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Abstract. In this paper we analyze the ability of peer to peer networks
to deliver a complete file among the peers. Early on we motivate a broad
generalization of network behavior organizing it into one of two suc-
cessive phases. According to this view the network has two main states:
first centralized - few sources (roots) hold the complete file, and next dis-
tributed - peers hold some parts (chunks) of the file such that the entire
network has the whole file, but no individual has it. In the distributed
state we study two scenarios, first, when the peers are “patient”, i.e, do
not leave the system until they obtain the complete file; second, peers
are “impatient” and almost always leave the network before obtaining
the complete file.
We first analyze the transition from a centralized system to a distributed
one. We describe the necessary and sufficient conditions that allow this
vital transition. The second scenario occurs when the network is already
in the distributed state. We provide an estimate for the survival time of
the network in this state, i.e., the time in which the network is able to
provide all the chunks composing the file. We first assume that peers are
patient and we show that if the number of chunks is much less than en,
where n is the number of peers in the network, then the expected survival
time of the network is exponential in the number of peers. Moreover we
show that if the number of chunks is greater than log n

n+1
en+1, the network’s

survival time is constant. This surprisingly suggests that peer to peer
networks are able to sustain only a limited amount of information. We
also analyze the scenario where peers are impatient and almost always
leave the network before obtaining the complete file. We calculate the
steady state of the network under this condition. Finally a simple model
for evaluating peer to peer networks is presented.

Keywords: P2P, file sharing, chunk, downloading rate, survivability
? The research was partially funded by the European projects COST Action 293,

“Graphs and Algorithms in Communication Networks” (GRAAL) and COST Action
295, “Dynamic Communication Networks” (DYNAMO).

?? Special thanks go to Jean-Claude Bermond. The research was done while the authors
were meeting at the MASCOTTE project site in Sophia Antipolis.



1 Introduction

Over recent years, peer to peer (P2P) networks have emerged as the most popu-
lar method for sharing and streaming data (see for instance [1]). There has been
popular adoption and widespread success due to the high efficiencies that these
networks obtain for broadcast data. Apart from personal usage, many compa-
nies, like for instance redhatR©, provide links in order to download their free
distributions in a P2P fashion. In doing so, companies avoid the problem of too
many clients connected to their server. This solves bottleneck or high concen-
trated transmission cost on a single node with a significant chance of failure at
peak loads. On the other hand, companies are not the only benefactor. Indeed,
it makes things much faster from the point of view of the user even though at
the expense of “being used” by other users.

Another very interesting application where such networks are highly success-
ful concerns the distribution of data for storage purposes. The idea, in fact, to
collect data among users spread over all the world is increasing more and more.
Instead of having (for each one) a full copy of everything, a community can
share resources hence obtaining a distributed storage device. This permits them
to collectively maintain more and more data and it increases also the reliability.
It ensures, in fact, that data will not disappear due to the malfunction of a small
number of devices.

The main differences among the two applications we have just outlined are
a more collaborative environment and a lower percentage of disappearing pieces
of data, with the second being the more reliable in this sense. For downloading
purposes, in fact, the aim is sometimes to download the required data as fast as
possible and then leave the network. This implies also a higher frequency in peers
disappearing. On the other hand, in an ideal world where people collaborate for
a common final purpose, we like to imagine both the applications are quite
equivalent.

We consider the following processes. A file is divided into k chunks. The
network contains a large number of nodes. We distinguish among peers, i.e.,
nodes with a number of chunks less than k and roots, i.e., nodes owning all the
chunks. We assign to peers a probability α for which they may disappear. This
means that peers live on average 1

α rounds. For the roots we chose a probability
αR ≥ α. We consider closed network, i.e., every time a peer or a root leaves
the network a new peer will join with no chunks. For the sake of simplicity we
consider a synchronous model. During a round each node can receive or send
one chunk; and at the end of each round any node disappears with respect to
the related probability. We study the following three scenarios:

Spreading or Centralized Scenario: Peers contain no chunks and there
are R roots. We wonder if the file is spread into the network. This happens if
all the chunks are sent from the roots inside the network where they multiply
themselves. This can give us a measure for the file length with respect to the life
of the last surviving root. After the last root leaves the network, in fact, either



the file has been spread or it is not possible to build it back. We say in this case,
the network (or the file) is “dead”.

