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Algorithmic Statistics

Péter Gacs, John T. Tromp, and Paul M. B. Vitanyi

Abstract—While Kolmogorov complexity is the accepted I. INTRODUCTION
absolute measure of information content of an individual finite . . .
object, a similarly absolute notion is needed for the relation S;ATISTICAIT theory ideally considers the following
between an individual data sample and an individual model roblem. Given a data sample and a family of models
summarizing the information in the data, for example, a finite  (hypotheses), select the model that produced the data. But
set (or probability distribution) where the data sample typically g priori it is possible that the data is atypical for the model

came from. The statistical theory based on such relations between . .
individual objects can be called algorithmic statistics, in contrast that actually produced it, or that the true model is not present

to classical statistical theory that deals with relations between iN the considered model class. Therefore, we have to relax
probabilistic ensembles. We develop the algorithmic theory of our requirements. If selection of a “true” model cannot be
statistic, sufficient statistic, and minimal sufficient statistic. This guaranteed by any method, then as next best choice “modeling
ti‘i‘_’?’_ |s(ttt>1ased g”l two-part _CQde?hCO”S'Stl'“gt oftthhe COde_forftTe the data,” as well as possible irrespective of truth and falsehood
statistic (the model summarizing the regularity, the meaningfu ; ;

information, in the data) and the model-to-data code. In contrast of the r(?‘sultlpg TOdel’ may be ”.‘me,, appropriate. Thus, we
to the situation in probabilistic statistical theory, the algorithmic ~ change “true” to “as well as possible.” The latter we take to
relation of (minimal) sufficiency is an absolute relation between mean that the model expresses all significant regularity present
the individual model and the individual data sample. We distin- in the data. The general setting is as follows. We carry out a
QE'Sh implicit and fxf"'c'.t hde_scagtllons of th)e m‘?de'f'- Vf\]ie_glve probabilistic experiment, the outcomes of which are governed
characterizations of algorithmic (Kolmogorov) minimal sufficient il -
statistic for all data samples for both description modes—in by an unknown probability dls_trlbutloﬂ’. Suppose we abtain
the explicit mode under some constraints. We also strengthen @S outcome the data sampleGivenz, we want to recover the
and elaborate on earlier results for the “Kolmogorov structure  distribution P. For certain reasons we can choose a distribution
function” and “absolutely nonstochastic objects”—those objects from a set of acceptable distributions only (which may or may
for which the simplest models that summarize their relevant not containP). Intuitively, our selection criteria are that )
information (minimal sufficient statistics) are at least as complex r,?hould be a “typical” outcome of the distribution selected, and

as the objects themselves. We demonstrate a close relation betwee o s N "
the probabilistic notions and the algorithmic ones: i) in both cases 1) the selected distribution has a “simple” description. We need

there is an “information non-increase” law; ii) it is shown that t0 make the meaning of “typical” and “simple” rigorous and

a function is a probabilistic sufficient statistic iff it is with high  balance the requirements i) and ii). In probabilistic statistics,

probability (in an appropriate sense) an algorithmic sufficient one analyzes the average-case performance of the selection

statistic. process. For traditional problems, dealing with frequencies
Index Terms—Algorithmic information theory, description  over small sample spaces, this approach is appropriate. But for

format (explicit, implicit), foundations of statistics, Kolmogorov  ,rrent novel applications, average relations are often irrele-

complexity, minimal sufficient statistic (algorithmic), mutual in- : e .
formation (algorithmic), nonstochastic objects, sufficient statistic vant, since the part of the support of the probability density

(algorithmic), two-part codes. function that will ever be observed has about zero measure.
This is the case, for example, in complex video and sound
analysis. There arises the problem that for individual cases the
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random variables{, Y have a joint probability mass functionspectively, is also a sufficient statistic. A statisficD) is amin-

p(z, v) and marginal probability mass functions imal sufficient statistic with respect to an indexed model family
{fe},ifitis afunction of all other sufficient statistics: it contains
pi@) =Y plz,y) and pa(y) = plx, v). no irrelevant information and maximally compresses the infor-
Y ® mation about the model ensemble. As it happens, for the family

of normal distributions, the sample mean is a minimal sufficient

Then the (probabilisticinutual information/ (XX; Y') between - - . -
statistic, but the sufficient statistic consisting of the mean of the

the joint distribution and the product distributipn(x)p2 (y) is

defined by even samples in combination with the mean of the odd samples
is not minimal. All these notions and laws are probabilistic: they
Do - plz, y) hold in an average sense.
X Y) = Z Z p(x, y)los p1(z)p2(y) (1) Kolmogorov Complexity:We writestringto mean a finite bi-
z oy

nary sequence. Other finite objects can be encoded into strings

where ‘log” denotes the binary logarithm. Consider a proban natural ways. The Kolmogorov complexity, or algorithmic
bilistic ensemble of models, say a family of probability massntropy, K(z) of a stringz is the length of a shortest binary
functions{ f, } indexed by, together with a distributiop; over program to compute on a universal computer (such as a uni-
6. This way we have a random varialébewith outcomesi{ fo}  versal Turing machine). Intuitivelyf{(z) represents the min-
and a random variabl® with outcomes in the union of domainsimal amount of information required to generatdy any ef-

of fo,andp(6, d) = p1(0) fe(d). Every functionll’'(D) ofadata fective process [11]. The conditional Kolmogorov complexity
sampleD—like the sample mean or the sample variance—iK(x | y) of « relative toy is defined similarly as the length of a
called astatisticof D. A statisticT(D) is calledsufficientifthe shortest program to computeif y is furnished as an auxiliary

probabilistic mutual information input to the computation. This conditional definition requires a
warning since different authors use the same notation but mean
1(©; D) = 1(6; T(D)) (1.2)  different things. In [3], the author writesk'(x |4)” to actu-

for all distributions o®. Hence, the mutual information betweenally mean K (z |y, .I.((y).)’ notat!onally rl|d|n_g the intended
plementary auxiliary informatiork(y).” This abuse of no-

i . ) S
par_ameter_ "’?”d data_ sgmple random varla_bles IS '”"a“ar.“ WP; fon has the additional handicap that no obvious notation is
taking sufficient statistic andce versaThat is to say, a statistic

T(D) is called sufficient fo© if it contains all the information

left to express K (x| )" meaning that just4” is given in the
in D about®. For example, considertosses of a coin with un- conditional. As it happens,y, K (y)" represents more infor-
known biag) with outcomeD = d;ds - - - d,, whered; € {0, 1}

mation than just4.” For example K (K (y) | ¥) can be almost
(1 <4 < n). Givenn, the number of outcomed ™ is a suffi-

as large adog K (y) by a result in [7], [23]; forl(y) = n it
cient statistic foi®: the statistic/’(D) = s = >, d;. Given has an upper bound &bg » for all y, and for somey’s it has
T, all sequences witk “1”s are equally likely independent of

a lower bound oflogn —loglogn. In fact, this result quanti-
parameted. Givens, if d is an outcome of. coin tosses and fies the undecidability of the halting problem for Turing ma-
T(D) = sthen

chines—for example, iIK (K (y) | y) = O(1) for all y, then the
halting problem can be shown to be decidable. This is known to
a\ L be false. It is customary, [14], [7], [23], [10], to write explicitly
) “K(z|y)” and “K(z |y, K(y)).” Even though the difference
between these two quantities is not very large, these small dif-
ferences do matter in the sequel. In fact, not only the precise
Pr(d|T(D) # s) = 0. information itself in the conditional, but also the way it is rep-

This can be shown to imply (1.2) and therefdras a sufficient resented, is crucial, see Section III-A.

statistic for®. According to Fisher [6]: “The statistic chosen The_ funcﬂonsJ(_(-) and K (), though de_:fmed in terms of
) . : a particular machine model, are machine-independent up to an
should summarize the whole of the relevant information sup-

plied by the sample. This may be called the Criterion of Su I_dd|t|ve constant and acquire an a,sympt(_)t|cally umversg_l and
. ... . .absolute character through Church’s thesis, from the ability of
ciency... . In the case of the normal curve of distribution it iS . )
i ) g " niversal machines to simulate one another and execute any ef-
evident that the second moment is a sufficient statistic for esfi- . ; .
. R . ective process. The Kolmogorov complexity of a string can be
mating the standard deviation.” Note that one cannot improve L e
. i : : ; viewed as an absolute and objective quantification of the amount
on sufficiency: for every (possibly randomized) functidrwe . A . .
of information in it. This leads to a theory ebsoluteinforma-
have . Lo ) . .
tion contentf individual objects in contrast to classical infor-
1(®; D) > I(6; T(D)) (1.3) mation theory which deals withveragenformationto commu-

- nicateobjects produced by @ndom sourceSince the former
that is, mutual information cannot be increased by processitigeory is much more precise, it is surprising that analogs of
the data sample in any way. theorems in classical information theory hold for Kolmogorov

A sufficient statistic may contain information that is not relcomplexity, be it in somewhat weaker form. Here our aim is
evant: for a normal distribution, the sample mean is a suftie provide a similarly absolute notion for individual “sufficient
cient statistic, but the pair of functions which give the mean statistic” and related notions borrowed from probabilistic statis-

the even-numbered samples and the odd-numbered samplegjae-

Pr(d|T(D)=s)= <

S
and
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Two-Part Codes:The prefix-code of the shortest effectivethanlog |S|. By the theory of Martin-L6f randomness [16] this
descriptions gives an expected codeword length close to theans thatl is a “typical” element ofS. In general, there can
entropy and also compresses the regular objects until all ré@ many algorithmic sufficient statistics for dataa shortest
ularity is squeezed out. All shortest effective descriptions asgnong them is called aigorithmic minimal sufficient statistic
completely random themselves, without any regularity whatsilote that there can be possibly more than one algorithmic min-
ever. The idea of a two-part code for a body of data natural imal sufficient statistic; they are determined by the data.
from the perspective of Kolmogorov complexity.dfdoes not In probabilistic statistics the notion of sufficient statistic (1.2)
contain any regularity at all, then it consists of purely randois an average notion invariant under all probability distributions
data and the model is precisely that. Assume that the bodyasfer the family of indexed models. If a statistic is not thus in-
datad contains regularity. With help of a description of the regvariant, it is not sufficient. In contrast, in the algorithmic case
ularity (a model) we can describe the data compactly. Assuming investigate the relation between the data and an individual
that the regularity can be represented in an effective manner (thetidel and therefore a probability distribution over the models
is, by a Turing machine), we encode the data as a program i®irrelevant. It is technically convenient to initially consider the
that machine. Squeezing all effective regularity out of the dasimple model class of finite sets to obtain our results. It then
we end up with a Turing machine representing the meaningfukns out that it is relatively easy to generalize everything to the
regular information in the data together with a program for thatodel class of computable probability distributions. That class
Turing machine representing the remaining meaningless rasmvery large indeed: perhaps it contains every distribution that
domness of the data. However, in general there are many wags ever been considered in statistics and probability theory, as
to make the division into meaningful information and remaininpng as the parameters are computable numbers—for example,
random information. In a painting, the represented image, thaional numbers. Thus, the results are of great generality; in-
brush strokes, or even finer detail can be the relevant inforndeed, they are so general that further development of the theory
tion, depending on what we are interested in. What we requiraust be aimed at restrictions on this model class; see the discus-
is a rigorous mathematical condition to force a sensible divisigipn about applicability in Section VII. The theory concerning
of the information at hand into a meaningful part and a meathe statistics of individual data samples and models one may call
ingless part. algorithmic statistics

Algorithmic Statistics: The two-part code approach leads to Background and Related WorkAt a Tallinn conference
a more general algorithmic approach to statistics. The alga-1973, A. N. Kolmogorov formulated the approach to an
rithmic statistician’s task is to select a model (described possitihdividual data-to-model relation, based on a two-part code
by a probability distribution) for which the data is typical. In eseparating thetructureof a string from meaninglesgndom
two-part description, we describe such a model and then identi§atures, rigorously in terms of Kolmogorov complexity (attri-
the data within the set of the typical outcomes. The best modblstion by [17], [4]). Cover [4], [5] interpreted this approach as
make the two-part description as concise as the best one-partalésufficient) statistic. The “statistic” of the data is expressed as
scription of the data. A description of such a model is an alga-finite set of which the data is a “typical” member. Following
rithmic sufficient statistic since it summarizes all relevant profBhen [17] (see also [21], [18], [20]), this can be generalized
erties of the data. Among the algorithmic sufficient statisticép computable probability mass functions for which the data
the simplest one (an algorithmic minimal sufficient statistic) is “typical.” Related aspects of “randomness deficiency”
best in accordance with Ockham’s Razor, since it summarizgsrmally defined later in (1V.1)) were formulated in [12], [13],
the relevant properties of the data as concisely as possibleaihd studied in [17], [21]. Algorithmic mutual information, and
probabilistic data or data subject to noise, this involves sepghe associated non-increase law, were studied in [14], [15].
rating regularity (structure) in the data from random effects. Despite its evident epistemological prominence in the theory

