
Projective Distribution of XQuery with Updates
Ying Zhang, Nan Tang, and Peter Boncz

Abstract—We investigate techniques to automatically decompose any XQuery query—including updating queries specified by the

XQuery Update Facility (XQUF)—into subqueries, that can be executed near their data sources, i.e., function-shipping. The main

challenge addressed here is to ensure that the decomposed queries properly respect XML node identity and preserve structural

properties, when (parts of) XML nodes are sent over the network, effectively copying them. We start by precisely characterizing the

conditions, under which pass-by-value parameter passing causes semantic differences between remote execution of an XQuery

expression and its local execution. We then formulate a conservative strategy that effectively avoids decomposition in such cases. To

broaden the possibilities of query distribution, we extend the pass-by-value semantics to a pass-by-fragment semantics, which keeps

better track of node identities and structural properties. The pass-by-fragment semantics is subsequently refined to a pass-by-

projection semantics by means of a novel runtime XML projection technique, which safely eliminates most semantic differences

between the local and remote execution of an XQuery expression, and strongly reduces message sizes. Finally, we discuss how these

techniques can be used for updating queries, both under the standard W3C XQUF specification, as well as under an extended

semantics that allows to update remote documents. The proposed techniques are implemented in XRPC, a simple yet efficient XQuery

extension that enables function-shipping by adding a Remote Procedure Call mechanism to XQuery. Experiments on MonetDB/

XQuery establish the performance potential of our XQuery decomposition techniques.

Index Terms—Distributed databases, XQuery decomposition.

Ç

1 INTRODUCTION

IN this paper, we study ways to decompose any XQUERY

query that consults multiple XML documents residing on
multiple peers into subqueries that can be executed on those
peers, i.e., function shipping. In principle, we do not want to
restrict the form of these queries in any significant way: the
full W3C recommended XQUERY language [3] including its
XQUF extension [7] is the starting point of our decomposi-
tion. Our only requirement for peers to participate is running
an XML database system (XDBMS) that complies with these
W3C recommendations. The goal of this paper is to exploit
the computational power of heterogeneous XML engines on
the Web to jointly execute XQUERY and XQUF queries.

XQUERY already allows queries over distributed sources
through its support for W3C standards, in particular, the
ability to open any document on the Web through its
fn:doc(URI) built-in function. However, the execution model
implied by those W3C standards (e.g., HTTP) is data
shipping: a full XML document is transported from a remote
peer to the querying peer. This means that all query execution
happens locally, i.e., at the query originator. It is well known
that in many cases this is suboptimal. For instance,
an aggregation query on a huge remote XML document that
produces only a small result, incurs much less network cost
when the aggregation is computed remotely (function
shipping) than when the huge XML is shipped to the querying
peer (data shipping).

Decomposing queries to address multiple data sources is
a well-studied optimization problem in relational [34],
object-oriented [15], [20], and semistructured databases
[30], [31]. While it is natural (and correct) to assume that
many of the existing techniques can be carried over, the
XML data model and the XQUERY language introduce a
number of particular challenges not met elsewhere, that
revolve around XML node identities and structural (rather
than value-based) relationships between nodes. Previous
work on distributed XML [6], [8], [32] only focused on a
restricted subset of XQUERY queries, and did not address
the problem of transparent query decomposition, such that
these challenges did not arise.

Shipping XML messages. Without loss of generality, we
view the subexpressions to be executed by remote peers as
XQUERY functions, that may have parameters and produce
a result. During remote function execution, the calling peer
(e.g., query originator) will send a request message contain-
ing parameters to a remote peer, which executes the
subexpression, and sends back a response message contain-
ing the result. To illustrate the challenges of distributing
XQUERY, yet preserving XML node identity, consider a
subexpression f($a,$b) with two parameters $a and $b of
the type node(), that is executed remotely. Complications
may arise, for instance, if the subexpression f() tests
structural XML relationships among its parameters, such
as “$a/parent::b is $b”. It therefore depends on the
characteristics of the subexpressions f(), and on the way
parameters are marshaled in and out of the network
messages, to decide whether the distributed query will
behave correctly. That is, whether the distributed query is
identical to local execution (blindly copying all parameters
into the message does not work in this example).

