containing all
updating requests that have been saved so far (by
using XQuery sequence construction). Execute
the query in connection C;4, without committing
the transaction yet. If this update query fails,
add the query ID to the expired query log and re-
move D;4. Finally, send the decision Committed

3Note that, to reduce possible communication time with the
coordinators needed by the recover prodedure, each message
should be logged before it is sent.
4Upon receipt of a ReadOnly notification, the coordinator
knows that the participant votes to commit the transaction
and had forgotten the transaction.

1334

or Aborted to the coordinator (depending on the
update success).

3. When a Rollback or a Commit request with ID id is
received:

(a) If the request is Commit, log a “committing mes-
sage” to D;q, and commit the transaction in Cg;
The XRPC Wrapper should cease operation if com-
mitting in Cjq fails, and then try to restart the
underlying XQuery engine and/or itself, entering
recovery mode.

(b) Add the query ID to the expired query log and

remove D;g4.

Thus, the XRPC Wrapper plays the game of declaring a
distributed transaction committed, before actually commit-
ting in the underlying XQuery engine, relying on its own
logging to do so at the global commit point.

Recovery is done every time the XRPC Wrapper starts,
before it accepting any new XRPC requests. During recov-
ery, the logging directory is scanned for unfinished trans-
actions, i.e., for subdirectories containing messages of unfin-
ished transactions. For each subdirectory, if no final decision
can be deduce from the logs (message logs and expired query
ID log), it is requested from the coordinator. Transactions
that should be committed are then re-executed (Step 3).

The worst possible case is finding a “committing” mes-
sage. As it may happen that the underlying XQuery engine
committed but the XRPC Wrapper crashed before remov-
ing the D;q directory, re-trying the commit runs the risk
of executing its updates twice. This risk can be mitigated
by inspecting the log of the underlying XQuery engine (if
accessible).

S. DEMONSTRATION OUTLINE

This demonstration aims at showing all main features of
XRPC:

The demo GUI is an AJAX style web interface, created
without any server-side logic, that itself demonstrates
the use of XRPC from within XHTML pages using its
JavaScript API.

All basic XRPC functionality, including XRPC calls on
multiple remote peers and nested XRPC calls, and calls
to updating functions will be shown.

We demonstrate efficiency improvement of Bulk RPC
by comparing bulk XRPC calls with a one-at-a-time
RPC mechanism, showing both the benefit in network
performance, as well as the benefit of join-plans achiev-
able by bulk RPC, over repeated selection plans caused
by one-at-a-time RPC.

To showcase the interoperability provided by XRPC,
we run distributed XQueries on different XQuery en-
gines (e.g. MonetDB/XQuery, Saxon, Galax and X-
Hive). On MonetDB/XQuery, we run the integrated
XRPC client and server. The other XQuery engines
run with the XRPC Wrapper on top.

We run queries under the no isolation and repeatable
reads isolation levels on MonetDB/XQuery and X-Hive,
showcasing the semantic (and performance) differences,

using a concurrent update load. For this purpose, we
will construct non-trivial interaction patterns where
peers must handle multiple XRPC calls originating from
the same query.

We perform distributed transactions formed by execut-
ing XQUF updating functions on a set of peers running
MonetDB/XQuery. Here we will show two different
consistency levels, one that performs updates immedi-
ately, at the cost of consistency, and one that provides
repeatable reads and atomic commit.

The demo then proceeds to run the same distributed
transactions on a set of heterogeneous peers, i.e. some
peers run MonetDB/XQuery and other peers run X-
Hive.

As an added bonus — depending on development progress

— some of the ongoing work on automatically distributing
XQueries using XRPC may be shown.

6. REFERENCES
[1] S. Boag, D. Chamberlin, M. F. Ferndndez, D. Florescu,

2]

J. Robie, and J. Siméon. XQuery 1.0: An XML Query
Language. W3C Candidate Recommendation 8 June
2006.
http://www.w3.org/TR /2006 /CR-xquery-20060608.

P. Boncz, T. Grust, M. van Keulen, S. Manegold,

J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In SIGMOD, June 2006.

1335

3]

L. F. Cabrera, G. Copeland, M. Feingold, R. W.
Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler,

J. Klein, D. Langworthy, M. little, A. Nadalin,

E. Newcomer, D. Orchard, I. Robinson, J. Shewchuk,
and T. Storey. Web Services Coordination
(WS-Coordination), August 2005.
ftp://www6.software.ibm.com/software/developer/
library /WS-Coordination.pdf.

L. F. Cabrera, G. Copeland, M. Feingold, R. W.
Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler,

J. Klein, D. Langworthy, M. little, A. Nadalin,

E. Newcomer, D. Orchard, I. Robinson, T. Storey, and
S. Thatte. Web Services Atomic Transaction
(WS-AtomicTransaction), August 2005.
ftp://wwwb.software.ibm.com/software/developer/
library /WS-AtomicTransaction.pdf.

D. Chamberlin, D. Florescu, and J. Robie. XQuery
Update Facility. W3C Working Draft 11 July 2006.
http://www.w3.org/TR/2006/ WD-xqupdate-20060711.
T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In VLDB, 2004.

N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C
Recommendation 24 June 2003.
http://www.w3.org/TR /2003 /REC-soap12-part0-
20030624.

Y. Zhang and P. Boncz. XRPC: Interoperable and
Efficient Distributed XQuery. In VLDB, 2007.