Distributed Scenario: The chunks are widely spread in the network. There
is not a fixed amount of roots, R can be also zero, we only require that the whole
chunks composing the file are there. We wonder if the network life is long or short.
As we are going to see, the network life is long when some almost steady state is
reached. This can give us a measure about the conditions ensuring a long life for
the network, and, when this happens, how often a full download is completed.

Survivability Scenario: In this scenario we are interested in studying the
network behavior under extreme conditions. We consider, in fact, the case in
which a file is almost never downloaded since peers have a very high volatility.
They almost never stay in the network long enough to perform a full download.
However, it is still very interesting to note that the network is able to survive.
We recall that a network is said to survives whenever it still contains all the k
chunks composing the original file, no matter where they reside.

Given some parameter settings, our aim is to answer the question of how
long we can expect a network to continue producing new completed downloads.
For all the previous three scenarios we provide a stochastic formulation. We
show how parameters should be set up in order to obtain the desired results
concerning network survivability and file downloading rate. It turns out that the
eventual fate of the network is mainly dependent on the number of nodes n and
the number of chunks k in which the file is split. We show how the network may
pass through the previous three scenarios before eventually dying.

1.1 Related Work

A lot of work has been devoted to the area of file sharing in P2P networks.
Many experimental papers provide practical strategies and preliminary results
concerning the behavior of these kind of networks. In [2] for instance, the authors
essentially describe properties like liveness and downloading rate by means of
extended experiments and simulations under several assumptions.

Concerning analytical models it is very difficult to capture suitable features
in order to describe what happens and why protocols like BitTorrent [3] are
so powerful in practice. Suitable models are hard to find that describe what
sometimes is easily observable by simulations. One of the main assumption made
in the literature in order to describe the behavior of such networks at a top level
concern Flow models [4, 5], Queueing theory [6], Network Coding [7] and Coupon
Collector aspects [8]. This latter paper mainly focuses on systems in which peers
owning some chunks (usually one at random) appear in the network with some
probability and disappear as soon as they complete their download. Recently
in [9], the distribution of k chunks on a network with diameter d and maximum
degree D has been proved to require at most O(D(k + d)) rounds of concurrent
downloads with high probability. This is tight within a factor of D. They also



specialized to the networks used by BitTorrent improving the bound to O(k ln n)
rounds where n is the number of nodes.

1.2 A first thought

Such results are quite interesting from a theoretical point of view but sometimes
not truly representative of the real life. The main assumption that collides with
practical aspects is that the number of peers participating in the protocol is
assumed to be huge, hence obtaining asymptotically optimal results in terms of
network survivability and spreading speed of the desired file. Moreover, different
from our model many of the previously cited papers do not assume the possibility
for a peer to leave the network before it completes the whole file. This aspect is
indeed introduced also in [5]. On the other hand we should immediately point
out that if there is at least one root that stays indefinitely, then the file will
always be available in the network, if a peer is willing to wait. We call such a
scenario “trivial” since there is no question about the behavior of the network.
In contrast, if all the original R roots disappear (at some time t) then there are
many possibilities. We say a chunk is present in the network if at least one peer
has that chunk. If there exists a chunk that is not present on the network, then
no more full downloads are possible. Therefore, the most interesting case is when
no roots are persistent (t < ∞).

When using BitTorrent [3] or similar programs in order to download desired
files, usually such networks look quite different. The assumption for which a huge
number of nodes is participating in the protocol given in [7, 8, 5] is indeed too
strong. Moreover, in practice, the number of chunks is usually much bigger than
the number of nodes composing the network. This is due to the fact that even if
a file is spread among thousands of users, they do not participate concurrently
in the protocol. At any given time the network is usually quite small if compared
to the actual number of downloads.

