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Algorithmic Statistics
Péter Gács, John T. Tromp, and Paul M. B. Vitányi

Abstract—While Kolmogorov complexity is the accepted
absolute measure of information content of an individual finite
object, a similarly absolute notion is needed for the relation
between an individual data sample and an individual model
summarizing the information in the data, for example, a finite
set (or probability distribution) where the data sample typically
came from. The statistical theory based on such relations between
individual objects can be called algorithmic statistics, in contrast
to classical statistical theory that deals with relations between
probabilistic ensembles. We develop the algorithmic theory of
statistic, sufficient statistic, and minimal sufficient statistic. This
theory is based on two-part codes consisting of the code for the
statistic (the model summarizing the regularity, the meaningful
information, in the data) and the model-to-data code. In contrast
to the situation in probabilistic statistical theory, the algorithmic
relation of (minimal) sufficiency is an absolute relation between
the individual model and the individual data sample. We distin-
guish implicit and explicit descriptions of the models. We give
characterizations of algorithmic (Kolmogorov) minimal sufficient
statistic for all data samples for both description modes—in
the explicit mode under some constraints. We also strengthen
and elaborate on earlier results for the “Kolmogorov structure
function” and “absolutely nonstochastic objects”—those objects
for which the simplest models that summarize their relevant
information (minimal sufficient statistics) are at least as complex
as the objects themselves. We demonstrate a close relation between
the probabilistic notions and the algorithmic ones: i) in both cases
there is an “information non-increase” law; ii) it is shown that
a function is a probabilistic sufficient statistic iff it is with high
probability (in an appropriate sense) an algorithmic sufficient
statistic.

Index Terms—Algorithmic information theory, description
format (explicit, implicit), foundations of statistics, Kolmogorov
complexity, minimal sufficient statistic (algorithmic), mutual in-
formation (algorithmic), nonstochastic objects, sufficient statistic
(algorithmic), two-part codes.
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I. INTRODUCTION

STATISTICAL theory ideally considers the following
problem. Given a data sample and a family of models

(hypotheses), select the model that produced the data. But
a priori it is possible that the data is atypical for the model
that actually produced it, or that the true model is not present
in the considered model class. Therefore, we have to relax
our requirements. If selection of a “true” model cannot be
guaranteed by any method, then as next best choice “modeling
the data,” as well as possible irrespective of truth and falsehood
of the resulting model, may be more appropriate. Thus, we
change “true” to “as well as possible.” The latter we take to
mean that the model expresses all significant regularity present
in the data. The general setting is as follows. We carry out a
probabilistic experiment, the outcomes of which are governed
by an unknown probability distribution . Suppose we obtain
as outcome the data sample. Given , we want to recover the
distribution . For certain reasons we can choose a distribution
from a set of acceptable distributions only (which may or may
not contain ). Intuitively, our selection criteria are that i)
should be a “typical” outcome of the distribution selected, and
ii) the selected distribution has a “simple” description. We need
to make the meaning of “typical” and “simple” rigorous and
balance the requirements i) and ii). In probabilistic statistics,
one analyzes the average-case performance of the selection
process. For traditional problems, dealing with frequencies
over small sample spaces, this approach is appropriate. But for
current novel applications, average relations are often irrele-
vant, since the part of the support of the probability density
function that will ever be observed has about zero measure.
This is the case, for example, in complex video and sound
analysis. There arises the problem that for individual cases the
selection performance may be bad although the performance is
good on average. We embark on a systematic study of model
selection where the performance is related to the individual
data sample and the individual model selected. It turns out to
be more straightforward to investigate models that are finite
sets first, and then generalize the results to models that are
probability distributions. To simplify matters, and because
all discrete data can be binary-coded, we consider only data
samples that are finite binary strings.

This paper is one of a triad of papers dealing with the best in-
dividual model for individual data. The present paper supplies
the basic theoretical underpinning by way of two-part codes,
[20] derives ideal versions of applied methods (minimum de-
scription length–MDL) inspired by the theory, and [9] treats ex-
perimental applications thereof.

Probabilistic Statistics: In ordinary statistical theory one
proceeds as follows, see for example [5]. Suppose two discrete
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random variables , have a joint probability mass function
and marginal probability mass functions

and

Then the (probabilistic)mutual information between
the joint distribution and the product distribution is
defined by

(I.1)

where “ ” denotes the binary logarithm. Consider a proba-
bilistic ensemble of models, say a family of probability mass
functions indexed by , together with a distribution over
. This way we have a random variablewith outcomes in

and a random variable with outcomes in the union of domains
of , and . Every function of a data
sample —like the sample mean or the sample variance—is
called astatisticof . A statistic is calledsufficientif the
probabilistic mutual information

(I.2)

for all distributions of . Hence, the mutual information between
parameter and data sample random variables is invariant under
taking sufficient statistic andvice versa. That is to say, a statistic

is called sufficient for if it contains all the information
in about . For example, considertosses of a coin with un-
known bias with outcome where

. Given , the number of outcomes “” is a suffi-
cient statistic for : the statistic . Given

, all sequences with “ ”s are equally likely independent of
parameter . Given , if is an outcome of coin tosses and

then

and

This can be shown to imply (I.2) and thereforeis a sufficient
statistic for . According to Fisher [6]: “The statistic chosen
should summarize the whole of the relevant information sup-
plied by the sample. This may be called the Criterion of Suffi-
ciency… . In the case of the normal curve of distribution it is
evident that the second moment is a sufficient statistic for esti-
mating the standard deviation.” Note that one cannot improve
on sufficiency: for every (possibly randomized) functionwe
have

(I.3)

that is, mutual information cannot be increased by processing
the data sample in any way.

A sufficient statistic may contain information that is not rel-
evant: for a normal distribution, the sample mean is a suffi-
cient statistic, but the pair of functions which give the mean of
the even-numbered samples and the odd-numbered samples, re-

spectively, is also a sufficient statistic. A statistic is amin-
imal sufficient statistic with respect to an indexed model family

, if it is a function of all other sufficient statistics: it contains
no irrelevant information and maximally compresses the infor-
mation about the model ensemble. As it happens, for the family
of normal distributions, the sample mean is a minimal sufficient
statistic, but the sufficient statistic consisting of the mean of the
even samples in combination with the mean of the odd samples
is not minimal. All these notions and laws are probabilistic: they
hold in an average sense.

Kolmogorov Complexity:We writestring to mean a finite bi-
nary sequence. Other finite objects can be encoded into strings
in natural ways. The Kolmogorov complexity, or algorithmic
entropy, of a string is the length of a shortest binary
program to compute on a universal computer (such as a uni-
versal Turing machine). Intuitively, represents the min-
imal amount of information required to generateby any ef-
fective process [11]. The conditional Kolmogorov complexity

of relative to is defined similarly as the length of a
shortest program to computeif is furnished as an auxiliary
input to the computation. This conditional definition requires a
warning since different authors use the same notation but mean
different things. In [3], the author writes “ ” to actu-
ally mean “ ,” notationally hiding the intended
supplementary auxiliary information “ .” This abuse of no-
tation has the additional handicap that no obvious notation is
left to express “ ” meaning that just “” is given in the
conditional. As it happens, “ ” represents more infor-
mation than just “.” For example, can be almost
as large as by a result in [7], [23]; for it
has an upper bound of for all , and for some ’s it has
a lower bound of . In fact, this result quanti-
fies the undecidability of the halting problem for Turing ma-
chines—for example, if for all , then the
halting problem can be shown to be decidable. This is known to
be false. It is customary, [14], [7], [23], [10], to write explicitly
“ ” and “ .” Even though the difference
between these two quantities is not very large, these small dif-
ferences do matter in the sequel. In fact, not only the precise
information itself in the conditional, but also the way it is rep-
resented, is crucial, see Section III-A.

The functions and , though defined in terms of
a particular machine model, are machine-independent up to an
additive constant and acquire an asymptotically universal and
absolute character through Church’s thesis, from the ability of
universal machines to simulate one another and execute any ef-
fective process. The Kolmogorov complexity of a string can be
viewed as an absolute and objective quantification of the amount
of information in it. This leads to a theory ofabsoluteinforma-
tion contentsof individualobjects in contrast to classical infor-
mation theory which deals withaverageinformationto commu-
nicateobjects produced by arandom source. Since the former
theory is much more precise, it is surprising that analogs of
theorems in classical information theory hold for Kolmogorov
complexity, be it in somewhat weaker form. Here our aim is
to provide a similarly absolute notion for individual “sufficient
statistic” and related notions borrowed from probabilistic statis-
tics.
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Two-Part Codes:The prefix-code of the shortest effective
descriptions gives an expected codeword length close to the
entropy and also compresses the regular objects until all reg-
ularity is squeezed out. All shortest effective descriptions are
completely random themselves, without any regularity whatso-
ever. The idea of a two-part code for a body of datais natural
from the perspective of Kolmogorov complexity. Ifdoes not
contain any regularity at all, then it consists of purely random
data and the model is precisely that. Assume that the body of
data contains regularity. With help of a description of the reg-
ularity (a model) we can describe the data compactly. Assuming
that the regularity can be represented in an effective manner (that
is, by a Turing machine), we encode the data as a program for
that machine. Squeezing all effective regularity out of the data,
we end up with a Turing machine representing the meaningful
regular information in the data together with a program for that
Turing machine representing the remaining meaningless ran-
domness of the data. However, in general there are many ways
to make the division into meaningful information and remaining
random information. In a painting, the represented image, the
brush strokes, or even finer detail can be the relevant informa-
tion, depending on what we are interested in. What we require
is a rigorous mathematical condition to force a sensible division
of the information at hand into a meaningful part and a mean-
ingless part.