In a restricted setting, where the models are finite sets, a wafyhypothesis selection and prediction, only selected aspects
to proceed was suggested by Kolmogorov, attribution in [1L7f the algorithmic sufficient statistic have been studied before,
[4], [5]- Given datad, the goal is to identify the “most likely” for example, as related to the “Kolmogorov structure function”
finite setS of which d is a “typical” element. Finding a set of [17], [4], and “absolutely nonstochastic objects” [17], [21],
which the data is typical is reminiscent of selecting the apprfi8], [22], notions also defined or suggested by Kolmogorov at
priate magnification of a microscope to bring the studied speifte mentioned meeting. That work primarily studies quantifi-
imen optimally in focus. For this purpose, we consider ggts cation of the “nonsufficiency” of an algorithmic statistic, when
such thatd € S and we represerfi by theshortestprogram the latter is restricted in complexity, rather than necessary and
S* that computes the characteristic functionSfThe shortest sufficient conditions for the existence of an algorithmic suffi-
programS* that computes a finite sét containingd, such that cient statistic itself. These references obtain results for plain
the two-part description consisting 8§ andlog|S| is as short Kolmogorov complexity (sometimes length-conditional) up to
as the shortestingle program that computes without input, a logarithmic error term. Especially for regular data that have
is called analgorithmic sufficient statisti¢ This definition is low Kolmogorov complexity with respect to their length, this
nonvacuous since there does exist a two-part code (based orldarithmic error term may dominate the remaining terms and
modelS; = {d}) that is as concise as the shortest single codgiminate all significance. Since it is precisely the regular data
The description off given S* cannot be significantly shorter that one wants to assess the meaning of, a more precise analysis

as we provide is required. Here we use prefix complexity to
1t is also called the Kolmogorov sufficient statistic. unravel the nature of a sufficient statistic. The excellent papers
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of Shen [17], [18] contain the major previous results related to Proposition 1.3:

this work (although [18] is independent). While previous work a) There exists a constadt such that, for every natural

and the present paper consider an algorithmic statistic that is numbern and everya and/3 with « > logn + C and

either a finite set or a computable probability mass function, «+ 3 > n+4logn + C, all strings of length less than

the most general algorithmic statistic is a recursive function.  »n are(«, /3)-stochastic.

In [1], the present work is generalized accordingly, see theb) There exists a constadf such that, for every natural

summary in Section VII. numbern and everyy andj3 with 2a+3 <n—6 log n—C,
For the relation with inductive reasoning according to min- there exist strings: of length less tham that are not

imum description length principle see [20]. The entire approach  («, 3)-stochastic.

is based on Kolmogorov complexity (also known as algorithmj

information theory). Historically, the idea of assigning to each and%n, the last norter, 3)-stochastic elements disappear

object a probability consisting of the summed negative exp8- ; : iy :
. . . If the complexity constraints are sufficiently relaxed by having
nentials of the lengths of all programs computing the object, .
o, 3 exceed this boundary.

was first proposed by Solomonoff [19]. Then, the shorter pro- Outline of this Work: First, we obtain a new Kolmogorov

grams contribute more probability than the longer ones. His aim N o ! : :
: . .~ complexity “triangle” inequality that is useful in the later parts
ultimately successful in terms of theory (see [10]) and as inspi: ) 7 . .
. ; ; . of the paper. We define algorithmic mutual information between
ration for developing applied versions [2], was to developagen- =~ " . . e )
o . wo individual objects (in contrast to the probabilistic notion
eral prediction method. Kolmogorov [11] introduced the com- . A . .
, ) ; . of mutual information that deals with random variables). We
plexity proper. The prefix-version of Kolmogorov complexity o . 4
>t : : how that for every computable distribution associated with the
used in this paper was introduced in [14] and also treated lajer : . o ;
. o random variables, the expectation of the algorithmic mutual in-
in [3]. For a textbook on Kolmogorov complexity, its mathemat: . o X X
. : S . : .~ formation equals the probabilistic mutual information up to an
ical theory, and its application to induction, see [10]. We give &

definition (attributed to Kolmogorov) and results from [17] thagdo_lmve cpnstant that dgpends on the__cqmplepty of the distri-
are useful later. ution. It is known that in the probabilistic setting the mutual

information (an average notion) cannot be increased by algo-
Definition I.1: Let « and3 be natural numbers. A finite bi- ithmic processing. We give a new proof that this also holds in

nary stringz is called(a, §)-stochastidf there exists a finite the indvidual setting. ,
setS C {0, 1}* such that We define notions of “typicality” and “optimality” of sets in

relation to the given data. Denote the shortest program for a
finite setS by S* (if there is more than one shortest program
S* is the first one in the standard effective enumeration). “Typi-
cality” is a reciprocal relation: a sétis “typical” with respect to
where|S| denotes the cardinality of, and K (-) the (prefix-) ; if 2 is an element of that is “typical” in the sense of having
Kolmogorov complexity. As usuallég” denotes the binary 109- smallrandomness deficiendt(z) = log|S| — K(z|S*) (see
arithm. definition (IV.1) and discussion). That is,has about maximal
The first inequality with smalk means thats' is “simple”;  Kolmogorov complexity in the set, because it can always be
the second inequality witfi is small means thatis “in general jdentified by its position in an enumeration §fin log | S| bits.
position” in 5. Indeed, ifz had any special propergythat was Every description of a “typical” set for the data is an algorithmic
shared by only a small subs@tof S, then this property could statistic.
be used to single out and enumerate those elements and subsgsets is “optimal” if the best two-part description consisting
quently indicater by its index in the enumeration. Altogetherof a description ofs and a straightforward description ofas
this would showK (z) < K(p) + log|Q|, which, for simplep  an element ofS by an index of sizdog|$| is as concise as
and smali@ would be much lower thatog [S|. A similar no-  the shortest one-part description:ofThis implies that optimal
tion for Computable probablllty distributions is as follows. Legets are typ|ca| sets. Descriptions of such Opt|ma| sets are al-
« and 8 be natural numbers. A finite binary stringis called gorithmic sufficient statistics, and a shortest description among
(v, B)-quasi-stochastid there exists a computable probabilitythem is an algorithmic minimal sufficient statistic. The mode of
distribution P such that description plays a major role in this. We distinguish between
“explicit” descriptions and “implicit” descriptions—that are in-
Plz)>0 K(P)<a  K(z)>-logP(xz)—p3. (1.5) troduced in this paper as a proper restriction on the recursive
enumeration based description mode. We establish range con-
straints of cardinality and complexity imposed by implicit (and
Proposition 1.2: There exist constants and €, such that hence explicit) descriptions for typical and optimal sets, and ex-
for every natural number and every finite binary string of  hipjt a concrete algorithmic minimal sufficient statistic for im-

ote that if we takex = /3 then, for some boundary in between

z€es K(S) <« K(z) > log|S|—p (1.4)

lengthn plicit description mode. It turns out that only the complexity of
a) if z is («, B)-stochastic, then is (« + ¢, #)-quasi-sto- the data sample is relevant for this implicit algorithmic min-
chastic; imal sufficient statistic. Subsequently, we exhibit explicit algo-

b) if z is («, 3)-quasi-stochastic and the lengthaofs less rithmic sufficient statistics, and an explicit minimal algorithmic
thann, thenz is (« 4 clogn, 8 + C)-stochastic. (near-)sufficient statistic. For explicit descriptions, it turns out
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that certain other aspectsofits enumeration rank) apart from The emphasis is on binary sequences only for convenience;
its complexity are a major determinant for the cardinality anabservations in any alphabet can be so encoded in a way that is
complexity of that statistic. It is convenient at this point to in*theory neutral.”

troduce some notation. A binary stringz is aproper prefixof a binary stringy if we

can writey = xz for z # e. Aset{z,y, ...} C {0,1}*is
prefix-freeif for any pair of distinct elements in the set neither

is a proper prefix of the other. A prefix-free set is also called a
prefix code Each binary string = z1x2-- -z, has a special
type of prefix code, called self-delimiting code

Notation 1.4: From now on, we will denote by+< an in-
equality to within an additive constant, and Bythe situation

when bothé and ; hold. We will also use< to denote an
inequality to within an multiplicative constant factor, aadto
denote the situation when bothand > hold.

Let us contrast our approach with the one in [17]. The com- T=1"0z12y - T

parable case there, by (1.4), is thafs (a, )-stochastic with This code is self-delimiting because we can determine where the

= ini > 3
# = 0 anda minimal. Then,K(x) > log|S] for a sets of codewordr ends by reading it from left to right without backing

Kolmogorov complexitye. But, if S is optimal forzx, then, as . : f Al
we formally define it later (II1.4) K (x) £ K (S)+1log |S]. That up. Using this code, we define the standard self-delimiting code

!/ i - —
is, (1.4) holds with3 = — K (S). In contrast, for3 = 0 we must ];Or:da;(?)bixn; gfggnlzi easy to check thd(z) = 2n +1
haveK (S) = 0 for typicality. In short, optimality ofS with re- Let (-, -) be a standard oﬁe-one mapping frafix A" to A,
spect tox corresponds to (1.4) by dropping the second it technical reasons chosen such that

and replacing the third item bi{ () = log | S| + K(S). “Min-
imality” of the algorithmic sufficient statistics* (the shortest Iz, v) = Uy) + U(z) + 20(1(z)) + 1

program forS) corresponds to choosirgwith minimal K(5)

in this equation. This is equivalent to (I.4) with inequalities refor example (z, y) = 2’y = 1/4=)0l(x)zy. This can be iter-
placed by equalities anH (S) = o« = — 8. ated to{(-, -), -).

We consider the functions related(ie, /3)-stochasticity,and  The prefix Kolmogorov complexityor algorithmic entropy,
improve Shen’s result on maximally nonstochastic objects. Ki(x) of a stringz is the length of a shortest binary program to
particular, we show that for everythere are objects of length  computer on a universal computer (such as a universal Turing
n with complexity K (| n) aboutn such that every explicit al- machine). For technical reasons, we require that the universal
gorithmic sufficient statistic for has complexity about ({z}  machine have the property that no halting program is a proper
is such a statistic). This is the best possible. In Section V, weefix of another halting program. Intuitively (x) represents
generalize the entire treatment to probability density distribthe minimal amount of information required to generatby
tions. In Section VI, we connect the algorithmic and probany effective process. We denote sieortest progranfor z by
bilistic approaches. While previous authors have used the nagie then K (x) = I(z*). (Actually, z* is the first shortest pro-
“Kolmogorov sufficient statistic” because the model appears gram forz in an appropriate standard enumeration of all pro-
summarize the relevant information in the data in analogy gfams forz such as the halting order.) The conditional Kol-
what the classic sufficient statistic does in a probabilistic sensgogorov complexityK (z | %) of = relative toy is defined sim-

a formal justification has been lacking. We give the formal relatarly as the length of a shortest program to compuité ¥ is

tion between the algorithmic approach to sufficient statistic afidrnished as an auxiliary input to the computation. We often use
the probabilistic approach. A function is a probabilistic suffi#x (x|y*), or, equivalently,K (z |y, K(y)) (trivially y* con-
cient statistic iff it is with high probability an algorithmisuf-  tains the same information as the pgirK (y)). Note that %"
ficient statistic, where an algorithmic sufficient statistiéisuf-  in the conditional is just the information abauand apart from
ficientif it satisfies also the sufficiency criterion conditionalizedhis does not contain information abogit or K(y). For this
oné. work the difference is crucial, see the comment in Section I.