Figure 1 shows a standard screenshot of the advanced BitTorrent window
while downloading a file of size roughly 272Mb. As it is described in the figure,
there are 38 peers participating in the protocol with 15 roots and 23 peers while
the number of chunks is 546 that is 512Kb per chunk4. It is worth noting that
under those circumstances the success of these protocols has to reside in the
adopted strategies, in contrast with that outlined in [8]. In such a setting, for
instance, the “rarest pieces” distribution becomes quite important. This is the
peculiarity in BitTorrent for which once an empty peer appears in the network it
is provided with the least common chunk among the network. Also the “altruistic
user behavior” is quite crucial from the point of view of the network survivability.
It is based on the observable fact for which peers that terminate their download
do not immediately disappear. In [2] for instance, it is pointed out how friendly
users usually behave in the network. They do not disappear as soon as their
download is finished thus ensuring that all the chunks are available. Indeed most

4 Indeed in the BitTorrent specifications [3], the default size of a chunk is 256Kb,
hence obtaining 1092 chunks.



Fig. 1. Screenshot of the advanced properties of BitTorrent during a downloading
phase.

of the time this happens since whoever is downloading has just left the computer
unattended but working.

1.3 Outline

The remainder of the paper is organized as follows. In the next section we give our
first insight of P2P networks by introducing the so called Spreading Scenario. We
show under which conditions a file is successfully spread over the network, hence
remains alive. Section 3 describes the so called Distributed Scenario. We show
under which conditions a file spread over the network can survive according to
the number of peers composing the network and the number of chunks in which
the file is split. Section 4 is devoted to the so called Survivability Scenario. In
this case the behavior of the network is studied under critical circumstances like
the high volatility of peers persistence. Section 5 provides a simple model for
P2P networks in order to obtain numerical results about peers volatility, chunks
distributions and downloading rate. Finally, Section 6 provides some conclusive
remarks.



2 Spreading Scenario

In this section we study our first scenario in which a file must be distributed
among the network by spreading its k chunks. Our model is synchronous. At
round t the network is composed by Rt roots that disappear with probability
αR. In this scenario we do not take into account the number of peers. Usually
peers are much more than roots but for our analysis we just consider that a
root can provide one chunk to one single peer at each round. This can be seen
also by considering at round t a number of peers equal to Rt since we are just
analyzing the number of rounds needed by the roots in order to spread the
file. At a generic round t each peer asks a root for one random chunk. A root
answers with a random chunk that has never been spread inside the network
before. This implements the previously described “rarest pieces” issue. After
each round, roots coordinate with each other in order to maintain the list of
chunks that have been sent across the network.

The process is then similar to a coupon collector problem [8]. All the k chunks
have to be collected, but a chunk can be collected several times during a round.
Moreover the number of roots from which one can collect a coupon decreases
exponentially. Let Kt be the number of chunks to be collected at time t, i.e.,
chunks that have not been distributed until round t.

For a given chunk x:

Pr(x is not collected) =
(

1− 1
Kt

)Rt

=
(

1− 1
Kt

)Kt
Rt
Kt ≈ e−

Rt
Kt

hence E[Kt+1|Kt] ≈ e−
Rt
Kt Kt. Assuming for now that Kt = E[Kt] with

probability 1 we get E[Kt+1] ≈ e−
Rt
Kt E[Kt].

For Rt the situation is simpler since Rt is just the sum of R independent
variables, (each one being described by the series

∑
Pr(Rt+1 = i)zi = (αR +

z(1 − αR))Rt , and Rt is concentrated around its mean (1 − αR)Rt. So we have
E[Rt+1] = αRE[Rt].

Let ρt = E[Rt]/E[Kt], we get

ρt+1 = (1− αR)eρtρt.

From this, two situations can follow. If (1 − αR)eρ0 ≥ 1, then ρt always
increases, and this increase is faster and faster. This implies that the spreading
will easily succeed since the number of chunks not spread decreases much faster
than the number of roots that leave the network. Conversely, if (1−αR)eρ0 < 1,
ρ decreases and keep doing it faster and faster. This means that the process dies
soon.

In the first situation we almost always collect all the chunks otherwise never.
Of course, either at some point the chunks are all distributed or there are no roots
that can provide the missing chunks. We can conclude from this first analysis
that the file gets spread whenever αR < 1− e−

R
k . Note that when k >> R this

actually means αR < R
k and this is usually the case. For k = R we get αR ≤ e−1

e
but, in real world scenarios, this usually does not happen.



3 Distributed Scenario

In the previous section we gave a necessary and sufficient condition to describe
the asymptotic behavior of the network. That is, the network must move from
the initial state to the distributed state. In this section we study the behavior
of P2P networks in the distributed state, that is, there are no roots, yet every
chunk is available on the network after time t. In the following we refer to [10]
for the applied probabilistic tools.