When XML nodes must be shipped over the network,
this means that, unless one chooses to ship the entire
XML document in order to preserve all structural relation-
ships (which defeats the purpose of function shipping),

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010 1059

. The authors are with the Centrum Wiskunde & Informatica (CWI),
PO Box 94079, NL-1090 GB Amsterdam, The Netherlands.
E-mail: {Y.Zhang, N.Tang, P.Boncz}@cwi.nl.

Manuscript received 15 May 2009; revised 15 Sept. 2009; accepted 14 Nov.
2009; published online 11 Apr. 2010.
Recommended for acceptance by Y. Ioannidis, D. Lee, and R. Ng.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2009-05-0430.
Digital Object Identifier no. 10.1109/TKDE.2010.62.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

pieces/snippets of the XML document must somehow be
copied into the messages, changing the “holistic” struc-
tural properties and identities of nodes, which may affect
the semantics of XQUERY execution on such shipped
nodes. Naively, when shipping a node, one would ship
its descendants (XML subtree), but other solutions are also
possible, and will in fact be proposed in this paper
(especially, the idea to use XML projection techniques). In
particular, the runtime projection approach contributed in
this paper tunes the shape of the shipped XML messages
to the characteristics of the query, such that a minimal
amount of data is shipped and those structural relation-
ships that are actually needed are preserved.

Avoiding callbacks. One could consider a simple “call-
back” way of handling XQUERY distribution by not sending
XML snippets at all, but just some (global) node identifiers.
Each time when a peer needs to execute node-specific
XQUERY (XPATH) expressions on such node identifiers, this
alternative approach would communicate with the peer
where the nodes originally came from, executing the node-
specific expressions on that peer and returning the results.
While such an approach circumvents semantic problems, it
has many drawbacks:

1. it basically gives up on the desire to move
computation to more powerful peers;

2. it introduces additional network round-trips;
3. it makes all distributed queries—even read-only

queries—stateful: a single query might consist of
multiple (potentially many) network requests and
the query processor on each peer must keep a
session context open to guarantee repeatable reads
consistency, which causes extra memory consump-
tion and lock contention; and finally

4. there would be additional protocols needed to
properly terminate such stateful distributed queries,
adding extra protocol complexity, bookkeeping
overhead, and network latencies.

In contrast, the techniques introduced here lead to flexible
query distribution where subexpressions can be moved to
the peer that can most efficiently process them. Typically,
each peer is visited only once, thus network interactions are
minimized and peers can handle the subqueries in a stateless
manner. Additionally, one could also envision a network
protocol that combines “callback” query processing with our
techniques, something which might be interesting for
handling distributed updating queries (because in the
default XQUF semantics only locally stored documents can
be updated, hence one would have to “callback” to the peer
where a node originated from, to apply the update actions).
However, given our target of Internet-wide P2P query
processing with high network latencies, we decided against
the “callback” approach in our own prototype construction,
and fully focused on XQUERY execution by moving XML

snippets and computation on them over the network. In this
paper, we define and solve the problem this approach brings
in preserving semantic correctness, and also demonstrate the
efficiency of this approach.

XRPC. While our problem statement covers distributed
XQUERY in general, this research stems from the particular
context of the XRPC project [38], [39]. XRPC adds the concept

of Remote Procedure Call to XQUERY by introducing a new
statement: execute at {ExprSingle}{Fun(Params)}, where
ExprSingle specifies the URI (a constant or a computed one)
of the peer, on which Fun will be executed. As XQUERY is a
compositional functional language, each query can be
chopped up in arbitrary pieces. One can then view the
pieces as functions connected together by function para-
meters and results. With XRPC, we have in principle
ultimate flexibility in the way queries can be decomposed,
as it allows each function to be executed on an arbitrary
peer. An important feature on the network protocol level is
bulk RPC that allows to handle multiple calls to the same
function (with different parameters) in a single network
interaction. Bulk RPC is exploited when a query contains a
function call nested in an XQUERY for-loop, which in a naive
implementation would lead to as many synchronous RPC