Algorithmic Statistics:The two-part code approach leads to
a more general algorithmic approach to statistics. The algo-
rithmic statistician’s task is to select a model (described possibly
by a probability distribution) for which the data is typical. In a
two-part description, we describe such a model and then identify
the data within the set of the typical outcomes. The best models
make the two-part description as concise as the best one-part de-
scription of the data. A description of such a model is an algo-
rithmic sufficient statistic since it summarizes all relevant prop-
erties of the data. Among the algorithmic sufficient statistics,
the simplest one (an algorithmic minimal sufficient statistic) is
best in accordance with Ockham’s Razor, since it summarizes
the relevant properties of the data as concisely as possible. In
probabilistic data or data subject to noise, this involves sepa-
rating regularity (structure) in the data from random effects.

In a restricted setting, where the models are finite sets, a way
to proceed was suggested by Kolmogorov, attribution in [17],
[4], [5]. Given data , the goal is to identify the “most likely”
finite set of which is a “typical” element. Finding a set of
which the data is typical is reminiscent of selecting the appro-
priate magnification of a microscope to bring the studied spec-
imen optimally in focus. For this purpose, we consider sets
such that and we represent by theshortestprogram

that computes the characteristic function of. The shortest
program that computes a finite set containing , such that
the two-part description consisting of and is as short
as the shortestsingleprogram that computes without input,
is called analgorithmic sufficient statistic.1 This definition is
nonvacuous since there does exist a two-part code (based on the
model ) that is as concise as the shortest single code.
The description of given cannot be significantly shorter

1It is also called the Kolmogorov sufficient statistic.

than . By the theory of Martin-Löf randomness [16] this
means that is a “typical” element of . In general, there can
be many algorithmic sufficient statistics for data; a shortest
among them is called analgorithmic minimal sufficient statistic.
Note that there can be possibly more than one algorithmic min-
imal sufficient statistic; they are determined by the data.

In probabilistic statistics the notion of sufficient statistic (I.2)
is an average notion invariant under all probability distributions
over the family of indexed models. If a statistic is not thus in-
variant, it is not sufficient. In contrast, in the algorithmic case
we investigate the relation between the data and an individual
model and therefore a probability distribution over the models
is irrelevant. It is technically convenient to initially consider the
simple model class of finite sets to obtain our results. It then
turns out that it is relatively easy to generalize everything to the
model class of computable probability distributions. That class
is very large indeed: perhaps it contains every distribution that
has ever been considered in statistics and probability theory, as
long as the parameters are computable numbers—for example,
rational numbers. Thus, the results are of great generality; in-
deed, they are so general that further development of the theory
must be aimed at restrictions on this model class; see the discus-
sion about applicability in Section VII. The theory concerning
the statistics of individual data samples and models one may call
algorithmic statistics.

Background and Related Work:At a Tallinn conference
in 1973, A. N. Kolmogorov formulated the approach to an
individual data-to-model relation, based on a two-part code
separating thestructureof a string from meaninglessrandom
features, rigorously in terms of Kolmogorov complexity (attri-
bution by [17], [4]). Cover [4], [5] interpreted this approach as
a (sufficient) statistic. The “statistic” of the data is expressed as
a finite set of which the data is a “typical” member. Following
Shen [17] (see also [21], [18], [20]), this can be generalized
to computable probability mass functions for which the data
is “typical.” Related aspects of “randomness deficiency”
(formally defined later in (IV.1)) were formulated in [12], [13],
and studied in [17], [21]. Algorithmic mutual information, and
the associated non-increase law, were studied in [14], [15].
Despite its evident epistemological prominence in the theory
of hypothesis selection and prediction, only selected aspects
of the algorithmic sufficient statistic have been studied before,
for example, as related to the “Kolmogorov structure function”
[17], [4], and “absolutely nonstochastic objects” [17], [21],
[18], [22], notions also defined or suggested by Kolmogorov at
the mentioned meeting. That work primarily studies quantifi-
cation of the “nonsufficiency” of an algorithmic statistic, when
the latter is restricted in complexity, rather than necessary and
sufficient conditions for the existence of an algorithmic suffi-
cient statistic itself. These references obtain results for plain
Kolmogorov complexity (sometimes length-conditional) up to
a logarithmic error term. Especially for regular data that have
low Kolmogorov complexity with respect to their length, this
logarithmic error term may dominate the remaining terms and
eliminate all significance. Since it is precisely the regular data
that one wants to assess the meaning of, a more precise analysis
as we provide is required. Here we use prefix complexity to
unravel the nature of a sufficient statistic. The excellent papers
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of Shen [17], [18] contain the major previous results related to
this work (although [18] is independent). While previous work
and the present paper consider an algorithmic statistic that is
either a finite set or a computable probability mass function,
the most general algorithmic statistic is a recursive function.
In [1], the present work is generalized accordingly, see the
summary in Section VII.

For the relation with inductive reasoning according to min-
imum description length principle see [20]. The entire approach
is based on Kolmogorov complexity (also known as algorithmic
information theory). Historically, the idea of assigning to each
object a probability consisting of the summed negative expo-
nentials of the lengths of all programs computing the object,
was first proposed by Solomonoff [19]. Then, the shorter pro-
grams contribute more probability than the longer ones. His aim,
ultimately successful in terms of theory (see [10]) and as inspi-
ration for developing applied versions [2], was to develop a gen-
eral prediction method. Kolmogorov [11] introduced the com-
plexity proper. The prefix-version of Kolmogorov complexity
used in this paper was introduced in [14] and also treated later
in [3]. For a textbook on Kolmogorov complexity, its mathemat-
ical theory, and its application to induction, see [10]. We give a
definition (attributed to Kolmogorov) and results from [17] that
are useful later.

Definition I.1: Let and be natural numbers. A finite bi-
nary string is called -stochasticif there exists a finite
set such that

(I.4)

where denotes the cardinality of , and the (prefix-)
Kolmogorov complexity. As usual, “ ” denotes the binary log-
arithm.

The first inequality with small means that is “simple”;
the second inequality with is small means that is “in general
position” in . Indeed, if had any special propertythat was
shared by only a small subsetof , then this property could
be used to single out and enumerate those elements and subse-
quently indicate by its index in the enumeration. Altogether,
this would show , which, for simple
and small would be much lower than . A similar no-
tion for computable probability distributions is as follows. Let

and be natural numbers. A finite binary stringis called
-quasi-stochasticif there exists a computable probability

distribution such that

(I.5)

Proposition I.2: There exist constants and , such that
for every natural number and every finite binary string of
length

a) if is -stochastic, then is -quasi-sto-
chastic;

b) if is -quasi-stochastic and the length ofis less
than , then is -stochastic.

Proposition I.3:
a) There exists a constant such that, for every natural

number and every and with and
, all strings of length less than

are -stochastic.
b) There exists a constant such that, for every natural

number and every and with ,
there exist strings of length less than that are not

-stochastic.

Note that if we take then, for some boundary in between
and , the last non- -stochastic elements disappear

if the complexity constraints are sufficiently relaxed by having
exceed this boundary.

Outline of this Work: First, we obtain a new Kolmogorov
complexity “triangle” inequality that is useful in the later parts
of the paper. We define algorithmic mutual information between
two individual objects (in contrast to the probabilistic notion
of mutual information that deals with random variables). We
show that for every computable distribution associated with the
random variables, the expectation of the algorithmic mutual in-
formation equals the probabilistic mutual information up to an
additive constant that depends on the complexity of the distri-
bution. It is known that in the probabilistic setting the mutual
information (an average notion) cannot be increased by algo-
rithmic processing. We give a new proof that this also holds in
the individual setting.

We define notions of “typicality” and “optimality” of sets in
relation to the given data. Denote the shortest program for a
finite set by (if there is more than one shortest program

is the first one in the standard effective enumeration). “Typi-
cality” is a reciprocal relation: a setis “typical” with respect to

if is an element of that is “typical” in the sense of having
small randomness deficiency (see
definition (IV.1) and discussion). That is,has about maximal
Kolmogorov complexity in the set, because it can always be
identified by its position in an enumeration ofin bits.
Every description of a “typical” set for the data is an algorithmic
statistic.

A set is “optimal” if the best two-part description consisting
of a description of and a straightforward description ofas
an element of by an index of size is as concise as
the shortest one-part description of. This implies that optimal
sets are typical sets. Descriptions of such optimal sets are al-
gorithmic sufficient statistics, and a shortest description among
them is an algorithmic minimal sufficient statistic. The mode of
description plays a major role in this. We distinguish between
“explicit” descriptions and “implicit” descriptions—that are in-
troduced in this paper as a proper restriction on the recursive
enumeration based description mode. We establish range con-
straints of cardinality and complexity imposed by implicit (and
hence explicit) descriptions for typical and optimal sets, and ex-
hibit a concrete algorithmic minimal sufficient statistic for im-
plicit description mode. It turns out that only the complexity of
the data sample is relevant for this implicit algorithmic min-
imal sufficient statistic. Subsequently, we exhibit explicit algo-
rithmic sufficient statistics, and an explicit minimal algorithmic
(near-)sufficient statistic. For explicit descriptions, it turns out
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that certain other aspects of(its enumeration rank) apart from
its complexity are a major determinant for the cardinality and
complexity of that statistic. It is convenient at this point to in-
troduce some notation.