3.1 Upper bound

Our next goal is to show that networks that are in the distributed state will not
survive if the number of chunks is exponentially big in the number of peers. In
order to show this we assume the following model. In each time step each peer
asks a random chunk among all the chunks that the peer is missing. We assume
that if the chunk is anywhere on the network then the peer will get this chunk
in the next time step. Clearly this assumption is optimistic and will help the
survival of the network. Importantly, this makes the network’s gross behavior
deterministic and thus we can say with certainty that every peer stays precisely
k timesteps before leaving, since he gets exactly 1 chunk per timestep. When a
new peer enters, it has no chunks and we may use the variable i, with 0 ≤ i < n,
to indicate its ordering when all peers are sorted according to their number
of chunks. This ordering is equivalent to the chronological ordering. After k

n
time steps, each peer is promoted to the next ordinal position. We point out
that nothing changes in the network viability unless a peer leaves, and further
the only peer that may leave is the last one, or the one with the most chunks;
eventually the last peer will have k chunks when the file has been completely
downloaded. We wish to bound the probability that a chunk will be missing.
Therefore the number of chunks that each peer i has is k(i−1)

n whenever a peer
is leaving.

To be precise, we imagine the total network state at any time to be given by
a binary vector of length kn; that is,

Ω =
({0, 1}k

)n
.

In Ω, the first k coordinates describe the chunks held by the first peer. In this
first part, the first coordinate is 1 if and only if the first peer holds the first
chunk, otherwise, it is 0. The next coordinate indicates the next chunk, and so
on for all k chunks.

We will define an event G on Ω such that ∀i = 1..n, peer i has exactly ik
n

chunks. Let Aj
i be the event that peer i has chunk j. Let Xj

i be the indicator
variable of Aj

i . Let Y j = max{Xj
1 , Xj

2 ..., Xj
n}, i.e., Y j is the indicator variable

of the event that chunk j is in the system. We define the random variable Z =
min{Y 1, ..., Y k} as follows: it is the indicator variable of the event that there is
a missing chunk in the network. In other words, Z = 0 means the network has
died, and Z > 0 means it continues to distribute the file.



Lemma 1. Let n and k be the number of peers and chunks in the system respec-
tively. For n > 2, the probability that there is a missing chunk can be bounded
by Pr[Z = 0] ≤ kne−n.

Proof. by the Union bound over all k chunks,

Pr[Z = 0] < k Pr[Y 1 = 0] = k

n∏

i=1

i

n
= k

n!
nn

and by Sterling’s approximation,

k
n!
nn

< kne−n.

¤

The next corollary shows that if the number of chunks is small the probability
for the network to die approaches 0.

Corollary 1. For all k < en

n log n ,

lim
n→∞

Pr[Z = 0] = 0.

The next corollary shows that if the number of chunks is small the system
survives for a long time.

Corollary 2. If the number of chunks is a polynomial Poly(n) then the expected
survival time is at least en

nPoly(n) .

3.2 Lower bound

The main problem in proving the lower bound is the dependence between the
random variables Y j and Y j′ . To remove this technical difficulty we use a differ-
ent model, the binomial model. The idea is to make Y j and Y j′ i.i.d. variables.
In order to prove a lower bound on the previous model we increase the expected
number of chunks that peer i has at the time the last peer leaves the network. I.e.,
we relax the assumption that, at the time the last peer leaves the network, the
number of chunks in the peer i is k(i−1)

n . Moreover we assume that the number
of chunks is a binomial random variable. This assumption is legitimate since the
binomial distribution is highly concentrated. The problem with this approach
is that now we are no longer sure that each peer has enough chunks. The way
we solve this problem is by strengthening the peer capabilities by increasing the
chance that a peer has received chunk i. Since in a normal file sharing system
chunks are correlated and peers have a smaller number of chunks, our lower
bound also captures the behavior of these systems. This is justified since both
assumptions (increasing the number of packets and the fact that packets are
i.i.d) decrease the probability of failure. We do not offer a method to achieve



this, but rather we use this approach to prove a lower bound with high probabil-
ity. We posit this property (the binomial distribution) for the proof. We assume
that the peers i = 1, ..., n have ki

n+1 chunks on average. More precisely, let X j
i

be a Bernoulli random variable such that E[X j
i ] = i

n+1 . Let Gi =
∑k

j=1 X j
i be

a random variable that counts the number of chunks that peer i has. Note that
E[Gi] = ki

n+1 . The next lemma bounds the probability that peer i will have less

than (i−1)k
n chunks.