network interactions as loop iterations. XRPC is implemen-
ted in MonetDB/XQuery [4], an open source XQUERY

engine, which we use for experimental evaluation.
XRPC also supports a new URI scheme xrpc:// in the $uri

parameter of the built-in functions fn:put() and fn:doc().
Given a URL xrpc://P=D, fn:put() stores the XML tree
rooted at its $node parameter on the remote peer P as
document D, which possibly overwrites the existing D.
With fn:doc(), D could then be retrieved (over HTTP) from
(the XRPC server on) peer P. As we will see in Section 7, this
extension enables supporting updates on remote docu-
ments identified by xrpc:// URIs.

Fig. 1 shows a query Q that performs a single XRPC

function call to fcn(), with a single parameter (a node $n
from some document D). To make an XRPC call, the local
peer formulates a SOAP request message, which contains a
deep copy P of the node $n. The Simple Object Access
Protocol (SOAP) is an XML-based message format com-
monly used by web services [22]. XRPC follows the
previously mentioned approach of copying the XML subtree
of a node parameter, which implies a pass-by-value para-
meter passing strategy. The message is sent as a synchro-
nous HTTP POST request. The remote peer runs an HTTP

server, which parses the request message and constructs a
separate XML fragment for each node parameter (in this
example a single fragment P 0). The remote peer then
evaluates the function and serializes the result into a
response message (here, a deep copy of the result node,
denoted R). Finally, the local peer parses the response
message and constructs a separate XML fragment for each
node-typed result (here R0), which is the result of Q.

Problem statement. Our goal is to rewrite an XQUERY Q
that uses XML documents with xrpc:// URIs stored at remote
peers, into an equivalent query Q0 that uses XRPC calls to
execute parts of the query (expressed as XQUERY functions)
on those remote peers. For a queryQ,QðDÞ denotes the result

1060 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

Fig. 1. XQUERY Remote Procedure Call under pass-by-value.

of evaluating Q over a (possibly distributed) database D.
Two queries Q and Q0 are equivalent, if QðDÞ ¼ Q0ðDÞ for any
given database D (under the XQUERY deep-equal semantics).

We illustrate XQUERY decomposition as follows:

the URL xrpc://example.org/depts.xml implies that the
remote peer example.org supports XRPC, so the predicates
could be pushed as:

In this example, the parameter and return value of the
function fcn() are of atomic types. In more complex cases,
nodes may be involved, such that potential semantic
differences due to pass-by-value should be considered
(discussed in Section 2), which is our main challenge.

Contributions and road map. Section 2 identifies the
semantic differences of remote XQUERY pass-by-value
function evaluation with respect to standard, local function
evaluation. Section 3 describes an XQUERY CORE-based
query decomposition framework. This leads in Section 4 to
a conservative XQUERY decomposition strategy that avoids
semantic problems simply by refraining from decomposi-
tion in all problem cases. To make our rewrites more
effective and robust against syntactic variation, we describe
normalization and code motion rewrite strategies. As a
second contribution, Section 5 extends the pass-by-value
semantics with a new pass-by-fragment message format that
conserves more structural relationships between nodes
passed in a message and allows more predicates to be
distributed. Section 6 introduces a new runtime XML
projection technique, which we use to generate messages
that conserve all needed structural relationships between
transferred XML nodes, and thus allow even more freedom
in query decomposition. As a runtime technique, it is able to
prune XML data much more than previously described
compile-time projections [2], [5], [18]. In Section 7.1, we
discuss how updating queries can be handled, both in the
normal XQUF semantics, as well as under an extension, in
which we allow nonlocal documents to be updated. An
evaluation of the performance benefits of our techniques is
given in Section 8. We discuss related work in Section 9 and
conclude in Section 10 with outlook on future work.