Notation I.4: From now on, we will denote by an in-
equality to within an additive constant, and bythe situation
when both and hold. We will also use to denote an
inequality to within an multiplicative constant factor, andto
denote the situation when bothand hold.

Let us contrast our approach with the one in [17]. The com-
parable case there, by (I.4), is thatis -stochastic with

and minimal. Then, for a set of
Kolmogorov complexity . But, if is optimal for , then, as
we formally define it later (III.4), . That
is, (I.4) holds with . In contrast, for we must
have for typicality. In short, optimality of with re-
spect to corresponds to (I.4) by dropping the second item
and replacing the third item by . “Min-
imality” of the algorithmic sufficient statistic (the shortest
program for ) corresponds to choosingwith minimal
in this equation. This is equivalent to (I.4) with inequalities re-
placed by equalities and .

We consider the functions related to -stochasticity, and
improve Shen’s result on maximally nonstochastic objects. In
particular, we show that for everythere are objects of length

with complexity about such that every explicit al-
gorithmic sufficient statistic for has complexity about (
is such a statistic). This is the best possible. In Section V, we
generalize the entire treatment to probability density distribu-
tions. In Section VI, we connect the algorithmic and proba-
bilistic approaches. While previous authors have used the name
“Kolmogorov sufficient statistic” because the model appears to
summarize the relevant information in the data in analogy of
what the classic sufficient statistic does in a probabilistic sense,
a formal justification has been lacking. We give the formal rela-
tion between the algorithmic approach to sufficient statistic and
the probabilistic approach. A function is a probabilistic suffi-
cient statistic iff it is with high probability an algorithmic-suf-
ficient statistic, where an algorithmic sufficient statistic is-suf-
ficient if it satisfies also the sufficiency criterion conditionalized
on .

II. K OLMOGOROV COMPLEXITY

We give some definitions to establish notation. For introduc-
tion, details, and proofs, see [10]. We writestring to mean a
finite binary string. Other finite objects can be encoded into
strings in natural ways. The set of strings is denoted by .
Thelengthof a string is denoted by , distinguishing it from
thecardinality of a finite set .

Let , where denotes the natural numbers.
Identify and according to the correspondence

Here denotes theempty word‘’ with no letters. Thelength
of is the number of bits in the binary string. For example,

and .

The emphasis is on binary sequences only for convenience;
observations in any alphabet can be so encoded in a way that is
“theory neutral.”

A binary string is aproper prefixof a binary string if we
can write for . A set is
prefix-freeif for any pair of distinct elements in the set neither
is a proper prefix of the other. A prefix-free set is also called a
prefix code. Each binary string has a special
type of prefix code, called aself-delimiting code

This code is self-delimiting because we can determine where the
codeword ends by reading it from left to right without backing
up. Using this code, we define the standard self-delimiting code
for to be . It is easy to check that
and .

Let be a standard one-one mapping from to ,
for technical reasons chosen such that

for example, . This can be iter-
ated to .

The prefix Kolmogorov complexity, or algorithmic entropy,
of a string is the length of a shortest binary program to

compute on a universal computer (such as a universal Turing
machine). For technical reasons, we require that the universal
machine have the property that no halting program is a proper
prefix of another halting program. Intuitively, represents
the minimal amount of information required to generateby
any effective process. We denote theshortest programfor by

; then . (Actually, is the first shortest pro-
gram for in an appropriate standard enumeration of all pro-
grams for such as the halting order.) The conditional Kol-
mogorov complexity of relative to is defined sim-
ilarly as the length of a shortest program to computeif is
furnished as an auxiliary input to the computation. We often use

, or, equivalently, (trivially con-
tains the same information as the pair ). Note that “ ”
in the conditional is just the information aboutand apart from
this does not contain information about or . For this
work the difference is crucial, see the comment in Section I.

A. Additivity of Complexity

Recall that by definition . Trivially, the
symmetry property holds: . Later, we will
use many times the “Additivity of Complexity” property

(II.1)

This result due to [7], [23] can be found as [10, Theorem 3.9.1],
and has a difficult proof. It is perhaps instructive to point out that
the version with just and in the conditionals does not hold
with , but holds up to additive logarithmic terms that cannot
be eliminated. The conditional version needs to be treated care-
fully. It is

(II.2)
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Note that a naive version

is incorrect: taking , , the left-hand side equals
, and the right-hand side equals

First, we derive a (to our knowledge) new “directed triangle in-
equality” that is needed later.

Theorem II.1: For all

Proof: Using (II.1), an evident inequality introducing an
auxiliary object , and twice (II.1) again

This theorem has bizarre consequences. These consequences
are not simple unexpected artifacts of our definitions, but, to the
contrary, they show the power and the genuine contribution to
our understanding represented by the deep and important math-
ematical relation (II.1).

Denote and substitute and to
find the following counterintuitive corollary. To determine the
complexity of the complexity of an object it suffices to give
both and the complexity of . This is counterintuitive since,
in general, we cannot compute the complexity of an object from
the object itself; if we could this would also solve the so-called
“halting problem,” [10]. This noncomputability can be quanti-
fied in terms of which can rise to almost
for some —see the related discussion on notation for condi-
tional complexity in Section I. But in the seemingly similar, but
subtly different, setting below it is possible.

Corollary II.2: As above, let denote . Then,

We can iterate this idea. For example, the next step is that given
and we can determine in bits, that

is, .

B. Information Non-Increase

If we want to find an appropriate model fitting the data, then
we are concerned with the information in the data about such
models. Intuitively, one feels that the information in the data
about the appropriate model cannot be increased by any algo-
rithmic or probabilistic process. Here, we rigorously show that
this is the case in the algorithmic statistics setting: the infor-
mation in one object about another cannot be increased by any
deterministic algorithmic method by more than a constant. With

added randomization this holds with overwhelming probability.
We use the triangle inequality of Theorem II.1 to recall, and to
give possibly new proofs of, this information non-increase; for
more elaborate but hard-to-follow versions see [14], [15].

We need the following technical concepts. Let us call a non-
negative real function defined on strings asemimeasure
if , and ameasure(a probability distribution) if
the sum is . A function is calledlower semicomputable
if there is a rational valued computable function such
that and .
For anupper semicomputablefunction we require that be
lower semicomputable. It iscomputablewhen it is both lower
and upper semicomputable. (A lower semicomputable measure
is also computable because it sums to.)

To define the algorithmic mutual information between two
individual objects and with no probabilities involved, it is
instructive to first recall the probabilistic notion (I.1). Rewriting
(I.1) as

and noting that is very close to the length of the
prefix-free Shannon—Fano code for, we are led to the fol-
lowing definition.2 The information in about is defined as

(II.3)

where the second equality is a consequence of (II.1) and states
that this information is symmetrical, , and
therefore we can talk aboutmutual information.3

Remark II.3: The conditional mutual information is

It is important that the expectation of the algorithmic mutual
information is close to the probabilistic mutual infor-
mation —if this were not the case then the algorithmic
notion would not be a sharpening of the probabilistic notion to
individual objects, but something else.

Lemma II.4: Given a computable joint probability mass dis-
tribution over we have

(II.4)

where is the length of the shortest prefix-free program that
computes from input .

Remark II.5: Above, we required to be computable.
Actually, we only require that be a lower semicomputable
function, which is a weaker requirement than computability.
However, together with the condition that is a probability

2The Shannon–Fano code has nearly optimal expected code length equal
to the entropy with respect to the distribution of the source [5]. However, the
prefix-free code with codeword lengthK(s) has both about expected optimal
codeword length and individual optimal effective code wordlength [10].

3The notation of the algorithmic (individual) notionI(x : y) distinguishes it
from the probabilistic (average) notionI(X; Y ). We deviate slightly from [10]
whereI(y : x) is defined asK(x) �K(x j y).
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distribution, , this implies that is com-
putable, [10, Sec. 8.1].

Proof: Rewrite the expectation

Define and to obtain

Given the program that computes, we can approximate
by with , and similarly for

. That is, the distributions ( ) are lower semicom-
putable, and by Remark II.5, therefore, they are computable. It
is known that for every computable probability mass function
we have , [10, Sec. 8.1].

Hence,

and

On the other hand, the probabilistic mutual information (I.1) is
expressed in the entropies by

By construction of the s above, we have

Since the complexities are positive, substitution establishes the
lemma.

Can we get rid of the error term? The answer is affir-
mative; by putting in the conditional we even get rid of the
computability requirement.

Lemma II.6: Given a joint probability mass distribution
over (not necessarily computable) we have

where the auxiliary means that we can directly access the
values on the auxiliary conditional information tape of
the reference universal prefix machine.

Proof: The lemma follows from the definition of condi-
tional algorithic mutual information, Remark II.3, if we show
that , where the term implicit in
the sign is independent of.

Equip the reference universal prefix machine, with an
length program to compute a Shannon-Fano code from the aux-
iliary table of probabilities. Then, given an input, it can de-
termine whether is the Shannon–Fano codeword for some.
Such a codeword has length . If this is the case, then

the machine outputs, otherwise it halts without output. There-
fore, . This shows the upper bound on the
expected prefix complexity. The lower bound follows as usual
from the Noiseless Coding Theorem.

We prove a strong version of the information non-increase
law under deterministic processing (later we need the attached
corollary):

Theorem II.7: Given and , let be a program computing
from . Then

(II.5)

Proof: By the triangle inequality

Thus,

This also implies the slightly weaker but intuitively more ap-
pealing statement that the mutual information between strings
and cannot be increased by processingand separately by
deterministic computations.