Lemma 2. Let Gi be the number of different chunks belonging to peer i. For all
1 ≤ i ≤ n, Pr[Gi < (i−1)k

n ] < e
− k

2n3(n+1) .

Proof.

Pr
[
Gi <

k(i− 1)
n

]
= Pr

[
Gi <

(
1− n + 1− 1

in

)
ki

(n + 1)

]
<

< e−
(

n+1−i
in

)2
ki

2(n+1) < e
− k

2n3(n+1)

The first equality follows from algebra, and a Chernoff bound yields the next
inequality. ¤

If k >> n4 we get that the probability that the i-peer (Bernoulli process)
has less than (i−1)k

n chunks is exponentially small.
Let Q =

⋂n−1
i=0 {Gi ≥ (i−1)k

n }. Note that Q is the event that all peers have
more chunks than they are supposed to have, i.e., for all i, Gi ≥ (i−1)k

n .

Lemma 3. For all log k > n, Pr[Q] > 1− ne
− k

2(n+1)n3 .

Proof.

Pr[Q] =
n∏

i=1

Pr
[
Gi ≥ k(i− 1)

n

]
=

=
n∏

i=1

(
1− Pr

[
Gi <

k(i− 1)
n

])
≥

n∏

i=1

(
1− e

− k
2(n+1)n3

)
.

We apply Lemma 2 to derive the last inequality above. We choose the smallest
term in the product and raise it to the n power for the bound:

Pr[Q] ≥
(
1− e

− k
2(n+1)n3

)n

> 1− ne
− k

2(n+1)n3 .

¤

Using the previous lemma it follows that the probability for which Q holds
is exponentially small.

Corollary 3. For all log k > n, Pr[Q] < ne
− k

2(n+1)n3 .



After bounding the probability that all the Bernoulli peers will have more
chunks than the discrete peers, we analyze the probability that the Bernoulli
peers will fail, i.e., some chunk is missing. Let Yj = max{X j

1 ,X j
2 ...,X j

n}, Z =
min{Y1, ...,Yk}. Note that Z = 0 is equivalent to say that the Bernoulli peers
will fail.

The following lemmata lead to the last corollary that shows under which
condition the network goes to miss some chunk, i.e., it is not able to deliver any
further complete download.

Lemma 4. The probability that the Bernoulli peers will fail is,

Pr[Yj = 0] >
1

en+1
.

Proof. The proof follows from the following computation.

Pr[Yj = 0] =
n∏

i=1

i + 1
n + 1

=
(n + 1)!
(n + 1)n

>
(n+1)n+1

en+1

(n + 1)n+1
=

1
en+1

.

¤

Lemma 5.
Pr[Z > 0] < e−

k(n+1)
en+1 .

Proof. In order to prove the claim we make use of Lemma 4, followed by the
limit definition of e and then Sterling’s approximation, hence obtaining

Pr[Z > 0] =
k∏

j=1

(
1− Pr[Yj = 0]

)
=

(
1− (n + 1)!

(n + 1)n

)k

∼= e−
k(n+1)!
(n+1)n < e−

k(n+1)
en+1 .

¤

Lemma 6. For log k > n,

Pr[Z = 0] ≥ 1− e−
k(n+1)
en+1 − ne

− k
2(n+1)n3 .

Proof. From Bayes Law and the complementary events property,

Pr[Z = 0] > Pr[Z = 0|Q] = Pr[Z = 0]− Pr[Q] Pr[Z = 0|Q] >

> Pr[Z = 0]− Pr[Q] ≥ 1− e−
k(n+1)
en+1 − ne

− k
2(n+1)n3 .

¤

Corollary 4. For all k ≥ log n
n+1 en+1,

lim
n→∞

Pr[Z = 0] = 1.

From the previous corollary it follows that if the number of chunks k is bigger
than or equal to log n

n+1 en+1, then the expected survival time is constant.



4 Survivability Scenario

In this section we study how likely the network is to survive in extreme condi-
tions. With extreme conditions we mean that a file is almost never downloaded
since peers have a very high volatility and almost never stay in the network long
enough to perform a full download. However, it is still very interesting to note
that the network is able to survive. We remind that a network survives when-
ever it still contains all the k chunks composing the original file, no matter where
they reside. We will assume that peers leave the system with probability α while
roots or experts (peers that succeed at the full download) leave the network with
probability αR.