Il. KOLMOGOROV COMPLEXITY A. Additivity of Complexity

We give some definitions to establish notation. For introduc- Recall that by definitionf{ (=, y) = K ({z, y)). Trivially, the
tion, details, and proofs, see [10]. We writing to mean a Symmetry property holdsk (z, y) = K(y, =). Later, we will
finite binary string. Other finite objects can be encoded intase many times the “Additivity of Complexity” property
strings in natural ways. The set of strings is denotediyl }*. N -t .
Thelengthof a stringz is denoted by(z), distinguishing itfrom ~ £(, ) = K(z) + K(y|lz") = K(y) + K(z[y®). (ll.1)

the cardinality |S| of a finite setS. .
Letz, y, » € N, whereA’ denotes the natural numbers.Th'S result due to [7], [23] can be found as [10, Theorem 3.9.1],

Identify A" and {0, 1}* according to the correspondence and has a difficult proof. Itis perhaps instructive to point out that
’ the version with just: andy in the conditionals does not hold

(0, €), (1, 0), (2, 1), (3, 00), (4, 01), ... . with £, but holds up to additive logarithmic terms that cannot

be eliminated. The conditional version needs to be treated care-
Heree denotes thempty word’ with no letters. Thdengthl(x)  fully. It is

of z is the number of bits in the binary string For example,
1(010) = 3 andi(e) = 0. K(z,y|z) T K(z|2)+ K(y|z, K(z|2), 2). (1.2)
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Note that a naive version added randomization this holds with overwhelming probability.
. . We use the triangle inequality of Theorem IlI.1 to recall, and to
Kz, ylz) = K(z|2) + K(y|z", 2) give possibly new proofs of, this information non-increase; for

more elaborate but hard-to-follow versions see [14], [15].
We need the following technical concepts. Let us call a non-
negative real functiory(x) defined on strings aemimeasure
K(x|2) + K(K(z)|z*, ) £ 0. if >, f(a_c) <1, anc_i ameasgre(a probability dis_tribution) if
the sum isl. A function f(z) is calledlower semicomputable
First, we derive a (to our knowledge) new “directed triangle irif there is a rational valued computable functigfn, =) such
equality” that is needed later. thatg(n + 1, z) > g(n, z) andlim, ., g(n, ) = f(z).
For anupper semicomputabfenction f we require that f be
lower semicomputable. It isomputablevhen it is both lower
and upper semicomputable. (A lower semicomputable measure
is also computable because it sumd tp
Proof: Using (II.1), an evident inequality introducing an 10 define the algorithmic mutual information between two

is incorrect: taking = z, y = K (x), the left-hand side equals
K(z*|z), and the right-hand side equals

Theorem II.1: For all z, y, =

N *\ = * *
K(z|y") < K(z, 2|y") < K(z|y") + K(z | 2").

auxiliary objectz, and twice (I1.1) again individual objectsz andy with no probabilities involved, it is
instructive to first recall the probabilistic notion (1.1). Rewriting
K(z, z|v*) = K(z, v, 2) — K(y) (1.1) as
<K +K(@|2)+K(y|2*) — K(y) > ple, y)[~logp(x) —log p(y) + log p(x, y)]
+ * R
N Ky, =) — K(y) + K(z|2") and noting that-log p(s) is very close to the length of the
= K(x|2") + K(z|y"). O  prefix-free Shannon—Fano code ferwe are led to the fol-
lowing definitionz Theinformation iny aboutz is defined as
This theorem has bizarre consequences. These consequences I{y:2)=K(z) — K(z|y")
are not simple unexpected artifacts of our definitions, but, to the LK () + K(y) — K(z, y) (11.3)

contrary, they show the power and the genuine contribution tch
our understanding represented by the deep and important mat
ematical relation (11.1).

Denotek = K(y) and substitutéd: = > and K(k) = =z to
find the following counterintuitive corollary. To determine the Remark I1.3: The conditional mutual information is
complexity of the complexity of an objegtit suffices to give Hz:y|z)=K(z|z)— K(z|y, K(y|2), 2)
bothy and the complexity of;. This is counterintuitive since, +
in general, we cannot compute the complexity of an object from = K(z|2) + Kly|2) - K=, y|2). ¢
the object itself; if we could this would also solve the so-called |t is important that the expectation of the algorithmic mutual
“halting problem,” [10]. This noncomputability can be quantiinformationI(z : %) is close to the probabilistic mutual infor-
fied in terms ofK (K (y) | ¥)) which canrise to almost' (K (y)) mationI(X; Y')—if this were not the case then the algorithmic
for somey—see the related discussion on notation for condiotion would not be a sharpening of the probabilistic notion to
tional complexity in Section I. But in the seemingly similar, buindividual objects, but something else.
subtly different, setting below it is possible.

ere the second equality is a consequence of (I1.1) and states
at this information is symmetrical(z : y) = I(y : ), and
therefore we can talk abouotutual informatior®

Lemma Il.4: Given a computable joint probability mass dis-

Corollary 11.2: As above, let: denoteK (y). Then, tribution p(xx, %) over(x, i) we have
K(K(R) |y, k)= K(K(k) |y*) < KK (k) |K)+K |y, k) IX;Y)=K(p)< > pla, w(z:y)
£0. v
L IX;Y) +2K(p) (11.4)

We can iterate this idea. For example, the next step is that given ] ]
y and K () we can determind (K (K (y))) in O(1) bits, that whereK (p) is the length of the shortest prefix-free program that

is, K(K(K(k))) |y, k) =o0. computes(z, y) from input(z, y).
_ Remark I1.5: Above, we requiregdy(-, -) to be computable.
B. Information Non-Increase Actually, we only require thap be a lower semicomputable

If we want to find an appropriate model fitting the data, thefnction, which is a weaker requirement than computability.
we are concerned with the information in the data about suttewever, together with the condition thet, -) is a probability
models. Intumvelyz one feels that the 'nformat'on in the datazThe Shannon—Fano code has nearly optimal expected code length equal
about the appropriate model cannot be increased by any al@ane entropy with respect to the distribution of the source [5]. However, the
rithmic or probabilistic process. Here, we rigorously show thatefix-free code with codeword lengti(s) has both about expected optimal
this is the case in the algorithmic statistics setting' the info?gdeword length and individual optimal effective code wordlength [10].

. . bi b h be i ) db 3The notation of the algorithmic (individual) notidifz : v) distinguishes it
mation in one object about another cannot be increased DY @B, the probabilistic (average) notidi.X; ). We deviate slightly from [10]

deterministic algorithmic method by more than a constant. WitthereZ(y : =) is defined ask (z) — K (x| y).



GACSet al: ALGORITHMIC STATISTICS 2449

distribution,>,  p(x, y) = 1, this implies thap(-, -) is com-  the machine outputs, otherwise it halts without output. There-

putable, [10, Sec. 8.1]. & fore, K(x|p) < —log p(z). This shows the upper bound on the
Proof: Rewrite the expectation expected prefix complexity. The lower bound follows as usual
) from the Noiseless Coding Theorem. O
S e, wI@:y)
z oy We prove a strong version of the information non-increase

il Z Zp(x’ DK (2)+K(y)— K(z, y)]. law under deterministic processing (later we need the attached
i corollary):

Definey", p(x, y) = p1(x) andy_, p(x, y) = p2(y) to obtain  Theorem I1.7: Givenz andz, let ¢ be a program computing
z from «*. Then

Pz, y)I(z: y)
; zy: Iz:y) < I(z:y)+ K(q). (I1.5)
2Zpl(w)K(af)—l-Zm(y)K(y)—Zp(x, K (z, y). Proof: By the triangle inequality
¥ Y il * + * *
Given the program that computgswe can approximatg () K(y[=") f K(y Z*) + K (x]2)
by ¢1(z, yo) = Zy<y0 p(x, y)with yo — oo, and similarly for = K(y|z") + K(q).
po. That is, the distributions; (: = 1, 2) are lower semicom-
putable, and by Remark I1.5, therefore, they are computable. It
is known that for every computable probability mass functjon I(z:y) =K(y)— K(y|z")
+ +
we haveH (q) < >~ q(z)K(z) < H(q)+ K (q), [10, Sec. 8.1]. S K(y)— K(y| ") — K(q)
rlence. ) — Iz :y) - K(q). O
H(p)) < Y pi(@)K(z)<H(p))+ K(p;) (i=12) _ o _ o
© This also implies the slightly weaker but intuitively more ap-
and pealing statement that the mutual information between strings
H(p) < Zp(% K (z, y) & H(p) + K(p). andy cannot be increased by processingndy separately by
7 deterministic computations.

On the other hand, the probabilistic mutual information (1.1) is Corollary 11.8: Let f, g be recursive functions. Then
expressed in the entropies by

) I(f(z): g() < Iz : )+ K()+ K(9). (1)
I(X;Y) = H(p1) + H(p2) — H(p). . .
. Proof: It suffices to prove the casgy) = v and apply it
By construction of they;s above, we have twice. The proof is by replacing the progranthat computes a

+ particular stringz from a particularz* in (11.5). There,q pos-
K(p1), K(p2) < K(p). sibly depends or* and~. Replace it by a programy that first
Since the complexities are positive, substitution establishes ttmmputes: from z*, followed by computing a recursive func-
lemma. O tion f, that is,q; is independent ok. Since we only require
an O(1)-length program to compute from z* we can choose
Way) LK (f).

By the triangle inequality

Can we get rid of the{(p) error term? The answer is affir-
mative; by puttings(-) in the conditional we even get rid of the
computability requirement.

x\ © * *
Lemma 11.6: Given a joint probability mass distribution K(y|s") <K(y| f(=)")+ K(f(z)]z")
p(z, y) over(z, y) (not necessarily computable) we have = K(y| f(=)*) + K(f).
IX;Y)E> S pla, @ :ylp) Thus,
I{zx:y)=K(y) — K(y|z*
where the auxiliaryp means that we can directly access the (=) " ) wla™) .
valuesp(z, ) on the auxiliary conditional information tape of >K(y) — Kyl f(=)") — K(f)

the reference universal prefix machine. =I(f(z):y)— K(f). O
Proof: The lemma follows from the definition of condi-
tional algorithic mutual information, Remark 1.3, if we show It turns out that, furthermore, randomized computation can
that>"_ p(x)K (x| p) = H(p), where theD(1) term implicitin increase information only with negligible probability. Let us
the = sign is independent af. define theuniversal probabilitym(z) = 2=%(*), This function
Equip the reference universal prefix machine, with(¥i) is known to be maximal within a multiplicative constant among
length program to compute a Shannon-Fano code from the alower semicomputable semimeasures. So, in particular, for
iliary table of probabilities. Then, given an inputit can de- each computable measurér) we haver(x) < m(x), where
termine whether is the Shannon—Fano codeword for same the constant factor ik depends ow. This property also holds
Such a codeword has length-log p(z). If this is the case, then when we have an extra parameter, like in the condition.
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Suppose that is obtained from: by some randomized com-=1log |S|. In the implicit case we know, within an additive
putation. The probability(z | z) of obtainingz from = is a constant, how long an index of an element in the set is.
semicomputable distribution over ths. Therefore, itis upper- We can extend the notion of Kolmogorov complexity from
bounded bym(z | z) <m(z|z*) = 2=K1=") The informa- finite binary strings to finite sets. The (prefix-) complexity
tion increasd(z : y) — I(x : y) satisfies the theorem below. Kx(5) of a finite setS is defined by

Theorem I1.9: For all z, y,  we have Kx(S) = min{ K (4): Turing machinel; computesS

m(z | o) 2!V IEY) Sz |2, y, K(y|z")). in representation formaX }

Remark 11.10: For example, the probability of an increas%vi]edreX is fohr e?amplrt]a “implicit’l’f ((3; I‘_‘eX_P”Citg. In general
of mutual information by the amountis < 2~¢. The theorem *enotes the first shortest seli-celimiting binary program
implies (I(S*) = K(S)) in enumeration order from which can be

computed. These definitions critically depend, as explained
Zm(z | z*)2l (0T £ above, on the representation formaat the way.S is supposed
> to be represented as output of the computation can make a
world of difference forS* and K (S). Since the representation
frmat will be clear from the context, and to simplify notation,
we drop the subscripX. To complete our discussion, the worst
Proof: We have case of representation forma&, a recursively enumerable
representation where nothing is known about the size of the
I(z :y)—1(z - y)=K(y) - K(y|2") - (K(y)-K(y|2")) finite set, would lead to indexes of unknown length. We do not
=K(y|z")—K(y|z"). consider this case.

We may use the notation
The negative logarithm of the left-hand side in the theorem is, y

therefore, Simph Sexpl
K(z|z")+ K(y|z") — K(y|z"). for some implicit and some explicit representationSofWhen
Using Theorem II.1, and the conditional additivity (11.2), this i’ resu_lt_applles to both implicit and_exphmt representations, or
when it is clear from the context which representation is meant,

oy, K(y|2®). O We will omit the subscript.

the m(-|z*)-expectation of the exponential of the increase
bounded by a constant. &

> K(y, 2| o) — K(y|2*) £ K(2

B. Optimal Model and Sufficient Statistic

IIl. EINITE-SET MODELS In the following, we will distinguish between “models” that
are finite sets, and the “shortest programs” to compute those
models that are finite strings. Such a shortest program is in the
proper sense a statistic of the data sample as defined before. In
a way this distinction between “model” and “statistic” is artifi-
cial, but for now we prefer clarity and unambiguousness in the
discussion.