Corollary II.8: Let be recursive functions. Then

(II.6)

Proof: It suffices to prove the case and apply it
twice. The proof is by replacing the programthat computes a
particular string from a particular in (II.5). There, pos-
sibly depends on and . Replace it by a program that first
computes from , followed by computing a recursive func-
tion , that is, is independent of . Since we only require
an -length program to compute from we can choose

.
By the triangle inequality

Thus,

It turns out that, furthermore, randomized computation can
increase information only with negligible probability. Let us
define theuniversal probability . This function
is known to be maximal within a multiplicative constant among
lower semicomputable semimeasures. So, in particular, for
each computable measure we have , where
the constant factor in depends on . This property also holds
when we have an extra parameter, like, in the condition.
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Suppose that is obtained from by some randomized com-
putation. The probability of obtaining from is a
semicomputable distribution over thes. Therefore, it is upper-
bounded by . The informa-
tion increase satisfies the theorem below.

Theorem II.9: For all we have

Remark II.10: For example, the probability of an increase
of mutual information by the amountis . The theorem
implies

the -expectation of the exponential of the increase is
bounded by a constant.

Proof: We have

The negative logarithm of the left-hand side in the theorem is,
therefore,

Using Theorem II.1, and the conditional additivity (II.2), this is

III. FINITE-SET MODELS

For convenience, we initially consider themodel classcon-
sisting of the family of finite sets of finite binary strings, that is,
the set of finite subsets of .

A. Finite-Set Representations

Although all finite sets are recursive there are different ways
to represent or specify the set. We only consider ways that have
in common a method of recursively enumerating the elements
of the finite set one by one, and differ in knowledge of its size.
For example, we can specify a set of natural numbers by giving
an explicit table or a decision procedure for membership and a
bound on the largest element, or by giving a recursive enumer-
ation of the elements together with the number of elements, or
by giving a recursive enumeration of the elements together with
a bound on the running time. We call a representation of a finite
set explicit if the size of the finite set can be computed
from it. A representation of is implicit if the log size
can be computed from it up to an additive constant term.

Example III.1: In Section III-D, we will introduce the set
of strings of complexity . It will be shown that this set can
be represented implicitly by a program of size , but can be
represented explicitly only by a program of size.

Such representations are useful in two-stage encodings
where one stage of the code consists of an index inof length

. In the implicit case we know, within an additive
constant, how long an index of an element in the set is.

We can extend the notion of Kolmogorov complexity from
finite binary strings to finite sets. The (prefix-) complexity

of a finite set is defined by

Turing machine computes

in representation format

where is for example “implicit” or “explicit.” In general
denotes the first shortest self-delimiting binary program

in enumeration order from which can be
computed. These definitions critically depend, as explained
above, on the representation format: the way is supposed
to be represented as output of the computation can make a
world of difference for and . Since the representation
format will be clear from the context, and to simplify notation,
we drop the subscript . To complete our discussion, the worst
case of representation format , a recursively enumerable
representation where nothing is known about the size of the
finite set, would lead to indexes of unknown length. We do not
consider this case.

We may use the notation

for some implicit and some explicit representation of. When
a result applies to both implicit and explicit representations, or
when it is clear from the context which representation is meant,
we will omit the subscript.

B. Optimal Model and Sufficient Statistic

In the following, we will distinguish between “models” that
are finite sets, and the “shortest programs” to compute those
models that are finite strings. Such a shortest program is in the
proper sense a statistic of the data sample as defined before. In
a way this distinction between “model” and “statistic” is artifi-
cial, but for now we prefer clarity and unambiguousness in the
discussion.

Consider a string of length and prefix complexity
. We identify thestructureor regularity in that are to be sum-

marized with a set of which is arandomor typicalmember:
given (or rather, an (implicit or explicit) shortest program
for ), cannot be described significantly shorter than by its
maximal length index in , that is, . For-
mally, we state the following.

Definition III.2: Let be an agreed upon, fixed, con-
stant. A finite binary string is a typical or randomelement of
a set of finite binary strings if and

(III.1)

where is an implicit or explicit shortest program for. We
will not indicate the dependence onexplicitly, but the con-
stants in all our inequalities () will be allowed to be functions
of this .

This definition requires a finite . In fact, since
, it limits the size of to and the shortest program
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from which can be computed is analgorithmic statistic
for iff

(III.2)

Note that the notions of optimality and typicality are not abso-
lute but depend on fixing the constant implicit in the. De-
pending on whether is an implicit or explicit program, our
definition splits into implicit and explicit typicality.

Example III.3: Consider the set of binary strings of length
whose every odd position is. Let be an element of this set

in which the subsequence of bits in even positions is an incom-
pressible string. Then is explicitly as well as implicitly typical
for . The set also has both these properties.

Remark III.4: It is not clear whether explicit typicality im-
plies implicit typicality. Section IV will show some examples
which are implicitly very nontypical but explicitly at least nearly
typical.

There are two natural measures of suitability of such a
statistic. We might prefer either the simplest set, or the largest
set, as corresponding to the most likely structure “explaining”

. The singleton set , while certainly a statistic for , would
indeed be considered a poor explanation. Both measures relate
to the optimality of a two-stage description ofusing

(III.3)

where we rewrite by (II.1). Here, can be understood
as either or . Call a set (containing ) for which

(III.4)

optimal. Depending on whether is understood as
or , our definition splits into implicit and

explicit optimality. Mindful of our distinction between a finite
set and a program that describesin a required representa-
tion format, we call a shortest program for an optimal set with
respect to an algorithmic sufficient statisticfor . Further-
more, among optimal sets, there is a direct tradeoff between
complexity and log size, which together sum to . Equality
(III.4) is the algorithmic equivalent dealing with the relation
between the individual sufficient statistic and the individual
data sample, in contrast to the probabilistic notion (I.2).

Example III.5: The following restricted model family
illustrates the difference between the algorithmic individual
notion of sufficient statistic and the probabilistic averaging one.
Foreshadowing the discussion in Section VII, this example
also illustrates the idea that the semantics of the model class
should be obtained by a restriction on the family of allowable
models, after which the (minimal) sufficient statistic identifies
the most appropriate model in the allowable family and thus
optimizes the parameters in the selected model class. In the
algorithmic setting, we use all subsets of as models
and the shortest programs computing them from a given data
sample as the statistic. Suppose we have background infor-
mation constraining the family of models to the finite

sets and
( ). Assume that our model family is the family of
Bernoulli distributions. Then, in the probabilistic sense, for
every data sample there is only one natural
sufficient statistic: for this is with
the corresponding model . In the algorithmic setting the
situation is more subtle. (In the following example we use
the complexities conditional on.) For with

taking as model yields , and there-

fore . The sum of and the
logarithmic term gives for the right-hand side of
(III.4). But taking yields for the
left-hand side. Thus, there is no algorithmic sufficient statistic
for the latter in this model class, while every of length
has a probabilistic sufficient statistic in the model class. In fact,
the restricted model class has algorithmic sufficient statistic for
data samples of length that have maximal complexity with
respect to the frequency of “”s, the other data samples have
no algorithmic sufficient statistic in this model class.

Example III.6: It can be shown that the set of Example
III.3 is also optimal, and so is . Typical sets form a much
wider class than optimal ones: is still typical for but
with most , it will be too complex to be optimal for.

For a perhaps less artificial example, consider complexities
conditional on the length of strings. Let be a random string
of length , let be the set of strings of lengthwhich have
’s exactly where has, and let be a random element of .

Then is a string random with respect to the distribution in
which ’s are chosen independently with probability , so
its complexity is much less than. The set is typical with
respect to but is too complex to be optimal, since its (explicit
or implicit) complexity conditional on is .

It follows that (programs for) optimal sets are statistics.
Equality (III.4) expresses the conditions on the algorithmic
individual relation between the data and the sufficient statistic.
Later (Section VII) we demonstrate that this relation implies
that the probabilistic optimality of mutual information (I.1)
holds for the algorithmic version in the expected sense.

An algorithmic sufficient statistic is a sharper individual
notion than a probabilistic sufficient statistic. An optimal set
associated with (the shortest program computingis the cor-
responding sufficient statistic associated with) is chosen such
that is maximally random with respect to it. That is, the infor-
mation in is divided in a relevant structure expressed by the
set , and the remaining randomness with respect to that struc-
ture, expressed by’s index in of bits. The shortest
program for is itself an algorithmic definition of structure,
without a probabilistic interpretation.

One can also consider notions ofnear-typical andnear-op-
timal that arise from replacing the in (III.1) by some slowly
growing functions, such as or as in [17],
[18].

In [17], [21], a function of and is defined as the lack of
typicality of in sets of complexity at most, and they then
consider the minimum for which this function becomes
or very small. This is equivalent to our notion of a typical set.
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Fig. 1. Range of statistic on the straight lineI(x : S)=K(x) � log jSj.

See the discussion of this function in Section IV. In [4], [5], only
optimal sets are considered, and the one with the shortest pro-
gram is identified as thealgorithmic minimal sufficient statistic
of . Formally, this is the shortest program that computes a fi-
nite set such that (III.4) holds.

C. Properties of Sufficient Statistic

We start with a sequence of lemmas that will be used in the
later theorems. Several of these lemmas have two versions: for
implicit sets and for explicit sets. In these cases,will denote

or , respectively.
It is shown in the following that the mutual information

between every typical set and the data is not much less than
, the complexity of the complexity of the

data . For optimal sets it is at least that, and for algorithmic
minimal statistic it is equal to that. The number of elements of
a typical set is determined by the following.