During the process chunks are duplicated and hence created while others
disappear because of nodes leaving the system. Let us denote by N the number
of nodes (peers plus experts, assuming roots as experts) in the network and by
Pi the probability (percentage of peers) that a peer has i chunks. The number
of chunks lost during one time step is then:

N

(
α

k−1∑

i=0

iPi + αRPk

)
.

The amount C of chunks created, depends on how many successful download
are performed during a step. This strongly depends on the chosen protocol.
In any case this amount cannot be more than the number of peers with one
packet N(1 − P0) multiplied by the probability to stay inside the network, i.e.,
C ≤ (1− α)N(1− P0).

Hence a necessary condition for the network survival is that

N(1− P0)(1− α) ≥ N

(
α

∑

i=0

k − 1iPi + αePk

)
≥ Nα(1− P0)

and this leads to have 1− α ≥ α, i.e., α ≤ 1
2 .

When α = 1
2 the stationary distribution is as follows P0 = P1 = 1

2 , after each
communication step all the nodes have a chunk, but then half of them die (reset
to zero chunks). Note that such a network dies quite quickly, from deviations.
However, as soon as α > 1

2 the network lives almost forever.
Our process is very similar to a birth and death process, each node lives on

average 1
1−α rounds. And at each round it generates 1 − α chunks, hence its

average number of children is 1−α
α . It holds that when this number is strictly

greater than 1 the network survives.
Let us assume the network to be in some random state with P0 = P1 = 1

2 ,
with k chunks regularly spread across the peers with one chunk each. Let Fi,t

be a random variable that denotes the percentage of peers with the i-th chunk
at time t. Fi,0 is deterministic with value N

2k .
After the first step of the protocol, we have:

P [Fi,1 = k] =
(

2F0,t

k

)
/22Fi,0



So after the initial step, chunks are distributed as the sum of N
2k random bits.

We study this phenomenon at the critical point in its most canonical form. At
time t we have a number St of chunks alive, we double each chunk and randomly
destroy half of the chunks.

First we consider the future of a single chunk. Let Ft(z) denote the generating
series at time t associated with the future of chunk z.

Considering one time step we have: with probability 1
4 the process dies, with

probability 1
2 the process restarts with 1 chunk and t−1 time units remain, with

probability 1
4 we get two chunks and t− 1 time units remain.

Ft(z) =
1
4

+
1
2
Ft−1(z) +

1
4
F 2

t−1(z) =
(

Ft−1(z) + 1
2

)2

Note that by setting εt(z)t = Ft(z)− 1, we obtain

εt(z) = εt−1(z) +
(

εt−1(z)
2

)2

and εt(0) is the probability to stop before time t. So the probability to have the
process alive at time t is about t

ln t , and if one considers n bits one needs n ln n
time units to kill all of them.

This scenario is quite optimistic since one assumes that the network ex-
changes N(1− P0) chunks during a round which corresponds to a perfect situa-
tion. This happens, in fact, by means of a perfect matching between the nodes
that meet their necessities. Indeed, if we make use of a non optimal strategy,
i.e., matching the node in a perfectly arbitrarily way, it is worth noting that this
does not affect and degrade the process too much.

A typical way to marry the nodes is to choose randomly for each node a
server, and to elect a node randomly for each server. Despite the simplicity of
this process (nodes which have all the chunks still demand some, and nodes with
no chunks are considered as able to provide some), it does not affect the network
survivability as we are going to see.

Note that, by means of a simple matching algorithm, the number of edges
is already of order (1 − 1

e )N . Among those edges some are unable to duplicate
chunks (if the server does not have any chunks that the client needs). A critical
stage occurs when almost all the nodes with chunks have almost no chunks, so
the probability for an edge to be useful is indeed exactly (1 − P0). In such a
situation the number of chunks replicated is

(
1− 1

e

)
(1− P0) (1− α)

while the number of chunks destroyed is at least α(1−P0). This implies that
the network survives when α ≤ 1− 1

e

2− 1
e

' .3873.