Although all finite sets are recursive there are different ways consider astring of lengthn and prefix complexitys (z) =
to represent or specify the set. We only consider ways that haveye identify thestructureor regularityin z that are to be sum-
in common a method of recursively enumerating the elememrized with a se$ of which z is arandomor typicalmember:
of the finite set one by one, and differ in knoWIedge of its Siz%ivens (Or rather’ an (|mp||c|t or exp||c|t) shortest progrm
For example, we can specify a set of natural numbers by givifgt 5), = cannot be described significantly shorter than by its

an explicit table or a decision procedure for membership anda .| length index inS, that is, K (z | $*) > log | S]. For-
bound on the largest element, or by giving a recursive enumﬁ{é”y ’ ' '

ation of the elements together with the number of elements, or = _

by giving a recursive enumeration of the elements together withDefinition 111.2: Let 5 > 0 be an agreed upon, fixed, con-

a bound on the running time. We call a representation of a finigéant. A finite binary string: is atypical or randomelement of

setS explicitif the size|S| of the finite set can be computeda setS of finite binary strings ifr € S and

from it. A representation of is implicit if the log size|log | S]] . )

can be computed from it up to an additive constant term. K(x|87) z log|S| - 8 (In.1)
Example Il.1: In Section I11-D, we will introduce the segt*  WheresS™ is an implicit or explicit shortest program fét. We

of strings of complexity<k. It will be shown that this set can Will not indicate the dependence ghexplicitly, but the con-

be represented implicitly by a program of sigék), but can be stants in all our inequalitie§0 will be allowed to be functions
represented explicitly only by a program of size & ofthis 3.

For convenience, we initially consider tineodel classon-
sisting of the family of finite sets of finite binary strings, that is
the set of finite subsets g0, 1}*.

A. Finite-Set Representations

we state the following.

Such representations are useful in two-stage encodingd his definition requires a finit&. In fact, sincek (x| 5*) <
where one stage of the code consists of an indekafilength K (z), it limits the size ofS to O(2*) and the shortest program
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S* from which S can be computed is aalgorithmic statistic setsS, = {z € {0, 1}": =z = 21 ---z, and}_|_, z; = s}
for z iff (0 < s < n). Assume that our model family is the family of
o 4 Bernoulli distributions. Then, in the probabilistic sense, for
K(x]S5") = log|S]. (11.2) every data sample = z...z, there is only one natural

Note that the notions of optimality and typicality are not apsgufficient statistic: fory_;«; = s this is T(z) = s with
lute but depend on fixing the constant implicit in the De- e corresponding moded.,. In the algorithmic setting the
pending on whethes* is an implicit or explicit program, our situation is more sub'FI(_a. (In the following example we use
definition splits into implicit and explicit typicality. the complexities conditional on.) Forz = 3 -+ -z, With
>, z; = % taking S as model yield$S:| = (%), and there-
2
Zn — $logn. The sum ofK (S

» . forelog|Sx= £ 0 and the
n whose every odd position & Let z be an element of this set (,)i| 2 2 L loen for the ri ;:) hand side of
in which the subsequence of bits in even positions is an incoff9arithmic term gives=n — 3 logn for the right-hand side o

pressible string. Thefi is explicitly as well as implicitly typical (11l-4). But takingz = 1010 - - 10 yields K (x [ n) 20 for the
for z. The set{z} also has both these properties. left-hand side. Thus, there is no algorithmic sufficient statistic

for the latterz in this model class, while every of lengthn
Remark Ill.4: It is not clear whether explicit typicality im- a5 3 probabilistic sufficient statistic in the model class. In fact,
plies implicit typicality. Section IV will show some exampleshe restricted model class has algorithmic sufficient statistic for
which are implicitly very nontypical but explicitly at least nearlyyata samples of lengthn that have maximal complexity with

typical. < respect to the frequency ofl™s, the other data samples have

There are two natural measures of suitability of such R @lgorithmic sufficient statistic in this model class. ¢
statistic. We might _prefer either the_S|mpIest set, o“r the I.ar.geftExample lIL.6: It can be shown that the sét of Example
set, as corresponding to the most likely structure explamlng

x. The singleton sefz }, while certainly a statistic far, would “i.dselrsc?ellssz ?ﬁ;?gl ’ti?::I (S)%eli‘i}. -}I:yigI(;?il||Stetsicf§|r?;raxn;:fh
indeed be considered a poor explanation. Both measures rng.Itt P Y oy

to the optimality of a two-stage description:olising.S i mosty, it will be too (.:(.)mplex to be Opt'm"’?' far. .
For a perhaps less artificial example, consider complexities

Example 111.3: Consider the sef of binary strings of length

K(z) <K(z, S) conditional on the length of strings. Lety be a random string
L K(S) + K(z|S*) of lengthn, let S, be the set of strings of lengthwhich have
n 0’s exactly wherey has, and let: be a random element ¢f,.
< K(5) +log|S]| (N.3)  Thenz is a string random with respect to the distribution in

where we rewriteX (, 5) by (I1.1). Here,S can be understood Which 1's are chosen independently with probabilings, so

as €itherS;,,p1 or Se,p1. Call a setS (containingz) for which its complexity is much less tham. The setS,, is typical with
. respect tar but is too complex to be optimal, since its (explicit

K(z) = K(S) +1log|5] (I.4)  or implicit) complexity conditional om is 7. &
optimal Depending on whetherK(S) is understood as
K (Simp1) Or K(Sexp1), our definition splits into implicit and
explicit optimality. Mindful of our distinction between a finite

It follows that (programs for) optimal sets are statistics.
Equality (lll.4) expresses the conditions on the algorithmic
N : individual relation between the data and the sufficient statistic.

set.S and a program that describ&sn a required representa-

_Later (Section VII) we demonstrate that this relation implies

tion format, we call gshqrtest program fqr an optimal set W'ﬂlrﬂnat the probabilistic optimality of mutual information (1.1)
respect tor an algorithmic sufficient statistidor z. Further- holds for the algorithmic version in the expected sense.

more, among optimal sets, there is a direct tradeoff between

lexity and | . hich toaeth 45 Equalit An algorithmic sufficient statisti@’(-) is a sharper individual
compiexity and log size, which together sum=ov. Equality 4o than a probabilistic sufficient statistic. An optimal Set

(I11.4) is the a.IgolriFhmic qui\(alent dgalﬁng with thg relgtiogﬁssociated with (the shortest program computisgs the cor-
between the '|nd|V|duaI sufficient stat!§t|g and.the individu esponding sufficient statistic associated wijlis chosen such
data sample, in contrast to the probabilistic notion (.2). thatz is maximally random with respect to it. That is, the infor-
Example 1I1.5: The following restricted model family mation inx is divided in a relevant structure expressed by the
illustrates the difference between the algorithmic individusgetS, and the remaining randomness with respect to that struc-
notion of sufficient statistic and the probabilistic averaging on&ure, expressed by’s index in S of log |S| bits. The shortest
Foreshadowing the discussion in Section VII, this exampfgogram forS is itself an algorithmic definition of structure,
also illustrates the idea that the semantics of the model clagghout a probabilistic interpretation.
should be obtained by a restriction on the family of allowable One can also consider notions réartypical andnearop-
models, after which the (minimal) sufficient statistic identifietimal that arise from replacing th& in (111.1) by some slowly
the most appropriate model in the allowable family and thggowing functions, such a9 (logi(x)) or O(log k) as in [17],
optimizes the parameters in the selected model class. In {h8].
algorithmic setting, we use all subsets {f, 1} as models  In[17], [21], a function ofk andx is defined as the lack of
and the shortest programs computing them from a given d&yaicality of x in sets of complexity at most, and they then
sample as the statistic. Suppose we have background infosnsider the minimuni for which this function becomes 0
mation constraining the family of models to the+ 1 finite or very small. This is equivalent to our notion of a typical set.
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I(x:S)
K(K) S il
typical (initial constraint)
0 k-Kk) k

log IS| —=

Fig. 1. Range of statistic on the straight lifier : 5) L K(z) —log 1S].

See the discussion of this function in Section IV. In [4], [5], only ~ Proof: Writing & = K(z), since
optimal sets are considered, and the one with the shortest pro- N N .
gram is identified as thalgorithmic minimal sufficient statistic k= K(k, x) = K(k) + K(z[£") (1n.5)
of z. Formally, this is the shortest program that computes a ES/ (I1.1), we have
nite setS such that (111.4) holds.

Iz :S)LK(2)-K(z|S*) L K(k)-[K(z|S*)—K(z|k")].

C. Properties of Sufficient Statistic Hence, it suffices to show

We start with a sequence of lemmas that will be used in the K(z|S*) — K(x| k") < K(I(z:S)).
later theorems. Several of these lemmas have two versions: for
implicit sets and for explicit sets. In these casgwyill denote Now, from an implicit descriptions* we can find the
Simpl OF Sexpl, respectively. value £log|S| £k — I(x : S). To recoverk we only re-

It is shown in the following that the mutual informationduire an extrak(I(xz : S)) bits apart froms*. Therefore,
between every typical set and the data is not much less thaik | S*) < K(I(x : S)). This reduces what we have to show
K(K(x)), the complexity of the complexity{(x) of the to
dataz. For optimal sets it is at least that, and for algorithmic N
minimal statistic it is equal to that. The number of elements of K(z|5") <K(x|E*)+ K(k|S5)

atypical setis determined by the following. which is asserted by Theorem Il.1. The second statement fol-

Lemma lll.7: Letk = K(x). If a setS is (implicitly or ex- lows from the first one by rewritind(z : S) and substituting
plicitly) typical for z thenI(z : S) =k —log|S]. log |S| £ k(x| S*). |
Proof: By definitionI(z : §) £ K(z) - K(x|5*) and by The termi(x : S) is at leastl'(k) — 2log K (k) wherek =
typicality K (x| S*)=log |S|. N i p
K(z).For z of lengthn with £ >n and K (k) > I(k) > logn,
Typicality, optimality, and minimal optimality successivelyiyig yieldsI(z : S) < logn — 2loglog n.
restrict the range of the cardinality (and complexity) of a corre- i e further restrict typical sets to optimal sets then the pos-
sponding model for a data, leading to Fig. 1 summerizing this gjpje number of elements i is slightly restricted. First we
subsection. The above lemma states th}?ﬁ;&régmpl'c'tly Or €¥now that implicit optimality of a set with respect to a data is
plicitly) typical 5, the cardinality5| = ©(2 ’). Thenext  gquivalent to typicality with respect to the data combined with
lemma asserts that forimplicitly typicalthe valuel (z : 5) can  effective constructability (determination) from the data.
fall below K (k) by no more than an additive logarithmic term.
o Lemma lll.9: A setS is (implicitly or explicitly) optimal for
Lemma lll.8: Letk = K(z). If asetS is (implicitly or ex- . i# it is typical and K (S | *) £ 0
.. . + .
plicitly) +ty|mcal for z thenl(z : §)> K (k) — K(I(z : §)) and Proof: A setS is optimal iff (111.3) holds with equalities.
log|S| <k — K(k) + K(I(z : S)). (Here,S is understood as Rewriting K (z, S) = K ()4 K (S | z*), the firstinequality be-
Simpl OF Sexpl, respectively.) comes an equality iff{(S | z*) = 0, and the second inequality
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becomes an equality if (= | S*) £log |S| (that is,S is a typ- All algorithmic minimal sufficient statisticsS for = have
ical set). O K(S)L£K(k), and, therefore, there ar@(2%*)) of them.
At least one such statisticS*) is associated with every one
of the O(2*) stringsz of complexity k. Thus, while the idea
of the algorithmic minimal sufficient statistic is intuitively

Lemma I11.10: Let £k = K(z). If a setS is (implicitly or
explicitly) optimal for z, thenI(z : S)=K(S) > K(k) and

+ .
log|S| <k — K(k) (see Fig. 1). appealing, its unrestricted use does not seem to uncover most
Proof: If S is optimal forz, then relevant aspects of reality. The only relevant structure in the
data with respect to an algorithmic minimal sufficient statistic
k= K(z)EK(S)+ K(x|S*) = K(S) +log|S|. is the Kolmogorov complexity. To give an example, an initial

segment 083.1415 .. .. of lengthn of complexitylogn + O(1)
From S* we can find bothK(s)zz(s*) and ;10g|5| and shares the same algorithmic sufficient statistic with many

hencek, that is, K (k) b K(S). We have (most?) binary strings of lenglbg n + O(1).
Iz : )£ K(S) — K(S |2*) £ K(5) E. Explicit Minimal Sufficient Statistic

Let us now consider representations of finite sets that are ex-

by (I.1), Lemma 111.9, respectively. This proves the firsplicitin the sense that we can compute the cardinality of the set

property. Substitution of (z : S) > K (k) in the expression of from the representation. o .

Example 111.14: The description program enumerates all the
D. Implicit Minimal Sufficient Statistic elements of the set and halts. Then a set$ike- {y: K (y) <k}
has complexity=k [18]. Given the program, we can find an el-
ement not inS*, which element by definition has complexity
> k. Gi\ienS"‘ we can find this element and heng& has com-
é)lexity >k. Let

A simplest implicitly optimal set (that is, of least com-
plexity) is an implicit algorithmic minimal sufficient statistic.
We demonstrate that* = {y: K(y) < k}, the set of all strings
of complexity at mostk, is such a set. First we establish th
cardinality of S*.