2 SEMANTIC DIFFERENCES OF PASS-BY-VALUE

There are well-defined semantic differences [38] between
evaluating an XQUERY expression locally and executing it
remotely under pass-by-value parameter passing. We
discuss these differences with a query Q1 in Table 1. This
query evaluates three functions: makenodes(), overlap(),
and earlier().

Problem 1 (Nondownward XPath Steps). Reverse and
horizontal XPATH axis navigation (e.g., parent, ancestor,
preceding(-sibling), and following(-sibling)) from remote
function parameters always produces empty results, as pass-
by-value node serialization only includes the descendants of a
node inside the message. Consider the following:

here, $abc evaluates to the empty sequence, instead of the
correct a-node haihbihc=ih=bih=ai.

It is possible to evaluate downward XPATH steps on a
sequence of remote nodes, but only if we are sure that these
nodes are ordered and nonoverlapping (otherwise, the results
of such XPATH steps will fail to respect node identity and
order, as described below).

Problem 2 (Node Identity Comparisons). If a remote
function returns a sequence with two identical nodes, or two
identical nodes are passed as function parameters, pass-by-
value represents them as two different copies. This leads to the
duplicate elimination problem described just above, and any
node identity comparison will always yield false. For instance:

yields false, while the local query evaluation gives true.

Problem 3 (Document Order). The parameters of a function call
on a remote peer are serialized into the message in parameter
order, in separate XML fragments. Even if the parameter nodes
are disjoint (making Problem 2 irrelevant), the relative order
between these XML fragments may differ from their original
order. Thus, interparameter node comparisons (“�”, “�”)
may behave differently from the local semantics. Consider the
usage of earlier() in Q1 as:

In both iterations, the variable $first binds to a copy of $bc,
instead of $abc, although $abc is the parent of $bc.

Another problem with document order, not revealed by this
example, could occur when comparisons of nodes from different
XML documents are executed on remote peers. The XQuery/
XPath Data Model (XDM) [12] defines that the relative order of
nodes in different documents is implementation-dependent,
but must be stable during the processing of the same query.
Consider the query

which, depending on how documents are ordered by the remote
peers, could return true or false,1 while XDM requires it to

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1061

TABLE 1
Example Query Q1

1. Even if the two calls to earlier2() were executed on the same remote
peer, without any guarantees for consistency, the results could be different,
since each call is a separate query on the remote peer.

always return true. Note, however, that a query containing a
single call to earlier2() may return either true or false,
confirming XDM, then in such queries, earlier2() could be
executed at a remote peer.

Problem 4 (Interaction Between Different Calls). Addi-
tional semantic differences can occur when XQUERY subex-
pressions (sequences) may contain nodes that were obtained as
results from different remote function calls, and these function
calls, directly or indirectly, accessed the same XML document on
some peer. Node sequences can become intermixed by any

XQUERY construct that accepts multiple inputs, namely:
sequence construction, and the built-in functions union,
except, and intersect. A special source of call-mixing is the
return clause of a for-loop in which remote function evaluation
is performed, because the return clause implicitly creates a
sequence that concatenates the expression result of all loop
iterations (each of which performed a semantically separate

remote function call). The result of such “mixed-call expres-
sions” is that nodes returned by different calls may in fact stem
from the same document. However, node identity and ordering
between nodes from different calls is not preserved, leading to
semantic differences. For example, even if a downward XPATH

step is applied on an input sequence containing nodes obtained

from different remote calls, the result can have the wrong order
(placing the results from the first call always before those of the
second call) and will fail to properly eliminate duplicates:

The above two XRPC calls produce nodes belonging to separate
XML fragments. Under pass-by-value, evaluating //c produces

two separate copies of c nodes, while in local execution the nodes
returned from earlier() are from the same XML fragment, such
that XPATH steps return a duplicate-free result.

Problem 5 (XQuery Built-In Functions). Various problems
may occur when evaluating certain built-in functions remotely.

1. static-base-uri(), default-collation(), and current-
datetime(): depend on the static XQUERY context.

2. base-uri() and document-uri(): depend on the dy-
namic context of node expressions.