5 Simple evaluation Model for P2P Networks

To better understand the behavior of this kind of network we propose a simplified
model and protocol. Such a model can be easily applied and modified in order
to find preliminary results on P2P networks. We have also compared our easy
model’s results to the outputs of more sophisticated simulators. Even though
the comparison is outside the scope of this paper, it is worth mentioning that
the deviation from the simulations is negligible.

- At the beginning of each time slot, each peer chooses another peer
randomly. An inquired peer randomly selects one of its customers. We
call this customer lucky. Next the uploading peer delivers to its lucky
customer a useful random chunk, i.e., a chunk that he has and that this
customer has not. The unlucky customers do not get any chunk at this round.

- In order to get a stable situation, each peer that disappears (with probability
α) is immediately replaced by a new empty peer (i.e., with no chunks).

The probability luck that a customer gets lucky is indeed equal to the pro-
portion of customers served, which is the number of peers having at least one
customer. Hence, luck = 1− 1

e .
We first compute the probability that a node with i chunks gets a new use-

ful one. To do this we make a strong assumption that chunks remains almost
identically distributed, i.e., a random node with i chunks contains a given chunk
with probability i

k .
To get a chunk, a node needs first to be lucky, then the probability that it

gets a chunk depends on the number of chunks of its uploading peer. Assume
that a customer with i chunks contacts an uploading peer with j chunks, its
probability to receive a chunk is

∆i,j = 1−
(

i
j

)
(
k
j

)

Note that we use the standard convention
(

i
j

)
= 0 whenever j ≥ i, but in the

case i = j = 0 we have ∆i,j = 0, so we consider
(
0
0

)
= 1. It follows that a lucky

node in state i that does not vanish (i.e., conditioned on all those events) moves
to states i + 1 with probability

k∑

j=0∗
∆ijPj

From that it follows that a peer in state i 6= 0 moves to:

- State i + 1 with probability Ti,i+1 = (1− α)luck
∑k

j=0 ∆i,jPj

- State i with probability Ti,i = (1− α)− Ti,i+1

- State 0 with probability α



To summarize we have:

P0 = α

k∑

i=0

Pj + (1− α)


1− luck

k∑

j=0

∆0,jPj


 ,

∀i > 0,

Pi = (1− α)


Pi


1− luck

k∑

j=0

∆i,jPj


 + Pi−1


luck

k∑

j=0

∆i−1,jPj





 .

For the aim of preliminary and experimental results such a model is already
enough in order to get an idea of the general behavior of this class of networks.

6 Conclusion

In this paper we have studied the behavior of P2P networks. We have considered
three main scenarios. In the first one there are some peers owning all the chunks
(roots) composing a file and the aim is to study the time required to ensure that
every chunk is spread out on the network. This is very important to understand
since, of course, it reflects the required behavior for peers that want to share their
information. We have shown that the success of the spreading phase depends on
two main parameters. Namely, the number of roots in the network and the
number of chunks in which the file is divided. The probability αR for which
R roots can leave the network should be smaller than 1 − e−

R
k where k is the

number of chunks. In the second scenario, we have started with a configuration
in which many peers have subsets of the whole chunk set and the aim is to study
the probability for the network to survive, i.e., every chunk must belong to some
peer. This is also very important since it gives a measure of the behavior that
peers should exhibit in order to maintain the viability of their download and
archival capabilities. We have shown that if k is much less than en, with n being
the number of peers in the network, the expected survival time of the network is
exponential in n. Moreover, if the number of chunks is greater than log n

n+1 en + 1,
the network survival time is constant. The third proposed scenario concerns the
critical setting for the peers in terms of volatility. We have shown how under this
setting the network is still able to survive. Namely, our estimated maximum value
of the probability α for which a peer can leave the network while guaranteing
its survivability is α ≤ .3873. From the point of view of experimental results, we
have also proposed a simple way for analyzing and modeling P2P networks.

Our study has raised many open questions that might be investigated for
further research. Many variations of our proposed models are possible and in-
teresting. An important issue, for instance, concerns file sharing protocols that
cope with security aspects. Deep analysis of tit-for-tat strategies for avoiding
the so called free-riders problem is of primary interest to better understand the
success of these protocols (see [11] for preliminary results). Free-riders are users



that download files from the network but do not share their own chunks. In
BitTorrent, those kind of users are allowed even though the performance of their
downloads is much slower than for “friendly” users.
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