Lemma lIl.11: log |S*| =k — K (k).
Proof: The lower bound is easiest. Denotefdyof length  thap by Lemma Ill.11Jog N* =k — K (k). We can lists*
K (k) a shortest program fadt. Every strings of lengthk — iven’* andN* which showsk (S*) k. Thus, just like{ s}

I_(_(k) — ¢ _can be described in zilself-dellmmng manner by pr%k is an explicit sufficient statistic for( K (z) = k). Butis it
fixing it with k*c¢*, henceK (s) <k — ¢ + 2loge. For a large

Nk =|S%.

minimal?
enough constant, we haveK(s) < %k and hence there are
Q(2F—K®)) strings that are ir§*. Example 111.15: One way of implementing explicit finite
For the upper bound: by (III.5), alie S* satisfyk ( | &*) b2 r;zpresentatmqs is to prowd]? an explicit genzaﬂon time for
k — K(k), and there can only b@(2*=K(®)) of them. g the enumeration process. If we can generstein time ¢

recursively using:, then the previous argument shows that the
From the definition ofS* it follows that it is defined byk complexity of every numbet’ > ¢ satisfiesK (¢, k) > k so
alone, and it is the same set that is optimal for all objects of tkigat

same complexity.

+ N
Theorem 111.12: The setS* is implicitly optimal for everyz Kt)>K({t'|k*) >k~ K(k)
with K (z) = k. Also, we havek (S*) = K (k).
Proof: Fromk* we can compute both andk-_l(k-*) — by (”1) This means that is a huge time which as a func-

k— K (k) and recursively enumerafé. Since alsdog |S*| < tion of & rises faster than every computaple functi(_)n._This argu-
k — K (k) (Lemma I11.11), the string:* plus a fixed program Ment also shows that explicit enumerative descriptions of sets
S containingz by an enumerative procegsplus a limit on
the computation time may take onlyl(p) + K(¢) bits (with
K (t) <logt+2loglogt) butlog ¢ unfortunately becomeson-
computably large &

is an implicit description of* so thatk (k) > K (S*). Hence,
K(x) §K(S’“) + log |S*| and, sinceX () is the shortest de-
scription by definition, equality<) holds. That is,S* is op-
timal for z. By Lemma 1110, K(S*) > K (k) which together

with the reverse inequality above yield& 5*) = K (k) which Example I11.16: Another way is to indicate the element of
shows the theorem. 0 S* that requires the longest generation time as part of the dove-

tailing process, for example, by its indéxn the enumeration
Again, using Lemma I11.10 shows that the optimal S&thas i < 28=K() Then, K (i | k) - K(k). In fact, since the
least complexity among all optimal sets forand therefore we gpqrtest programp for the ith element together witk allows
have the following. us to generaté* explicitly, and above we have seen that ex-
Corollary 111.13: The setS* is an implicit algorithmic min- plicit description format yieldsk (5*) = &, we find we have
imal sufficient statistic for every with K(z) = k. K(p, k) Lk and hence{(p) Lk K(k). O
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In other cases, the generation time is simply recursive in the Proof: We can describe by k*m%i, wherem,0i, is the
input: S, = {y: l(y) < n} so that index ofz in the enumeration of*. Moreoverk*m}, explicitly
describes the séfﬁlw . Namely, using: we can recursively enu-
merateS*. At some point, the first string € S is enumer-
ated (index/* = m,00---0). By assumption* = m,0...

K(S,) £ K(n) <logn+ 2loglogn.

That is, this sufficient statistic for a random string with X - - ‘
K(z)En + K(n) has complexityk (n) both for implicit de- and N =mgl.... 'I;herefore, in the enumeration SF even-
scriptions and explicit descriptions: differences in complexifiy@ly stringu with I,/ = mwgll ol occurs_wh|chk|s the last
arise only for nonrandom strings (but not too nonrandom, f§fiNg in the enumeration d;, . Thus, the size ofy;,  is pre-

Ty — My
K(x) =0 these differences vanish again). cisely 2/(N)=m=), where

By _ * o0 |G
Lemma II.17: S,, is an example of aninimal sufficient v Z(A_f _) l(m’”? l(n’”‘)* iog|_SmI

statistic, both explicit and implicit, for allz with K(z)= @ndsn, isexplicitly described by:"m;,. Since

n+ K(n). I(k*m,0i,) =k and log|SE | =k — K(k) — l(m,)

Proof: The setsS,, is a sufficient statistic forr since we have

K(z)=K(S,) + 10g|5n|.+|t is minimal since, by Lemma K (SE ) +log |SE_|= K (k) +K (ma)+k—K(k)—1(m.)

[1.10, we must havey (S) > K (K (x)) for implicit, and hence £ K (ma)—1(ma)

for explicit sufficient statistics. It is evident that, is explicit: . ¥ ¥

1S, | = 2". O < k+K(l(my)).

It turns out that some strings cannot thus be explicitly repr his showsS,.,, is explicitly near optimal for: (up to an addi

sented parsimonously with low-complexity models (so that o e logarithmic term). =
necessarily has bad high-complexity models eabove). For  Lemma II1.20: Every explicit optimal se§ C S* containing
explicit representations, [17] has demonstrated the existencesrfatisfies

a class of strings callegbonstochastithat do not have efficient K(S) 3 K(E) +1(my) — K(I(my)).

two-part representations withi () = K () + log || (z € S) Proof: If S C S* is explicitly optimal forz, then we can
with K (.S) significantly less thad (). This result does notyet 44 1. from s+ (ag in the proof of Lemma ”|_1(’)), and givén
enable us to exhibit an explicit minimal sufficient statistic fOE\ndS we find K (k) asin Theorem I1.1. Hence, givett, we can
such a string. But in Section IV, we improve these results to t S umerates® and determine the maximal indéj(‘ ofay € S.

best possible, simultaneously establishing explicit minimal s ince alsar € S, the numberd®. I*. N* have a maximal

ficient statistics for the subject ultimate nonstochastic strings: ) . LA .
) 95tommon prefixn,,.. Write I¥ = m,, 04, with (i) = k—K(k)—

Lemma I11.18: For every length, there exist strings of [(m,) by Lemma 11.10. Given(m,) we can determinen.,,
lengthn with K (| n) = n for which {z} is an explicit minimal from I}. Hence, fromS, I(m..), andi, we can reconstruct.
sufficient statistic. The proofis deferred to the end of Section IVhat is,

2) Explicit Minimal Near-Sufficient Statistic: General Case K(8) + K(I(mg)) + 1(IX) — l(my) > &

Again, consider the special st = {y: K(y) < k}. Aswe which yields the lemma. O
have seen earlie§* itself cannot be explicitly optimal fog:
sinceK (S*) £k andlog N* £ k — K(k), and, therefore,

Lemmas 111.19 and 111.20 demonstrate the following.

Theorem 111.21: The setS?, is an explicit algorithmic min-
imal near-sufficient statistic far among subsets &§* in the
following sense:

K(S*) +log N* =2k — K (k)

which considerably exceeds However, it turns out that a
closely related setq, below) is explicitly near-optimal. Let |K (S,’;‘lr) - K(k)— l(mw)| < K(l(my)),

Ij; denote the index of in the standard enumeration &F, 10g|571: E K (k) — l(my).
where all indexes are padded to the same ledgth— K (k)
with 0's in front. For K(z) = k, let m, denote the longest
joint prefix of I* and N*, and let K(Sk ) +log|Sk |k =+ K(I(m,))

IY =m,0i,  N*=m,ln,. 4
' Note, K (I(m)) < logk + 2loglog k.
Lemma IIl.19: For K () = k, the set 3) Almost Always “Sufficient”: We have not completely
S’,;‘lw = {y € S*: m,0 a prefix of[;“} succeeded in giving a concrete algorithmic explicit minimal
satisfies sufficient statistic. However, we can show tt#ff, is almost
- alwaysminimal sufficient.
log Sy, | =k — K (k) — (my) The complexity and cardinality o ~depend on/(m,)
K (Sk ) < K(k)+ K(m,) which will, in turn, depend onz. One extreme ig(m,) =0
+ which happens for the majority afs with K (z) = k—for ex-
<K (k) +Uma) + K(1(ma)). ample, the first 99.9% in the enumeration osdgr. For thoseve
Hence it is explicitly near-optimal for (up to an addive can replace “near-sufficient” by “sufficient” in Theorem 111.21.
K(l(my)) < K(k) < log & + 2loglog k term). Can the other extreme be reached? This is the case wien

08

Hence
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enumerated close to the end of the enumeratiofi*ofFor ex- probability with L. A. Levin in 1973). The above theorem states
ample, this happens for the “nonstochastic” objects of which the eX(r )m( x) < 277+2, By the multiplicative dominating
existence was proven by Shen [17] (see Section V). For SLph)perty ofm(x) with respect to every lower semicomputable
objects/(m,,) grows to= k — K (k) and the complexity of. ¥ semimeasure, it follows that for every computable measyre
rises to k whilelog |S%, | drops tok 0. Thatis, the explicital- we have}_ . (., »(x) <27". Thus, the set of objects for
gorithmic minimal sufficient statistic far is essentially: itself.  whichi(m,) is large has small probability with respect to every
For thoser’s we can also replace “near-sufficient” with “suffi-computable probability distribution.

cient” in Theorem I11.21. Generally, for the overwhelming ma- To shed light on the exceptional nature of stringsith large
jority of dataz of complexityk the setS¥, is an explicit algo- 1(m.) from yet another direction, le¢ be the infinite binary
rithmic minimal sufficient statistic among subsets%f (since  sequence, thialting sequencewhich constitutes the charac-

I(m.,) £0). teristic function of the halting problem for our universal Turing
The following discussion will put what was said above into gnachine: theith bit of x is 1 of the machine halts on thih
more illuminating context. Let program, and i® otherwise. The expression
X(r) = {x: l(my) > r}. I(x : ) = K(z) — K(z|x)
The setX () is infinite, but we can break it into slices and boungnoWs the amount of information in the halting sequence about
each slice separately. the stringz. (For an infinite sequence, we go back formally
to the definitionZ(n : ) = K(z) — K(z|#») of [10], since
Lemma 111.22: introducing a notion of* in place ofy here has not been shown
‘X(r) ﬂ (Sk \Sk—l)‘ <97t |5k| . yet to bring any benefits.) We have
I({x:z —K(=z
Proof: For everyz in the set defined by the left-hand side Z )2 o) = Z 2RI <1
of the inequality, we hav&m..) > r, and the length of contin- =
uation ofm,, to the total padded index afis The_refore, if we introduce a new quanti¥/ () related taX (r)
X X defined by
< [log|S*|]] — 7 < log|S*| — 7+ 1.
Moreover, all these indexes share the same firkits. This Xi(r)=A{z: L(x:2) > r}
proves the lemma. = then by Markov's inequality
Theorem I11.23: > m(z)2' P <27
Y 2 K@ <ot 2CX /()
EX (1) That is, the universal probability ok’(r) is small. This is a
Proof: Let us prove first new reason foX () to be small, as is shown in the following
theorem.
> ootk |sM <2 (111.6)
k>0 Theorem [11.24: We have
By the Kraft inequality, we have, with, = |S* \ S¥~1| I(x : 2) > l(my) — 2logl(m..)
Z 2 ke <1 and (essentially equivalentl§ (r) ¢ X'(r — 2logr).
k20 Remark I11.25: The first item in the theorem implies that if
sinceS* is in a one to one correspondence with the prefix Pro¢m,) > r, thenl(y : z) Spo 2logr. This in turn implies the
grams of length< k. Hence, second itemX (r) € X’(r—2logr). Similarly, the second item
essentially implies the first item. Thus, a string for which the
Z 27k |Sk Z 27k Z t; explicit minimal sufficient statistic has complexity much larger
k>0 k>0 than K (k) (that is,l(m;) is large) is exotic in the sense that it
B belongs to the kind of strings about which the halting sequence
= Z Z 2 contains much information andce versal(x : z) is large. $
>0
i1 Proof: When we talk about complexity witk in the con-
— Z t 2 ’ < 2 H'H H H H “ ” H
= dition, we use a Turing machine with as an “oracle.” With

the help ofy, we can computer.,,, and so we can define the
For the statement of the lemma, we have following new semicomputable (relative tg) function with

Z 21;(90)_22 k‘X \ Sk 1)‘ c =6/

zEX (1) k>0 viz|x) = cm(x)Ql(ml’)/l(mm)Q.
<2y oTR sk <272 We have, using Theorem 111.23 and definiagr) = X(r) \
k>0 X(r+1)sothati(m,) = rforz € Y(r)
where in the last inequality we used (l11.6). O Z v(a|x) =cr™ Z 9—K ()
This theorem can be interpreted as follows (we rely here on a zcY(r) z€Y (r)

discussion, unconnected with the present topic, about universal <er 297972 < Yop2
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Summing over gives since the sefx} has complexityK'(x) and the randomness de-
Z (x| x) < 4. ficiency of = with respect to this singleton set4s0, it follows
- by choice ofk = K(z) that the complexityK(x) is at least

The theorem thak(z) = 2-%(*) is maximal within multiplica- 7/2 — O(logn). _ _ _
tive constant among semicomputable semimeasures is also trudere we sharpen this result. We establish the existence of
relative to oracles. Since we have establishedithat x)/4 is absolutely nonrandom objectsof lengthr, having random-

a semicomputable semimeasure, therefarg; | x) S v(x|x), Ness deficiengy at least — & with respect to every finite set
or equivalently S of complexity K (S |n) < k that containse. Clearly, this

is best possible since has randomness deficiency of at least

g2 . £ .
K(z[x) < —logr(z|x) = K(z) = l(ma) + 2logl(ma) 4, _ [ (S| n) with every finite setS containingz, in particular,

which proves the theorem. Ll with complexity K (S | ») more than a fixed constant below
the randomness deficiency exceeds that fixed constant. That
IV. NONSTOCHASTICOBJECTS is, every sufficient statistic for has complexity at least.