Lemma III.7: Let . If a set is (implicitly or ex-
plicitly) typical for then .

Proof: By definition and by
typicality .

Typicality, optimality, and minimal optimality successively
restrict the range of the cardinality (and complexity) of a corre-
sponding model for a data, leading to Fig. 1 summerizing this
subsection. The above lemma states that for (implicitly or ex-
plicitly) typical , the cardinality . The next
lemma asserts that for implicitly typicalthe value can
fall below by no more than an additive logarithmic term.

Lemma III.8: Let . If a set is (implicitly or ex-

plicitly) typical for then and

. (Here, is understood as
or , respectively.)

Proof: Writing , since

(III.5)

by (II.1), we have

Hence, it suffices to show

Now, from an implicit description we can find the
value . To recover we only re-
quire an extra bits apart from . Therefore,

. This reduces what we have to show
to

which is asserted by Theorem II.1. The second statement fol-
lows from the first one by rewriting and substituting

.

The term is at least where

For of length with and ,

this yields .
If we further restrict typical sets to optimal sets then the pos-

sible number of elements in is slightly restricted. First we
show that implicit optimality of a set with respect to a data is
equivalent to typicality with respect to the data combined with
effective constructability (determination) from the data.

Lemma III.9: A set is (implicitly or explicitly) optimal for
iff it is typical and .

Proof: A set is optimal iff (III.3) holds with equalities.
Rewriting , the first inequality be-
comes an equality iff , and the second inequality
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becomes an equality iff (that is, is a typ-
ical set).

Lemma III.10: Let . If a set is (implicitly or

explicitly) optimal for , then and

(see Fig. 1).
Proof: If is optimal for , then

From we can find both and and

hence , that is, . We have

by (II.1), Lemma III.9, respectively. This proves the first
property. Substitution of in the expression of
Lemma III.7 proves the second property.

D. Implicit Minimal Sufficient Statistic

A simplest implicitly optimal set (that is, of least com-
plexity) is an implicit algorithmic minimal sufficient statistic.
We demonstrate that , the set of all strings
of complexity at most , is such a set. First we establish the
cardinality of .

Lemma III.11: .
Proof: The lower bound is easiest. Denote byof length

a shortest program for. Every string of length
can be described in a self-delimiting manner by pre-

fixing it with , hence . For a large
enough constant, we have and hence there are

strings that are in .

For the upper bound: by (III.5), all satisfy
, and there can only be of them.

From the definition of it follows that it is defined by
alone, and it is the same set that is optimal for all objects of the
same complexity .

Theorem III.12: The set is implicitly optimal for every
with . Also, we have .

Proof: From we can compute both and
and recursively enumerate . Since also
(Lemma III.11), the string plus a fixed program

is an implicit description of so that . Hence,

and, since is the shortest de-
scription by definition, equality holds. That is, is op-

timal for . By Lemma III.10, which together
with the reverse inequality above yields which
shows the theorem.

Again, using Lemma III.10 shows that the optimal sethas
least complexity among all optimal sets for, and therefore we
have the following.

Corollary III.13: The set is an implicit algorithmic min-
imal sufficient statistic for every with .

All algorithmic minimal sufficient statistics for have
, and, therefore, there are of them.

At least one such statistic is associated with every one
of the strings of complexity . Thus, while the idea
of the algorithmic minimal sufficient statistic is intuitively
appealing, its unrestricted use does not seem to uncover most
relevant aspects of reality. The only relevant structure in the
data with respect to an algorithmic minimal sufficient statistic
is the Kolmogorov complexity. To give an example, an initial
segment of of length of complexity
shares the same algorithmic sufficient statistic with many
(most?) binary strings of length .

E. Explicit Minimal Sufficient Statistic

Let us now consider representations of finite sets that are ex-
plicit in the sense that we can compute the cardinality of the set
from the representation.

1) Explicit Minimal Sufficient Statistic: Particular Cases

Example III.14: The description program enumerates all the
elements of the set and halts. Then a set like
has complexity [18]. Given the program, we can find an el-
ement not in , which element by definition has complexity

. Given we can find this element and hence has com-
plexity . Let

Then by Lemma III.11, . We can list

given and which shows . Thus, just like ,
is an explicit sufficient statistic for . But is it

minimal?

Example III.15: One way of implementing explicit finite
representations is to provide an explicit generation time for
the enumeration process. If we can generate in time
recursively using , then the previous argument shows that the
complexity of every number satisfies so
that

by (II.1). This means that is a huge time which as a func-
tion of rises faster than every computable function. This argu-
ment also shows that explicit enumerative descriptions of sets

containing by an enumerative processplus a limit on
the computation time may take only bits (with

) but unfortunately becomesnon-
computably large!

Example III.16: Another way is to indicate the element of
that requires the longest generation time as part of the dove-

tailing process, for example, by its indexin the enumeration
. Then, . In fact, since the

shortest program for the th element together with allows
us to generate explicitly, and above we have seen that ex-
plicit description format yields , we find we have

and hence .
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In other cases, the generation time is simply recursive in the
input: so that

That is, this sufficient statistic for a random string with
has complexity both for implicit de-

scriptions and explicit descriptions: differences in complexity
arise only for nonrandom strings (but not too nonrandom, for

these differences vanish again).

Lemma III.17: is an example of aminimal sufficient
statistic, both explicit and implicit, for all with

.
Proof: The set is a sufficient statistic for since

. It is minimal since, by Lemma

III.10, we must have for implicit, and hence
for explicit sufficient statistics. It is evident that is explicit:

.

It turns out that some strings cannot thus be explicitly repre-
sented parsimonously with low-complexity models (so that one
necessarily has bad high-complexity models likeabove). For
explicit representations, [17] has demonstrated the existence of
a class of strings callednonstochasticthat do not have efficient
two-part representations with ( )
with significantly less than . This result does not yet
enable us to exhibit an explicit minimal sufficient statistic for
such a string. But in Section IV, we improve these results to the
best possible, simultaneously establishing explicit minimal suf-
ficient statistics for the subject ultimate nonstochastic strings:

Lemma III.18: For every length , there exist strings of
length with for which is an explicit minimal
sufficient statistic. The proof is deferred to the end of Section IV.

2) Explicit Minimal Near-Sufficient Statistic: General Case
Again, consider the special set . As we
have seen earlier, itself cannot be explicitly optimal for
since and , and, therefore,

which considerably exceeds. However, it turns out that a
closely related set ( below) is explicitly near-optimal. Let

denote the index of in the standard enumeration of ,
where all indexes are padded to the same length
with ’s in front. For , let denote the longest
joint prefix of and , and let

Lemma III.19: For , the set

a prefix of

satisfies

Hence it is explicitly near-optimal for (up to an addive
term).

Proof: We can describe by where is the
index of in the enumeration of . Moreover, explicitly
describes the set . Namely, using we can recursively enu-
merate . At some point, the first string is enumer-
ated (index ). By assumption
and . Therefore, in the enumeration of even-
tually string with occurs which is the last
string in the enumeration of . Thus, the size of is pre-
cisely , where

and is explicitly described by . Since

and

we have

This shows is explicitly near optimal for (up to an addi-
tive logarithmic term).

Lemma III.20: Every explicit optimal set containing
satisfies

Proof: If is explicitly optimal for , then we can
find from (as in the proof of Lemma III.10), and given
and we find as in Theorem II.1. Hence, given , we can
enumerate and determine the maximal index of a .
Since also , the numbers have a maximal
common prefix . Write with

by Lemma III.10. Given we can determine
from . Hence, from , and we can reconstruct.
That is,

which yields the lemma.

Lemmas III.19 and III.20 demonstrate the following.

Theorem III.21: The set is an explicit algorithmic min-
imal near-sufficient statistic for among subsets of in the
following sense:

Hence

Note,
3) Almost Always “Sufficient”: We have not completely

succeeded in giving a concrete algorithmic explicit minimal
sufficient statistic. However, we can show that is almost
alwaysminimal sufficient.

The complexity and cardinality of depend on
which will, in turn, depend on . One extreme is
which happens for the majority of’s with —for ex-
ample, the first 99.9% in the enumeration order. For those’s we
can replace “near-sufficient” by “sufficient” in Theorem III.21.
Can the other extreme be reached? This is the case whenis
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enumerated close to the end of the enumeration of. For ex-
ample, this happens for the “nonstochastic” objects of which the
existence was proven by Shen [17] (see Section IV). For such
objects, grows to and the complexity of
rises to while drops to . That is, the explicit al-
gorithmic minimal sufficient statistic for is essentially itself.
For those ’s we can also replace “near-sufficient” with “suffi-
cient” in Theorem III.21. Generally, for the overwhelming ma-
jority of data of complexity the set is an explicit algo-
rithmic minimal sufficient statistic among subsets of (since

).
The following discussion will put what was said above into a

more illuminating context. Let

The set is infinite, but we can break it into slices and bound
each slice separately.

Lemma III.22:

Proof: For every in the set defined by the left-hand side
of the inequality, we have , and the length of contin-
uation of to the total padded index of is

Moreover, all these indexes share the same firstbits. This
proves the lemma.

Theorem III.23:

Proof: Let us prove first

(III.6)

By the Kraft inequality, we have, with

since is in a one to one correspondence with the prefix pro-
grams of length . Hence,

For the statement of the lemma, we have

where in the last inequality we used (III.6).