_ _ - But if we chooseS = {z} thenK (S |n) < K(z |n) < n, and,

In this section, whenever we talk about a description of & . /o the randomness deficiencyaofuith respect toS
finite set_S we mean arexplicit description. This e’stablishesiS " — K&S|n) £ 0. Together this shows that the absolutely
the precise ;?(ggmg at(S$), K(-|5), m(S) = 27", and nonrandom objects: length n of which we established the
m( | 5) =2 ; and so _for_th. - _ . existence have complexiti (x| n) =n, and, moreover, they

Every data sample consisting of a finite stringas a suffl- have significant randomness deficiency with respect to every

c!ent stat!st!c n the form of t.he sm.gleto.n S{GI.}' .SUCh a sufﬁ- setS containing them that has complexity significantly below
cient statistic is not very enlightening since it simply rephcatet?leir own complexityn

the data and has equal complexity withThus, one is interested
in the minimal sufficient statistic that represents the regularify Kolmogorov Structure Function
(the meaningful) information, in the data and leaves out the ac- ) . . - .
cidental features. This raises the question whether evérys We first consider the relation between the minimal unavoid-

- - o o ble randomness deficiency sfwith respect to a sef con-
a minimal sufficient statistic that is significantly less complef>.c a" . :
9 y P taining it, when the complexity of is upper-bounded byt.

than z itself. At the Tallinn conference in 1973, Kolmogorov. functional relati K s truct
(according to [17], [4]) raised the question whether there ?]Qese unctional refations are known msimogorov structure

objectsx that have no minimal sufficient statistic of relativel unctions Kolmoqorov propased a variant of the function
small complexity. In other words, he inquired into the existence  /x(@) = min{log | S|: & € 5, K(S) < af, (IV.2)

of object§ ?hat are not in general position (ra}ndom with reSp&fheres C {0, 1}* is a finite set containing, the contemplated
to) any finite set Pf small enough complexity, that is, “absqy,agel for., ande is a nonnegative integer value bounding the
lutely nonrandom” objects. Clearly, such objectsave neither o mpexity of the contemplates's. He did not specify what is
minimal nor maximal complexity: if they have minimal cOm-neant byr ($) butitwas noticed immediately, as the paper [18]
plexity then the S|_ngleton _sé&:} isa m|n|mal sufficient statistic points out, that the behavior &f, () is rather trivial if K(S)

of small complexity, and if: € {0, 1}" is completely incom- s tayen to be the complexity of a program that listsvithout
pressible (that is, it is individually random and has no meafgcessarily halting. Section I11-D elaborates this point. So, the

ingful information), then the uninformative univerge, 1}" is present section refers to explicit descriptions only.
the minimal sufficient statistic of small complexity. To analyze ;g easy to see that for every incremehe have

ghe.q.uesuon better we need the technical notion of randomness ho(at d) < [ha(a) — d -+ Olog d)|
eficiency.

Define therandomness deficienaf an objectr with respect Provided the right-hand side is nonnegative, @notherwise.
to a finite setS containing it as the amount by which the comNamely, once we have an optimal s&t we can subdivide it in
plexity of = as an element of falls short of the maximal pos- @ny standard way inta* parts and take aS,, . the part con-
sible complexity of an element ifi when.S is known explicitly taining . Also, h..(«) = 0 implies « > K(x), and, since the
(say, as a list) choice ofS = {z} generally implies only: < K () is mean-

bs(x) =log|S| — K(z|S). (IV.1) ingful, we can conclude that = K (). Therefore, it seems
The meaning of this function is clear: most elements dfave better advised to consider the function
complexity neatog | S|, so this difference measures the amoumt,.(«) + o — K(x) = min{log|S| — (K(x) — a): K(S) < o}
of compressibility inc compared to the generic, typical, random 5
elements of5. This is a generalization of the sufficiency notio
in that it measures the discrepancy with typicality and hen
sufficiency: if a sefS is a sufficient statistic for thenés(z) = 0.

We now continue the discussion of Kolmogorov's question. §5(z) =log|S| — K(z| S, K(S)).

Shen [17] gave a first answer by establishing the existence of
absolutely nonrandom objecisof lengthn, having random- The functionh,(«) + « — K(z) seems related to a function
ness deficiency at least— 2k — O(log k) with respect to every of more intuitive appeal, namelg,.(«) measuring the minimal
finite setS of complexity K (S) < & that containg:. Moreover, unavoidable randomness deficiencyzoWith respect to every

ather than (IV.2). For technical reasons related to later analysis,
éév‘% introduce the following variant of randomness deficiency
V.1):
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finite setS, that contains it, of complexiti{ (S) < «. Formally, Theorem IV.2: There are constants, c» such that for every
we define given k£ < n there is a a binary string of length » with
Bo(r) = min{6s(z): K(S) < o} K(z|n) < k such that for ale < k — ¢; we have
s "
and its variant Belafn) >n—k—c.

Bala) = Hgn{f%(ﬂ?)i K(S) <a} In the terminology of (1.4), the theorem states that there are
defined in terms oB%. Note thata, (K (x)) £ 3%(K (x)) £0. constants;, c; such that for evert < n there exists a string

These 3-functions are related to, but different from, tite of lengthn of complexity X (x| n) < k thatis notlk —c1, n.—
in (1.4). k — ¢2)-stochastic.

To comparé: andg, let us confine ourselves to binary strings ~ Proof: Denote the conditional universal probability as
of lengthn. We will put~ into the condition of all complexities. m(S |n) = 275517, For everyn, let us define a function
over all stringse of lengthn as follows:

Lemma IV.1: B5(ct | n) < hyo(a|n) + a — K(z|n). m(S|n)

Proof: LetS > x be asetwith K(S|n) < « and assume vSix|n) = Z (IV.3)
h(a|n) = log|S|. Tacitly understanding in the conditions, S3z, K(S|n)<i 151
and using the additivity property (11.1) The following lemma shows that this functionofs a semimea-
K(zr)—a <K(z)— K(S) sure.
< Kz, S)— K(5) Lemma IV.3: We have
L K(x| 5, K(5)). Z vz | n) (IV.4)
Therefore,
Proof: We have
ho(a) + o — K(x) = log |S| — (K(x) — o)
L log|S| — K(x| S, K(S)) > v¥i(wln) < ZSZ |5|
r T Sz
> Br(e). O Yy m(S | n)
It would be nice to have an inequality also in the other direc- - S wes 5]
tion, but we do not know currently what is the best that can be _ Z (S|n) < 1. .
said.
B. Sharp Bound on Nonstochastic Objects Lemma IV.4: There are constants, ¢, such that for some
We are now able to formally express the notion of non Of lengthr ke .
stochastic objects using the Kolmogorov structure functions =" ) <277, (IV.5)
Bz(cr), F5(«). For every giverk < n, Shen constructed in [17] k—cy <K(zx|n)<k. (IV.6)

a binary strings of lengthn with K (x) < k and Proof: Letus fix0 < ¢; < k somehow, to be chosen ap-

Bk — O(1)) > n — 2k — O(log k). propriately later. Inequality (IV.4) implies that there is:awith
Letz be one of the nonstochastic objects of which the existend¥.5). Let « be the first string of length with this property.
is established. Substituting= K () we can contemplate the To prove the right inequality of (IV.6), let be the program of
setS = {z} with complexity K (S) = k andz has randomness length< i = k — ¢, that terminates last in the standard running
deficiency= 0 with respect taS. This yields of all these programs simultaneously in dovetailed fashion, on
+ + ) input n. We can use and its length(p) to compute all pro-
0=pFx(K(2)) >n — 2K (z) — O(log K(2)). grams of length< I(p) that output finite sets using. This way,
Since it generally holds that these nonstochastic objects hgyg obtain a list of all set§ with K (S |n) < i. Using this list,
complexity K (z) > n/2 — O(logn), they arenot random, typ- for eachy of lengthn we can compute<’(y |n), by using the
ical, or in general positionwith respect to every sef con- definition (IV.3) explicitly. Sincer is defined as the firgg with
+ —-n
taining them with complexitys (S) % n/2 — O(logn), butcan »='(y|n) < 27", we can thus find: by usingp and some pro-
be random, typical, or in general position only for s&tgith 9ram of Constant length. i; is chosen large enough, then this
complexity K (S) sufficiently exceeding:/2 — O(logn) like iMplies K(x|n) < k. o
S = {z}. On the other hand, from the definition (IV.3) we have
Here, we improve on this result, replacing- 2k — O(log k) pSRUBYIN) (3] ) > 27 KU In),
with n — k and using3* to avoid logarithmic terms. This is the Thjs implies, by the definition of, that either
best possible, since by choosifg= {0, 1} we find
K{z}|n)>k—a

log || — K (xS, K(5))£n —k or
and hences:(c) <n — k for some constant, which implies K({z}|n) > n.

« +
Pr(@) < Bale) <n — kforeverya > c. Since K(z|n) = K({z}|n)), we get the left inequality of

“We write “S > =” to indicate setsS that satisfyx € S. (IV.6) in both cases for an appropriate O
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Consider now a new semicomputable function that computes approximations to the valueltfor every ar-
2"m(S | n) gument (more precise definition follows below). The (prefix-)
pa,i(S ] ) = 5| complexity K (P) of a computable partial functioR is defined
on all finite setsS > z with K (S |n) < 4. Then we have, with by
i=k—oc K(P) = min{K(%): Turing machinel; computesP}.
Z fiw i (S |n) = 2" Z m(S5 |n) Equality (111.2) now becomes
S Sz, K(S|n)<i 5] K(z|P*) = —log P(x), (V1)
=2"vS(z|n) < 1 and equality (I11.4) becomes
by (IV.3), (IV.5), respectively, and sp.. ;(S|n) with =, i, n K(x) = K(P) —log P(x).

fixed is a lower semicomputable semimeasure. By the domis in the finite-set case, the complexities involved are crucially
nating property we havex(S | z, ¢, n) > . (S| n). Sincen  dependent on what we mean by “computation”/r), that

is the length of: andi = & we can set is, on the requirements on the format in which the output is
(S|, i, n) 2K(S|a:, k) to be represented. Recall from [10] _that Turln_g machines can
compute rational numbers. If a Turing machiifecomputes
and hence T'(x), then we interpret the output as a pair of natural numbers
K(S|z, k) b2 —log fig +(S | ). T(x) = {(p, ¢), according to a st_andard pa_ir_ing function. Then,
the rational value computed Wy is by definitionp/q. The dis-
Then, with the first because of (IV.6) tinction between explicit and implicit description &f corre-

K(S |2, K(z|n) £ K(S| 2, k) L —log e, +(S | n) sponding to the finite-set model case is now defined as follows.

=log|S| —n+ K(S|n). (IV.7) e ltis implicit_ if the_re is a Turing machin& computirlg
P halting with rational valué'(z) so that—logT(x) =

Then, by the additivity property (1.1) and (IV.7) _log P(x), and, furthermoreK (| —log T(x)| | P*) o

K (]S, K(S|n), n) = K(z|n)+K(S|z, K(z[n))—K(S5|n) for z satisfying (V.1)—that is, for typicat.
< k+log|S| — n. e It is explicit if the Turing machineZ” computing P,
Hences* (x|S, n) =log| S| — K (z|S, K(S|n), n) Lok O given z and a tolerance halts with rational value so
that —log T(z) = —log(P(x) £ ¢), and, furthermore,
We are now in the position to prove Lemma I11.18. For every K(|-logT(x)]|P*)Z0 for = satisfying (V.1)—that is,
lengthn, there exist strings of lengthn with K (z | n) =n for for typical z.

which {«} is an explicit minimal sufficient statistic. . o o o ]
The relations between implicit and explicit descriptions of fi-

Proof (of Lemmalll.18): Letz be one of the nonstochasticnite sets and of uniform distributions wifh(z) = 1/|5| for all
objects of which the existence is established by Theorem IV2¢ 5 andP(x) = 0 otherwise, are as follows. An implicit (ex-
Chooser with K (x |n) =k so that the sef = {z} has com- plicit) description of? is identical with an implicit (explicit) de-
plexity K (S | n) = k—c1 andz has randomness deficiengy0  scription ofS, up to a short fixed program which indicates which
with respect toS. Becauser is honstochastic, this yields of the two is intended, so thd (P(z)) = K(S) for P(x) > 0

0= 35 (k—c1|n) Sn— K(z|n). (equivalently,z € 5).
To complete our discussion: the worst case of representa-

For everyx we have K (z | n) < n. Together, it follows that jon format, a recursively enumerable approximationigf:)

K(x|n)=n. That is, these nonstochastic objeetsave com- where nothing is known about its value, would lead to indexes
plexity K (z|n) £ n. Nonetheless, there is a constahuch _log P(2:) of unknown length. We do not consider this case.
thatz is not random, typical, or in general positiomth respect  The properties for the probabilistic models are loosely re-
to any explicitly represented finite setcontaining it that has |ated to the properties of finite-set models by Proposition I.2.
complexityK (S |n) < n—c’, butthey are random, typlcal orinwe sharpen the relations by appropriately modifying the treat-
general position for some sefswith complexity K (S | n) L ment of the finite-set case, but essentially following the same
like S = {z}. That is, every explicit sufficient statisti€ for  course.
has complexity (S | n) = n, and{z} is such a statistic. Hence We may use the notation
{z} is an explicit minimal sufficient statistic far. O Pinpl, Pespl

for some implicit and some explicit representationfofWhen

a result applies to both implicit and explicit representations, or
It remains to generalize the model class from finite sets to tiden it is clear from the context which representation is meant,

more natural and significant setting of probability distributiongve will omit the subscript.

Instead of finite sets, the models are computable probab|I|ty

density functions?: {0, 1}* — [0, 1] with 3" P(z) < 1—we A. Optimal Model and Sufficient Statistic

allow defective probability distributions where we may concen- As before, we distinguish between “models” that are com-

trate the surplus probability on a distinguished “undefined” eputable probability distributions, and the “shortest programs”

ement. “Computable” means that there is a Turing machine to compute those models that are finite strings.

V. PROBABILISTIC MODELS
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Consider a stringe of length n and prefix complexity statistic it is equal to that. The log-probability of a typical dis-
K(z) = k. We identify thestructureor regularity in z that tribution is determined by the following.
are tp be summanzed with a _computable probab|I|ty_denS|ty Lemma V.1 Letk — K
function P with respect to whichz is a random or typical
member. Fore typical for P the following holds [10]: Given X L . "
an (implicitly or explicitly described) shortest prograf* b P_roolf,' By def'ni_t'of’l(x j P)=K(z) — K(z| P*) and
for P, a shortest binary program computing (that is, of Y typicality, K(z|P")= —log P(z). O
length K (x| P*)) cannot be significantly shorter than its The above lemma states that for (implicitly or explicitly)

(z). If a distributionP is (implicitly
or explicitly) typical forz thenI(z : P) =k + log P(z).

Shannon—Fano code [5] of lengtlog P(x), that is, typical P the probabilityP(z) = ©(2~*~1(=:)) The next
oy T ) lemma asserts that for implicitly typicdt the valuel(z : P)
K(z|P —log P(x).
. _ (@] P7) > ~log P(z) can fall belowK (k) by no more than an additive logarithmic
By definition, we fix some agreed upon const@ht> 0, and term.
require
a LemmaV.2:Letk = K(x). If a distributionP is (implicitly
K(xz|P*) > —log P(x) — 8. or explicitly) typical forx then
As before, we will not indicate the dependenceibexplicitly, I(x: P) : Kk)—K{(z: P))
but the constants in all our inequalitie%)(will be allowed to gng
be functions of thig3. This definition requires a positivE(z). _log P(z) ‘e K(E) + K(I(z : P)).

In fact, sinceK (x| P*) < K(z), it limits the size of P(z) to . .
Q(2%). The shortest prograf#* from which a probability den- (Here, P is understood a&imp OF Fexpl, respectively.)

sity function P can be computed is aigorithmic statisticfor Proof: Writing & = K (z), then, since
v BE K (ko) K(k) + K |E) (v5)
K(z|P*) £ —log P(). (V:2) by (11.1), we have

There are two natural measures of suitability of such a statisticiz: : P) £ K(z)— K (2| P*) £ K(k)— [K (z|P*)— K (z|k*)].
We might prefer either the simplest distribution, or the largest N

distribution, as corresponding to the most likely structure “exdence, it suffices to shod( (x| P*)— K (z|k*) < K(I(x : P)).
plaining” z. The singleton probability distributio(z) = 1, Now, from an implicit description”* we can find the value
while certainly a statistic foz, would indeed be considered a= —log P(z) <k — I(z : P). To recoverk from P*, we at
poor explanation. Both measures relate to the optimality off@ost require an extr& (I(z : P)) bits. That is,

two-stage description aof using P

K(z) < K(z, P)
= K(P)+ K(z | P")
& K(P) —log P(x) (V.3) K(x| P )< K(@|k") + K (k| P")
where we rewrité (z, P) by (I1.1). Here,P can be understood which is asserted by Theorem II.1. This shows the first state-

as eitherPy,p,1 or Py Call a distributionP (with positive ment in the theorem. The second statement follows from the
probability P(z)) for which first one: rewriteI(x : P)=k — K(z|P*) and substitute

+ s
K(z) £ K(P) —log P(x) (vay TlosP@) =K@ [P, H
optimal (More precisely, we should requid(«) > K(P) If we fgrtherre_s_tricttypica! fjjstributions to opti_ma_l onesthen
—log P(z) — 8.) Depending on whethek (P) is understood th.e possible posmve.probabmues assu.med. by dlst.rlbul_?ca're_
as K(Pup1) OF K(Pexp1), 0ur definition splits into implicit slightly restricted. F|r§t we'show that |r'npl|.C|t o.ptlmallty with
and explicit optimality. The shortest program for an Optimépspectto some data is equivalent to typicality with respect to the

computable probability distribution is aigorithmic sufficient data combined with effective constructability (determination)
statisticfor z. from the data .

K(k|P*)< K(I(z : P)).

This reduces what we have to show to

Lemma V.3: A distribution P is (implicitly or explicitly) op-
timal for z iff it is typical and K (P | z*) =0.

As in the case of finite-set models, we start with a sequence Proof: A distribution P is optimal iff (V.3) holds with
of lemmas that are used to obtain the main results on minimgjualities. Rewritind< (z, P) = K (z)+K (P |z*), the firstin-
sufficient statistic. Several of these lemmas have two versiorgjuality becomes an equality iff( P | z*) = 0, and the second
for implicit distributions and for explicit distributions. In theseinequality becomes an equality (x| PY) L og P(x) (that
cases P will denote Pyy,p1 OF Pexpl, respectively. is, P is a typical distribution). O

It is shown below that the mutual information between every o .
typical distribution and the data is not much less thai (x)), LemmaV.4:Letk = K(x). If a distributionP |s+(|mpI|C|tIy
the complexity of the complexitys (z) of the datar. For op- O explicitly) optimal forz, thenl(x : P) = K(P) > K (k) and
timal distributions it is at least that, and for algorithmic minimal-log P(x) <k— K(k).

B. Properties of Sufficient Statistic
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Proof: If P is optimal forz, then In general, one can develop the theory of minimal sufficient
N N statistic for models that are probability distributions similarly to
k=K(z)=K(P)+ K(z| P")=K(P) —log P(x). that of finite-set models.
From P* we can find bothk (P) £ 1(P*) and£ —log P(z), _ S
and hencé:, that is, K (k) < K (P). We have D. Non-Quasi-Stochastic Objects

As in the more restricted case of finite sets, there are objects
that are not typical for any explicitly computable probability

by (11.1), Lemma V.3, respectively. This proves the first propdibs_tribl{tior:fthv?/t_ Eai complgxitly sign;ficiasntly below tha:lof thlf?
erty. Substitution ofl(z : P)iK(k) in the expression of object itself. With the terminology of (1.5), we may call suc

Lemma V.1 proves the second propert O objectsabsolutely non-quasi-stochastic
P property. By Proposition 1.2, item b), there are constanendC such

Remark V.5:O0ur definitions of implicit and explicit de- that if = is not (« + clogn, 8 + C)-stochastic (1.4) then: is
scription format entail that, for typicat, one can compute not(«, 3)-quasi-stochastic (1.5). Substitution in Theorem V.2
£ —log P(z) and —log P(z), respectively, fromP* alone yields the following.
without requiring . An alternative possibility would have
been that implicit and explicit description formats refer t%
the fact that we can compute — log P(z) and —log P(x),
respectively, giverboth P and x. This would have added a
—K(|—log P(x)] | P*) additive term in the right-hand side of
the expressions in Lemmas V.2 and V.4. Clearly, this alternativeAs a particular consequence, letwith lengthn be one of
definition is equal to the one we have chosen iff this term the non-quasi-stochastic strings of which the existence is estab-
always= 0 for typical . We now show that this is not the caselished by Corollary V.6. Substituting (z | ») Sk clogn, we

Note that for distributions that are uniform (or almost unican contemplate the distributid®, (y) = 1 for y = = and and
form) on a finite support we hav (| —log P(«)] | P*) =0.I1n ¢ otherwise. Then we have complexify(P, | n) = K (z |n).
this borderline case, the result specializes to that of Lemma llicfearly, = has randomness deficienéyo with respect taP,.
for finite-set models, and the two possible definition types fq§ecause of the assumption of non-quasi-stochasticity:,of

implicitness and those for explicitness coincide. and because the minimal randomness deficieAcy, — k of
On the other end of the spectrum, for the definition type con-

. o 4
sidered in this remark, the given lower bound bfx : P) x-IS alvyays nonnegatve =n — k> n +K@|n) clog .
drops in case knowledge df* does not suffice to compute S It generally holds thaK(x|”) <m, it follows that -
—log P(z), that is, if K (| —log P(z)] | P*) >> 0 for a statistic "> K(x|n)>n — clogn. That is, these non-quasi-stochastic
P+ for z. The question is, whether we can exhibit such a proBbjects have complexity(«[n)=n — O(logn) and are
ability distribution that is also computable? The answer turf$t random, typical, or in general positiowith respect to
out to be affirmative. By a result due to Solovay and Gacs [18NY explicitly compu+table distributiof” with P(z) > 0 and
Exercise 3.7.1, pp. 225-226], there is a computable functioamplexity K (P |n) <n — (¢ + 1) logn, but they are random,
f(a:);K(a:) such thatf(z) = K (z) for infinitely manyz. Con-  typical, or in general position only for some distributions
sidering the case a@p optimal forx (a stronger assumption than” with complexity K(P|n)§n — clogn like P,. That
that (@ is just typical) we have-log Q(z) < K(x) — K(Q). is, every explicit sufficient statisti® for = has complexity
ChoosingP(x) such that-log P(z) = log f(z) — K(P), we K(P|n) Ln— clogn, andP, is such a statistic.

have thatP(z) is computable sincg(x) is computable and

K(P) is a fixed constant. Moreover, there are infinitely many

a's for which P is optimal, sok (| —log P(x)] | P*) — oo for VI. ALGORITHMIC VERSUSPROBABILISTIC

x — oo through this special sequence.

I(z: P)ZK(P)- K(P|z*) L K(P)

Corollary V.6: There are constants C such that, for every
<n, there are constants, ¢. and a binary string of length
n with K(z|n) <k such thate is not(k—clogn—c;, n—k—
C —c3)-quasi-stochastic.

Algorithmic sufficient statistic, a function of the data, is so
named because intuitively it expresses an individual summa-
rizing of the relevant information in the individual data, rem-

A simplest implicitly optimal distribution (that is, of leastiniscent of the probabilistic sufficient statistic that summarizes
complexity) is an implicit algorithmic minimal sufficient the relevantinformation in a data random variable about a model
statistic. As before, lef* = {y: K(y) <k}. Define the distribu- random variable. Formally, however, previous authors have not
tion P*(y) =1/|S*| for y € S*, and P*(y) = 0 otherwise. The established any relation. Other algorithmic notions have been
demonstration thaf*(y) is an implicit algorithmic minimal successfully related to their probabilistic counterparts. The most
sufficient statistic fore with K (z) = 1 proceeeds completely significant one is that for every computable probability distribu-
analogous to the finite-set model setting, Corollary 11.13, usirtgn, the expected prefix complexity of the objects equals the en-
the substitutionf (—log P*(z) | (P*)*) £ 0. tropy of the distribution up to an additive constant term, related

A similar equivalent construction suffices to obtain an exe the complexity of the distribution in question. We have used
plicit algorithmic minimal near-sufficient statistic far, anal- this property in (1.4) to establish a similar relation between the
ogous toS,’;‘lI in the finite-set model setting, Theorem Ill.21.expected algorithmic mutual information and the probabilistic
Thatis,PY (y) =1/|Sk_|fory € Sk, and0 otherwise. mutual information. We use this in turn to show that there is

Mg !