This theorem can be interpreted as follows (we rely here on a
discussion, unconnected with the present topic, about universal

probability with L. A. Levin in 1973). The above theorem states
. By the multiplicative dominating

property of with respect to every lower semicomputable
semimeasure, it follows that for every computable measure,
we have . Thus, the set of objects for
which is large has small probability with respect to every
computable probability distribution.

To shed light on the exceptional nature of stringswith large
from yet another direction, let be the infinite binary

sequence, thehalting sequence, which constitutes the charac-
teristic function of the halting problem for our universal Turing
machine: the th bit of is of the machine halts on theth
program, and is otherwise. The expression

shows the amount of information in the halting sequence about
the string . (For an infinite sequence, we go back formally
to the definition of [10], since
introducing a notion of in place of here has not been shown
yet to bring any benefits.) We have

Therefore, if we introduce a new quantity related to
defined by

then by Markov’s inequality

That is, the universal probability of is small. This is a
new reason for to be small, as is shown in the following
theorem.

Theorem III.24: We have

and (essentially equivalently) .

Remark III.25: The first item in the theorem implies that if
, then . This in turn implies the

second item . Similarly, the second item
essentially implies the first item. Thus, a string for which the
explicit minimal sufficient statistic has complexity much larger
than (that is, is large) is exotic in the sense that it
belongs to the kind of strings about which the halting sequence
contains much information andvice versa: is large.

Proof: When we talk about complexity with in the con-
dition, we use a Turing machine with as an “oracle.” With
the help of , we can compute , and so we can define the
following new semicomputable (relative to) function with

:

We have, using Theorem III.23 and defining
so that for
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Summing over gives

The theorem that is maximal within multiplica-
tive constant among semicomputable semimeasures is also true
relative to oracles. Since we have established that is

a semicomputable semimeasure, therefore, ,
or equivalently

which proves the theorem.

IV. NONSTOCHASTICOBJECTS

In this section, whenever we talk about a description of a
finite set we mean anexplicit description. This establishes
the precise meaning of , , , and

, and so forth.
Every data sample consisting of a finite stringhas a suffi-

cient statistic in the form of the singleton set . Such a suffi-
cient statistic is not very enlightening since it simply replicates
the data and has equal complexity with. Thus, one is interested
in the minimal sufficient statistic that represents the regularity
(the meaningful) information, in the data and leaves out the ac-
cidental features. This raises the question whether everyhas
a minimal sufficient statistic that is significantly less complex
than itself. At the Tallinn conference in 1973, Kolmogorov
(according to [17], [4]) raised the question whether there are
objects that have no minimal sufficient statistic of relatively
small complexity. In other words, he inquired into the existence
of objects that are not in general position (random with respect
to) any finite set of small enough complexity, that is, “abso-
lutely nonrandom” objects. Clearly, such objectshave neither
minimal nor maximal complexity: if they have minimal com-
plexity then the singleton set is a minimal sufficient statistic
of small complexity, and if is completely incom-
pressible (that is, it is individually random and has no mean-
ingful information), then the uninformative universe is
the minimal sufficient statistic of small complexity. To analyze
the question better we need the technical notion of randomness
deficiency.

Define therandomness deficiencyof an object with respect
to a finite set containing it as the amount by which the com-
plexity of as an element of falls short of the maximal pos-
sible complexity of an element in when is known explicitly
(say, as a list)

(IV.1)

The meaning of this function is clear: most elements ofhave
complexity near , so this difference measures the amount
of compressibility in compared to the generic, typical, random
elements of . This is a generalization of the sufficiency notion
in that it measures the discrepancy with typicality and hence
sufficiency: if a set is a sufficient statistic for then .

We now continue the discussion of Kolmogorov’s question.
Shen [17] gave a first answer by establishing the existence of
absolutely nonrandom objectsof length , having random-
ness deficiency at least with respect to every
finite set of complexity that contains . Moreover,

since the set has complexity and the randomness de-
ficiency of with respect to this singleton set is , it follows
by choice of that the complexity is at least

.
Here we sharpen this result. We establish the existence of

absolutely nonrandom objectsof length , having random-
ness deficiency at least with respect to every finite set

of complexity that contains . Clearly, this
is best possible since has randomness deficiency of at least

with every finite set containing , in particular,
with complexity more than a fixed constant below
the randomness deficiency exceeds that fixed constant. That
is, every sufficient statistic for has complexity at least .
But if we choose then , and,
moreover, the randomness deficiency ofwith respect to
is . Together this shows that the absolutely
nonrandom objects length of which we established the
existence have complexity , and, moreover, they
have significant randomness deficiency with respect to every
set containing them that has complexity significantly below
their own complexity .

A. Kolmogorov Structure Function

We first consider the relation between the minimal unavoid-
able randomness deficiency ofwith respect to a set con-
taining it, when the complexity of is upper-bounded by .
These functional relations are known asKolmogorov structure
functions. Kolmogorov proposed a variant of the function

(IV.2)

where is a finite set containing, the contemplated
model for , and is a nonnegative integer value bounding the
complexity of the contemplated’s. He did not specify what is
meant by but it was noticed immediately, as the paper [18]
points out, that the behavior of is rather trivial if
is taken to be the complexity of a program that listswithout
necessarily halting. Section III-D elaborates this point. So, the
present section refers to explicit descriptions only.

It is easy to see that for every incrementwe have

provided the right-hand side is nonnegative, andotherwise.
Namely, once we have an optimal set we can subdivide it in
any standard way into parts and take as the part con-

taining . Also, implies , and, since the

choice of generally implies only is mean-
ingful, we can conclude that . Therefore, it seems
better advised to consider the function

rather than (IV.2). For technical reasons related to later analysis,
we introduce the following variant of randomness deficiency
(IV.1):

The function seems related to a function
of more intuitive appeal, namely, measuring the minimal
unavoidable randomness deficiency ofwith respect to every
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finite set , that contains it, of complexity . Formally,
we define

and its variant

defined in terms of . Note that .
These -functions are related to, but different from, the
in (I.4).

To compare and , let us confine ourselves to binary strings
of length . We will put into the condition of all complexities.

Lemma IV.1: .
Proof: Let be a set4 with and assume

. Tacitly understanding in the conditions,
and using the additivity property (II.1)

Therefore,

It would be nice to have an inequality also in the other direc-
tion, but we do not know currently what is the best that can be
said.

B. Sharp Bound on Nonstochastic Objects

We are now able to formally express the notion of non-
stochastic objects using the Kolmogorov structure functions

, . For every given , Shen constructed in [17]
a binary string of length with and

Let be one of the nonstochastic objects of which the existence
is established. Substituting we can contemplate the
set with complexity and has randomness
deficiency with respect to . This yields

Since it generally holds that these nonstochastic objects have
complexity , they arenot random, typ-
ical, or in general positionwith respect to every set con-

taining them with complexity , but can
be random, typical, or in general position only for setswith
complexity sufficiently exceeding like

.
Here, we improve on this result, replacing

with and using to avoid logarithmic terms. This is the
best possible, since by choosing we find

and hence for some constant, which implies

for every .

4We write “S 3 x” to indicate setsS that satisfyx 2 S.

Theorem IV.2:There are constants such that for every
given there is a a binary string of length with

such that for all we have

In the terminology of (I.4), the theorem states that there are
constants such that for every there exists a string
of length of complexity that is not

-stochastic.

Proof: Denote the conditional universal probability as
. For every , let us define a function

over all strings of length as follows:

(IV.3)

The following lemma shows that this function ofis a semimea-
sure.

Lemma IV.3: We have

(IV.4)

Proof: We have

Lemma IV.4: There are constants such that for some
of length

(IV.5)

(IV.6)

Proof: Let us fix somehow, to be chosen ap-
propriately later. Inequality (IV.4) implies that there is anwith
(IV.5). Let be the first string of length with this property.
To prove the right inequality of (IV.6), let be the program of
length that terminates last in the standard running
of all these programs simultaneously in dovetailed fashion, on
input . We can use and its length to compute all pro-
grams of length that output finite sets using. This way,
we obtain a list of all sets with . Using this list,
for each of length we can compute , by using the
definition (IV.3) explicitly. Since is defined as the first with

, we can thus find by using and some pro-
gram of constant length. If is chosen large enough, then this
implies .

On the other hand, from the definition (IV.3) we have

This implies, by the definition of , that either

or

Since , we get the left inequality of
(IV.6) in both cases for an appropriate.



2458 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

Consider now a new semicomputable function

on all finite sets with . Then we have, with

by (IV.3), (IV.5), respectively, and so with
fixed is a lower semicomputable semimeasure. By the domi-
nating property we have . Since
is the length of and we can set

and hence

Then, with the first because of (IV.6)

(IV.7)

Then, by the additivity property (II.1) and (IV.7)

Hence .

We are now in the position to prove Lemma III.18. For every
length , there exist strings of length with for
which is an explicit minimal sufficient statistic.

Proof (of Lemma III.18):Let be one of the nonstochastic
objects of which the existence is established by Theorem IV.2.
Choose with so that the set has com-
plexity and has randomness deficiency
with respect to . Because is nonstochastic, this yields

For every we have . Together, it follows that
. That is, these nonstochastic objectshave com-

plexity . Nonetheless, there is a constantsuch
that is not random, typical, or in general positionwith respect
to any explicitly represented finite setcontaining it that has
complexity , but they are random, typical, or in

general position for some setswith complexity
like . That is, every explicit sufficient statistic for
has complexity , and is such a statistic. Hence

is an explicit minimal sufficient statistic for.