C. Concrete Minimal Sufficient Statistic
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a close relation between the algorithmic version and the prob- Proof: Clearly, iii) implies i) and ii).
abilistic version of sufficient statistic. A probabilistic sufficient We show that both i) implies iii) and ii) implies iii). By (11.4)
statistic is with high probability a natural conditional form of alwe have
gorithmic sufficient statistic for individual data, and, conversely,
with high probability, a natural conditional form of algorithmic
sufficient statistic is also a probabilistic sufficient statistic. o

Recall the terminology of probabilistic mutual information 1(0; S(X)) = p(8, 2)I(6 : S(x)) (VI.2)
(1.1) and probabilistic sufficient statistic (1.2). Consider a prob- 0,
abilistic ensemble of models, a family of computable probability,are we absorb &2K (p) additive term in the* sign. To-
mass function$ f, } indexed by a discrete paramefetogether gether with (VI.1), (VI.2) implies
with a computable distributiop; over#. (The finite set model
case is the restriction where tHg's are restricted to uniform 1(6; X) £ I(0; 5(X)) (V1.3)
distributions with finite supports.) This way we have a randog,qyice versa(V1.3) together with (VI1.2) implies (VI.1). O
variable @ with outcomes in{fs} and a random variablé&

with outcomes in the union of domains ﬁ;, andp(e’ .’L’) — Remark VI1.4: It may be worth StreSSing th&t in Theorem
p1(8) fo(z) is computable. VI.3 can be any function, without restriction. &

Notation VI.1: To compare the algorithmic sufficient sta- Remark VI.5:Note that (V1.3) involves equality= rather
tistic with the probabilistic sufficient statistic it is convenient tghan precise equality as in the definition of the probabilistic suf-
denote the sufficient statistic as a functi) of the data in ficient statistic (I.2). ¢

both cases. Let a statisti(x) of datax be the more general  pefinjtion Vv1.6: Assume the terminology and notation

form of probability distribution as in Section V. That 8maps  gpove. A statistics for dataz is 8-sufficient with deficiency
the datar to the parametes that determines a probability massy ;¢ 1(8, 2) = I(6, S(x)) + 6. If §0 then S(x)

function f,, (possibly npt an e!ement ({ffg]_»). Note thatf,(-)"  p_sufficient statistic 's simply a
corresponds toP(-)” in Section V. If f, is computable, then

this can be the Turing machir#, that computeg,. Hence, in ~ The following lemma shows that-sufficiency is a type of
the current section,$(z)” denotes a probability distribution, conditional sufficiency:

sayf,, and “f,(x)" is the probabilityf, concentrates on daia

1(©; X) £ > p(6, 2)1(6 : 7)

Lemma VI.7: Let S(x) be a sufficient statistic far. Then
Remark VI.2:In the probabilistic statistics setting, Every K(z)07) +6 = K(S(x)|6%) —log S(x). (V1.4)

functionT'(x) is a statistic ofz, but only some of them are a

sufficient statistic. In the algorithmic statistic setting we haveiff 1(6, z) Z1(6, S(z)) + 6.

quite similar situation. In the finite-set statistic caSgr) is a Proof: (If) By assumption,

finite set, and in the computable probability mass function case _ * + _ *

S(x) is a computable probability mass function. In both algo- K(S(x)) = K(S(@)|67) + 8 = K(w) = K(x]67).

rithmic cases we have showki(S(z) |+*) =0 for S(z) is an Rearrange and add

implicitly or explicitly described sufficient statistic. This means ~K(x|S(x)*) ~log S(z) =0

that the number of such sufficient statistics folis bounded

by a universal constant, and that there is a universal progréy typicality) to the right-hand side to obtain

to compute all of them fromx*—and hence to compute theK(aj 16") + K(S(x))

inimal sufficient statistic f .
minimal sufficient statistic fronx £ K(S(2)|6) + K(2) — K(x| $(2)") —log S(z) — 6.

Substitute according té& (z) = K (S(z)) + K (x| S(z)*) (by
ec,ryﬁiciency) in the right-hand side, and subsequently subtract
K (S(z)) from both sides, to obtain (VI.4).

(Only If) Reverse the proof of the (If) case. O

Lemma VI1.3: Let p(8, ) = p1(8)fs(z) be a computable
joint probability mass function, and I&t be a function. Then
all three conditions below are equivalent and imply each oth

i) S is a probabilistic sufficient statistic (in the form

1(6, X)=1(0, $(X))).
The following theorems state th&{.X ) is a probabilistic suf-

i) S satisfies - s . LN e .
N ficient statistic iffS(x) is an algorithmid-sufficient statistic, up
Yop(8, 2)(6:2) =Y p(6, )I(6:5().  (VI.1) 1o small deficiency, with high probability,

6,z 0, x
ii) S satisfies Theorem VI.8:Let p(8, x) = p1(6)fs(x) be a computable

joint probability mass function, and Iétbe a function. IS is a
1(6; X) = 1(©; 5(X)) recursive probabilistic sufficient statistic, théris aé-sufficient
£ Z p(8, 2)I(6 : x) statistic with deficiency)(k), with p-probability at least — %

0 = Proof: If S is a probabilistic sufficient statistic, then, by

+ Z (6, 2)I(6 : S(x)). Lemma VI.3, equality op-expectations (VI.1) holds. However,

— ’ it is still consistent with this to have large positive and nega-

’ tive differences/(6 : z) — I(8 : S(z)) for different (6, =)
All = signs hold up to af= + 2K (p) constant additive term. arguments, such that these differences cancel each other. This
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problem is resolved by appeal to the algorithmic mutual infois less explicit than a list or table but more explicit than just
mation nonincrease law (I1.6) which shows that all differencescursive enumeration or approximation in the limit. The algo-

are essentially positive rithmic minimal sufficient statistic can be considerably more
" complex depending on whether we want explicit or implicit
I(6: ) — (0 : S(x)) > —K(S). representations. We have shown that there are sequences that

Altogether, lete;, co be least positive constants such th4tave no simple explicit algorithmic sufficient statistic: the algo-
I(6 : ) — I(6 : S(x)) + c; is aways nonnegative and itsfithmic minimal sufficient statistic is essentially the sequence it-

self. Note that such sequences cannot be random in the sense of

p-expectation is. Then, by Markov’s inequality : ' : :
having maximal Kolmogorov complexity—in that case, already

p(I(0:2) —I(6: S(x)) > key — 1) < 1 the simple set of all sequences of its length, or the corresponding
k uniform distribution, is an algorithmic sufficient statistic of al-
that is, most zero complexity. We demonstrated close relations between
1 the probabilistic notions and the corresponding algorithmic no-
pI(0 @) = 1(6: S(x)) <kez —e1) > 1~ % D tions. i) The average algorithmic mutual information is equal to

the probabilistic mutual information. ii) To compare algorithmic

Theorem V1.9: For eachn, consider the set of dateof length  sufficient statistic and probabilistic sufficient statistic meaning-
n. Let p(6, z) = pi(#)fe(x) be a computable joint proba-fully one needs to consider a conditional version of algorithmic
bility mass function, and let' be a function. IfS is an algo- sufficient statistic. We defined such a notion and demonstrated

rithmic #-sufficient statistic forz, with p-probability at least that probabilistic sufficient statistic is with high probability an
1 — e (1/eEn + 2logn), then$ is a probabilistic sufficient (appropriately conditioned) algorithmic sufficient statistic and

statistic. _ . o ~ vice versaThe most conspicuous theoretical open end is as fol-
.F’FOOfi By assumption, using Definition V1.6, there is gows. For explicit descriptions we were only able to guarantee an
positive constant; such that algorithmic minimal near-sufficient statistic, although the con-

struction can be shown to be minimal sufficient for almost all
sequences. One would like to obtain a concrete example of a
Therefore, truly explicit algorithmic minimal sufficient statistic.
0< > p(8, )10 : x) — I(0 : S(x))]
|1(6:2)—1(8:S(x))|<en

L1-oe 2o

p(H(O:2)=1(6:5()| <er)>1—e

A. Subsequent Work

One can continue generalization of model classes for algo-
rithmic statistic beyond computable probability mass functions.

On the other hand, since The ultimate model class is the set of recursive functions. In [1],
+ + + provisionally entitled “Sophistication Revisited,” the following
1/e>n+2logn > K(z) > ax 1(6; @) results have been obtained. For the set of partial recursive func-

tions, the minimal sufficient statistic has complexéy for all

we obtain datax. One can define equivalents of the implicit and explicit
0< Z (0, 2)|1(0 : x) — 1( : S(x))] description format in the total recursive function setting. Every
[1(6:2)—I(0:5(2))|>e1 stringz has an implicit minimal sufficient statistic of complexity

K(K(z)); it has an explicit minimal sufficient statistic of com-
plexity at leasti (K (z)) and sometimes abo#f(z). The com-
Altogether, this implies (VI.1), and by Lemma V1.3, the theoplexity of the minimal sufficient statistic fog, in the model
rem. O class of total recursive functions, is called its “sophistication.”
Hence, one can distinguish three different sophistications cor-
VIl. CONCLUSION responding to the three different description formats: explicit,
N - L o - implicit, and unrestricted. It turns out that the sophistication
An alg_onthmlf: su_fﬂuentstat_lstlc ISan |ngI|V|_dgaI finite set (Orfunctions are not recursive; the Kolmogorov prefix complexity
_probab_lllty distribution) for Whlch agven |nd|v_|dual sequenc,%an be computed from the minimal sufficient statistic (every de-
is a typical member. The thepry IS _formulat_ed in Komogqrovaicription format) andiice versa given the minimal sufficient
ab;olute r_10t.|on of t.he quantity of mformapon in an individu tatistic as a function of one can solve the so-called “halting
object. Thisis a r_u_)tl_on an_alogous t(.)’ _and In some sense shaf Bhlem” [10]; and the sophistication functions are upper semi-
than, the probabilistic notion of sufficient statistic—an avera mputable. By the same proofs, such computability proper-

notion based on the entropies of random variables. It tumﬁgs also hold for the minimal sufficient statistics in the model

out that for EVery sequenaewe can Qetermlng t.he Compl.ex'tyclasses of finite sets and computable probability mass functions.
range of possible algorithmic sufficient statistics, and, in par-

ticular, exhibit an algorithmic minimal sufficient statistic. The -
manner in which the statistic is effectively represented is crﬁ—' Application

cial: we distinguish implicit representation and explicit repre- Because the Kolmogorov complexity is not computable,
sentation. The latter is essentially a list of the elements of a &in algorithmic sufficient statistic cannot be computed either.
nite set or a table of the probability density function; the formédonetheless, the analysis gives limits to what is achievable in

2c(n+210gn) <o0.
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practice—like in the cases of coding theorems and channe(3]
capacities under different noise models in Shannon information
theory. The theoretical notion of algorithmic sufficient statistic 141
forms the inspiration to develop applied models that can be
viewed as computable approximations. Minimum description

length (MDL), [2], is a good example; its relation with the al- g
gorithmic minimal sufficient statistic is given in [20]. As in the [6]
case of ordinary probabilistic statistic, algorithmic statistic if 7

applied unrestrained cannot give much insight intortteaning
of the data; in practice, one must use background information tqs]
determine the appropriate model class first—establishing what
meaning the data can have—and only then apply algorithmic
statistic to obtain the best model in that class by optimizing its[9]
parameters; see Example 111.5. Nonetheless, in applications 02160]
can sometimes still unrestrictedly use compression properties
for model selection, for example by a judicious choice of mode[11]
parameter to optimize. One example is the precision at which
we represent the other parameters: too high precision caus[elél
accidental noise to be modeled as well, too low precision may
cause models that should be distinct to be confusing. In generill,?’]
the performance of a model for a given data sample depends
critically on what we may call the “degree of discretization” [14]
or the “granularity” of the model: the choice of precision of
the parameters, the number of nodes in the hidden layer of [@s]
neural network, and so on. The granularity is often determined
ad hoc In [9], in two quite different experimental settings the
best model granularity values predicted by MDL are shown téle]
coincide with the best values found experimentally. [17]
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