V. PROBABILISTIC MODELS

It remains to generalize the model class from finite sets to the
more natural and significant setting of probability distributions.
Instead of finite sets, the models are computable probability
density functions with —we
allow defective probability distributions where we may concen-
trate the surplus probability on a distinguished “undefined” el-
ement. “Computable” means that there is a Turing machine

that computes approximations to the value offor every ar-
gument (more precise definition follows below). The (prefix-)
complexity of a computable partial function is defined
by

Turing machine computes

Equality (III.2) now becomes

(V.1)

and equality (III.4) becomes

As in the finite-set case, the complexities involved are crucially
dependent on what we mean by “computation” of , that
is, on the requirements on the format in which the output is
to be represented. Recall from [10] that Turing machines can
compute rational numbers. If a Turing machinecomputes

, then we interpret the output as a pair of natural numbers
, according to a standard pairing function. Then,

the rational value computed by is by definition . The dis-
tinction between explicit and implicit description of corre-
sponding to the finite-set model case is now defined as follows.

• It is implicit if there is a Turing machine computing
halting with rational value so that

, and, furthermore,
for satisfying (V.1)—that is, for typical .

• It is explicit if the Turing machine computing ,
given and a tolerance halts with rational value so
that , and, furthermore,

for satisfying (V.1)—that is,
for typical .

The relations between implicit and explicit descriptions of fi-
nite sets and of uniform distributions with for all

and otherwise, are as follows. An implicit (ex-
plicit) description of is identical with an implicit (explicit) de-
scription of , up to a short fixed program which indicates which
of the two is intended, so that for
(equivalently, ).

To complete our discussion: the worst case of representa-
tion format, a recursively enumerable approximation of
where nothing is known about its value, would lead to indexes

of unknown length. We do not consider this case.
The properties for the probabilistic models are loosely re-

lated to the properties of finite-set models by Proposition I.2.
We sharpen the relations by appropriately modifying the treat-
ment of the finite-set case, but essentially following the same
course.

We may use the notation

for some implicit and some explicit representation of. When
a result applies to both implicit and explicit representations, or
when it is clear from the context which representation is meant,
we will omit the subscript.

A. Optimal Model and Sufficient Statistic

As before, we distinguish between “models” that are com-
putable probability distributions, and the “shortest programs”
to compute those models that are finite strings.
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Consider a string of length and prefix complexity
We identify thestructureor regularity in that

are to be summarized with a computable probability density
function with respect to which is a random or typical
member. For typical for the following holds [10]: Given
an (implicitly or explicitly described) shortest program
for , a shortest binary program computing (that is, of
length ) cannot be significantly shorter than its
Shannon–Fano code [5] of length , that is,

By definition, we fix some agreed upon constant , and
require

As before, we will not indicate the dependence onexplicitly,
but the constants in all our inequalities () will be allowed to
be functions of this . This definition requires a positive .

In fact, since , it limits the size of to
. The shortest program from which a probability den-

sity function can be computed is analgorithmic statisticfor
iff

(V.2)

There are two natural measures of suitability of such a statistic.
We might prefer either the simplest distribution, or the largest
distribution, as corresponding to the most likely structure “ex-
plaining” . The singleton probability distribution ,
while certainly a statistic for , would indeed be considered a
poor explanation. Both measures relate to the optimality of a
two-stage description of using

(V.3)

where we rewrite by (II.1). Here, can be understood
as either or . Call a distribution (with positive
probability ) for which

(V.4)

optimal. (More precisely, we should require
.) Depending on whether is understood

as or , our definition splits into implicit
and explicit optimality. The shortest program for an optimal
computable probability distribution is analgorithmic sufficient
statisticfor .

B. Properties of Sufficient Statistic

As in the case of finite-set models, we start with a sequence
of lemmas that are used to obtain the main results on minimal
sufficient statistic. Several of these lemmas have two versions:
for implicit distributions and for explicit distributions. In these
cases, will denote or , respectively.

It is shown below that the mutual information between every
typical distribution and the data is not much less than ,
the complexity of the complexity of the data . For op-
timal distributions it is at least that, and for algorithmic minimal

statistic it is equal to that. The log-probability of a typical dis-
tribution is determined by the following.

Lemma V.1:Let . If a distribution is (implicitly
or explicitly) typical for then .

Proof: By definition, and
by typicality, .

The above lemma states that for (implicitly or explicitly)
typical the probability . The next
lemma asserts that for implicitly typical the value
can fall below by no more than an additive logarithmic
term.

Lemma V.2:Let . If a distribution is (implicitly
or explicitly) typical for then

and

(Here, is understood as or , respectively.)
Proof: Writing , then, since

(V.5)

by (II.1), we have

Hence, it suffices to show .
Now, from an implicit description we can find the value

. To recover from , we at
most require an extra bits. That is,

This reduces what we have to show to

which is asserted by Theorem II.1. This shows the first state-
ment in the theorem. The second statement follows from the
first one: rewrite and substitute

.

If we further restrict typical distributions to optimal ones then
the possible positive probabilities assumed by distributionare
slightly restricted. First we show that implicit optimality with
respect to some data is equivalent to typicality with respect to the
data combined with effective constructability (determination)
from the data .

Lemma V.3:A distribution is (implicitly or explicitly) op-
timal for iff it is typical and .

Proof: A distribution is optimal iff (V.3) holds with
equalities. Rewriting , the first in-
equality becomes an equality iff , and the second
inequality becomes an equality iff (that
is, is a typical distribution).

Lemma V.4:Let . If a distribution is (implicitly

or explicitly) optimal for , then and

.
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Proof: If is optimal for , then

From we can find both and ,

and hence , that is, . We have

by (II.1), Lemma V.3, respectively. This proves the first prop-
erty. Substitution of in the expression of
Lemma V.1 proves the second property.

Remark V.5:Our definitions of implicit and explicit de-
scription format entail that, for typical , one can compute

and , respectively, from alone
without requiring . An alternative possibility would have
been that implicit and explicit description formats refer to
the fact that we can compute and ,
respectively, givenboth and . This would have added a

additive term in the right-hand side of
the expressions in Lemmas V.2 and V.4. Clearly, this alternative
definition is equal to the one we have chosen iff this term is
always for typical . We now show that this is not the case.

Note that for distributions that are uniform (or almost uni-
form) on a finite support we have . In
this borderline case, the result specializes to that of Lemma III.8
for finite-set models, and the two possible definition types for
implicitness and those for explicitness coincide.

On the other end of the spectrum, for the definition type con-
sidered in this remark, the given lower bound on
drops in case knowledge of does not suffice to compute

, that is, if for a statistic
for . The question is, whether we can exhibit such a prob-

ability distribution that is also computable? The answer turns
out to be affirmative. By a result due to Solovay and Gács [10,
Exercise 3.7.1, pp. 225–226], there is a computable function

such that for infinitely many . Con-
sidering the case of optimal for (a stronger assumption than
that is just typical) we have .
Choosing such that , we
have that is computable since is computable and

is a fixed constant. Moreover, there are infinitely many
’s for which is optimal, so for

through this special sequence.

C. Concrete Minimal Sufficient Statistic

A simplest implicitly optimal distribution (that is, of least
complexity) is an implicit algorithmic minimal sufficient
statistic. As before, let . Define the distribu-
tion for , and otherwise. The
demonstration that is an implicit algorithmic minimal
sufficient statistic for with proceeeds completely
analogous to the finite-set model setting, Corollary II.13, using
the substitution .

A similar equivalent construction suffices to obtain an ex-
plicit algorithmic minimal near-sufficient statistic for, anal-
ogous to in the finite-set model setting, Theorem III.21.
That is, for , and otherwise.

In general, one can develop the theory of minimal sufficient
statistic for models that are probability distributions similarly to
that of finite-set models.

D. Non-Quasi-Stochastic Objects

As in the more restricted case of finite sets, there are objects
that are not typical for any explicitly computable probability
distribution that has complexity significantly below that of the
object itself. With the terminology of (I.5), we may call such
objectsabsolutely non-quasi-stochastic.

By Proposition I.2, item b), there are constantsand such
that if is not -stochastic (I.4) then is
not -quasi-stochastic (I.5). Substitution in Theorem IV.2
yields the following.

Corollary V.6: There are constants such that, for every
, there are constants and a binary string of length

with such that is not
-quasi-stochastic.

As a particular consequence, letwith length be one of
the non-quasi-stochastic strings of which the existence is estab-
lished by Corollary V.6. Substituting , we
can contemplate the distribution for and and

otherwise. Then we have complexity .
Clearly, has randomness deficiency with respect to .
Because of the assumption of non-quasi-stochasticity of,
and because the minimal randomness deficiency, of

is always nonnegative, .

Since it generally holds that , it follows that

. That is, these non-quasi-stochastic
objects have complexity and are
not random, typical, or in general positionwith respect to
any explicitly computable distribution with and

complexity , but they are random,
typical, or in general position only for some distributions

with complexity like . That
is, every explicit sufficient statistic for has complexity

, and is such a statistic.

VI. A LGORITHMIC VERSUSPROBABILISTIC

Algorithmic sufficient statistic, a function of the data, is so
named because intuitively it expresses an individual summa-
rizing of the relevant information in the individual data, rem-
iniscent of the probabilistic sufficient statistic that summarizes
the relevant information in a data random variable about a model
random variable. Formally, however, previous authors have not
established any relation. Other algorithmic notions have been
successfully related to their probabilistic counterparts. The most
significant one is that for every computable probability distribu-
tion, the expected prefix complexity of the objects equals the en-
tropy of the distribution up to an additive constant term, related
to the complexity of the distribution in question. We have used
this property in (II.4) to establish a similar relation between the
expected algorithmic mutual information and the probabilistic
mutual information. We use this in turn to show that there is
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a close relation between the algorithmic version and the prob-
abilistic version of sufficient statistic. A probabilistic sufficient
statistic is with high probability a natural conditional form of al-
gorithmic sufficient statistic for individual data, and, conversely,
with high probability, a natural conditional form of algorithmic
sufficient statistic is also a probabilistic sufficient statistic.

Recall the terminology of probabilistic mutual information
(I.1) and probabilistic sufficient statistic (I.2). Consider a prob-
abilistic ensemble of models, a family of computable probability
mass functions indexed by a discrete parameter, together
with a computable distribution over . (The finite set model
case is the restriction where the’s are restricted to uniform
distributions with finite supports.) This way we have a random
variable with outcomes in and a random variable
with outcomes in the union of domains of, and

is computable.

Notation VI.1: To compare the algorithmic sufficient sta-
tistic with the probabilistic sufficient statistic it is convenient to
denote the sufficient statistic as a function of the data in
both cases. Let a statistic of data be the more general
form of probability distribution as in Section V. That is,maps
the data to the parameter that determines a probability mass
function (possibly not an element of ). Note that “ ”
corresponds to “ ” in Section V. If is computable, then
this can be the Turing machine that computes . Hence, in
the current section, “ ” denotes a probability distribution,
say , and “ ” is the probability concentrates on data.

Remark VI.2: In the probabilistic statistics setting, Every
function is a statistic of , but only some of them are a
sufficient statistic. In the algorithmic statistic setting we have a
quite similar situation. In the finite-set statistic case is a
finite set, and in the computable probability mass function case

is a computable probability mass function. In both algo-
rithmic cases we have shown for is an
implicitly or explicitly described sufficient statistic. This means
that the number of such sufficient statistics foris bounded
by a universal constant, and that there is a universal program
to compute all of them from —and hence to compute the
minimal sufficient statistic from .

Lemma VI.3: Let be a computable
joint probability mass function, and let be a function. Then
all three conditions below are equivalent and imply each other.

i) is a probabilistic sufficient statistic (in the form
).

ii) satisfies

(VI.1)

iii) satisfies

All signs hold up to an constant additive term.

Proof: Clearly, iii) implies i) and ii).
We show that both i) implies iii) and ii) implies iii). By (II.4)

we have

(VI.2)

where we absorb a additive term in the sign. To-
gether with (VI.1), (VI.2) implies

(VI.3)

andvice versa; (VI.3) together with (VI.2) implies (VI.1).

Remark VI.4: It may be worth stressing that in Theorem
VI.3 can be any function, without restriction.

Remark VI.5: Note that (VI.3) involves equality rather
than precise equality as in the definition of the probabilistic suf-
ficient statistic (I.2).

Definition VI.6: Assume the terminology and notation
above. A statistic for data is -sufficient with deficiency

if . If then is simply a
-sufficient statistic.

The following lemma shows that-sufficiency is a type of
conditional sufficiency:

Lemma VI.7: Let be a sufficient statistic for . Then

(VI.4)

iff .
Proof: (If) By assumption,

Rearrange and add

(by typicality) to the right-hand side to obtain

Substitute according to (by
sufficiency) in the right-hand side, and subsequently subtract

from both sides, to obtain (VI.4).
(Only If) Reverse the proof of the (If) case.

The following theorems state that is a probabilistic suf-
ficient statistic iff is an algorithmic -sufficient statistic, up
to small deficiency, with high probability.

Theorem VI.8:Let be a computable
joint probability mass function, and letbe a function. If is a
recursive probabilistic sufficient statistic, thenis a -sufficient
statistic with deficiency , with -probability at least .

Proof: If is a probabilistic sufficient statistic, then, by
Lemma VI.3, equality of -expectations (VI.1) holds. However,
it is still consistent with this to have large positive and nega-
tive differences for different
arguments, such that these differences cancel each other. This
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problem is resolved by appeal to the algorithmic mutual infor-
mation nonincrease law (II.6) which shows that all differences
are essentially positive

Altogether, let be least positive constants such that
is always nonnegative and its

-expectation is . Then, by Markov’s inequality

that is,

Theorem VI.9:For each , consider the set of dataof length
. Let be a computable joint proba-

bility mass function, and let be a function. If is an algo-
rithmic -sufficient statistic for , with -probability at least

, then is a probabilistic sufficient
statistic.

Proof: By assumption, using Definition VI.6, there is a
positive constant such that

Therefore,

On the other hand, since

we obtain

Altogether, this implies (VI.1), and by Lemma VI.3, the theo-
rem.

VII. CONCLUSION

An algorithmic sufficient statistic is an individual finite set (or
probability distribution) for which a given individual sequence
is a typical member. The theory is formulated in Kolmogorov’s
absolute notion of the quantity of information in an individual
object. This is a notion analogous to, and in some sense sharper
than, the probabilistic notion of sufficient statistic—an average
notion based on the entropies of random variables. It turned
out that for every sequencewe can determine the complexity
range of possible algorithmic sufficient statistics, and, in par-
ticular, exhibit an algorithmic minimal sufficient statistic. The
manner in which the statistic is effectively represented is cru-
cial: we distinguish implicit representation and explicit repre-
sentation. The latter is essentially a list of the elements of a fi-
nite set or a table of the probability density function; the former

is less explicit than a list or table but more explicit than just
recursive enumeration or approximation in the limit. The algo-
rithmic minimal sufficient statistic can be considerably more
complex depending on whether we want explicit or implicit
representations. We have shown that there are sequences that
have no simple explicit algorithmic sufficient statistic: the algo-
rithmic minimal sufficient statistic is essentially the sequence it-
self. Note that such sequences cannot be random in the sense of
having maximal Kolmogorov complexity—in that case, already
the simple set of all sequences of its length, or the corresponding
uniform distribution, is an algorithmic sufficient statistic of al-
most zero complexity. We demonstrated close relations between
the probabilistic notions and the corresponding algorithmic no-
tions. i) The average algorithmic mutual information is equal to
the probabilistic mutual information. ii) To compare algorithmic
sufficient statistic and probabilistic sufficient statistic meaning-
fully one needs to consider a conditional version of algorithmic
sufficient statistic. We defined such a notion and demonstrated
that probabilistic sufficient statistic is with high probability an
(appropriately conditioned) algorithmic sufficient statistic and
vice versa. The most conspicuous theoretical open end is as fol-
lows. For explicit descriptions we were only able to guarantee an
algorithmic minimal near-sufficient statistic, although the con-
struction can be shown to be minimal sufficient for almost all
sequences. One would like to obtain a concrete example of a
truly explicit algorithmic minimal sufficient statistic.

A. Subsequent Work

One can continue generalization of model classes for algo-
rithmic statistic beyond computable probability mass functions.
The ultimate model class is the set of recursive functions. In [1],
provisionally entitled “Sophistication Revisited,” the following
results have been obtained. For the set of partial recursive func-
tions, the minimal sufficient statistic has complexity for all
data . One can define equivalents of the implicit and explicit
description format in the total recursive function setting. Every
string has an implicit minimal sufficient statistic of complexity

; it has an explicit minimal sufficient statistic of com-
plexity at least and sometimes about . The com-
plexity of the minimal sufficient statistic for , in the model
class of total recursive functions, is called its “sophistication.”
Hence, one can distinguish three different sophistications cor-
responding to the three different description formats: explicit,
implicit, and unrestricted. It turns out that the sophistication
functions are not recursive; the Kolmogorov prefix complexity
can be computed from the minimal sufficient statistic (every de-
scription format) andvice versa; given the minimal sufficient
statistic as a function of one can solve the so-called “halting
problem” [10]; and the sophistication functions are upper semi-
computable. By the same proofs, such computability proper-
ties also hold for the minimal sufficient statistics in the model
classes of finite sets and computable probability mass functions.

B. Application

Because the Kolmogorov complexity is not computable,
an algorithmic sufficient statistic cannot be computed either.
Nonetheless, the analysis gives limits to what is achievable in
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practice—like in the cases of coding theorems and channel
capacities under different noise models in Shannon information
theory. The theoretical notion of algorithmic sufficient statistic
forms the inspiration to develop applied models that can be
viewed as computable approximations. Minimum description
length (MDL), [2], is a good example; its relation with the al-
gorithmic minimal sufficient statistic is given in [20]. As in the
case of ordinary probabilistic statistic, algorithmic statistic if
applied unrestrained cannot give much insight into themeaning
of the data; in practice, one must use background information to
determine the appropriate model class first—establishing what
meaning the data can have—and only then apply algorithmic
statistic to obtain the best model in that class by optimizing its
parameters; see Example III.5. Nonetheless, in applications one
can sometimes still unrestrictedly use compression properties
for model selection, for example by a judicious choice of model
parameter to optimize. One example is the precision at which
we represent the other parameters: too high precision causes
accidental noise to be modeled as well, too low precision may
cause models that should be distinct to be confusing. In general,
the performance of a model for a given data sample depends
critically on what we may call the “degree of discretization”
or the “granularity” of the model: the choice of precision of
the parameters, the number of nodes in the hidden layer of a
neural network, and so on. The granularity is often determined
ad hoc. In [9], in two quite different experimental settings the
best model granularity values predicted by MDL are shown to
coincide with the best values found experimentally.
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