3. root(): accesses the document root.
4. id() and idref(): return all nodes in a document with

certain ID/IDREF values.
5. lang(): accesses the xml:lang attribute of the context

node and its ancestors.

Class 1 of above built-in functions is handled by extending
the XRPC message format with extra attributes such that the
remote side can declare identical values for these context
attributes.2 Class 2 is dealt with by adding these properties as
attributes in the XRPC nodes (such as xrpc:element) that
enclose serialised parameter/result nodes in the SOAP mes-
sages. Use of the fn:base-uri() and fn:document-uri() in
XRPC is substituted by xrpc:base-uri() and xrpc:document-
uri() wrappers that take these attributes into account when
invoked on XRPC parameter nodes. As solutions for Class 1-2
are available, the main problem with built-in functions is posed

by Classes 3-5, which access nondescendants of parameter
nodes, and thus cannot be supported with pass-by-value.

In the remainder, we present decomposition techniques and
extensions to enhance the pass-by-value semantics, that solve
the aforementioned problems.

3 XQUERY CORE REWRITE FRAMEWORK

XQUERY CORE [10] (abbreviated XCORE) is a subset of
XQUERY, in which all implicit operations are made explicit.
We adopt a subset of XCORE expressions in Table 2, which is
sufficient to capture XPATH 1.0 and XQUERY FLWOR

expressions [10]. Additionally, we support all updating
expressions (rule UpdExpr) and the transform expression
(TransformExpr) as defined by XQUF. For reasons of space,
we thus omit repeating grammar rules for those expressions.
We use a representation of XPATH paths in our XCORE

grammar that keeps consecutive steps together, rather than
nesting each step in a separate for-loop (when allowed—the
use of position() precludes this). Such an optimization is
common in XQUERY engines, and is part of XQUERY

normalization, further described in Section 4. Additionally,
we define two new rules for the XRPC extension [38]:

Rule 28 identifies an xrpc:// URI in expression ExprSingle,
and declares a new anonymous function that is to be executed
remotely. It is noticeable that these grammar rules lack the
expressive power to define recursive functions. This does
not matter for XQUERY decomposition, as our decomposi-
tion strategies will not generate recursive functions. The
syntax defined by rules 28 and 29 differs from the actual
XRPC syntax (execute at {ExprSingle}{Fun(Params)}). The
syntax used here is only for presentation purpose, to avoid
the need to define all rules concerning declaration of user-
defined functions. Thus, our simple XCORE rule without
explicit user-defined function declarations allows to express
all queries in a single ExprSingle, which in turn can be
mapped to a query graph. This simplifies the formulation of
analysis steps.

1062 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

2. If static-base-uri() is not set, we ship the value xrpc://P/doc/, so that
fn:doc() calls with a relative document URI call back to the originating peer P.

TABLE 2
Xcore Grammar Rules

XCore dependency graph. We introduce a dependency
graph (d-graph) for an XCORE query. Consider the XQUERY

query Q2 in Table 3, which asks for the grade in course42 of
students having a tutor who is also a student, and its XCORE

equivalence Qc
2.

A dependency graph is a directed, ordered and connected
graph G with vertices VðGÞ and edges EðGÞ. Each vertex v is
denoted as vi:rule[val], where vi is a unique vertex identifier,
rule is the grammar rule represented by vi, and val is an
optional value indicating the right-hand-side of rule. There is
a single root vertex without incoming edges.EðGÞ consists of
parse edges EpðGÞ and varref edges EvðGÞ. Each parse edge is
an ordered vertex pair ðu; vÞ, where u corresponds to a
parsing rule ru that directly causes the use of another parsing
rule rv. A varref edge is an ordered vertex pair ðw; xÞdenoting a
variable usage. When a VarRef rule is used, an additional
edge is created between the VarRef vertex and the Var vertex
that defines the variable.

Example 3.1. Fig. 2 shows the d-graph of Qn
2 in Table 3. Solid

and dashed lines represent parse and varref edges,
respectively. The variable binding in the first let
expression corresponds to vertices v2; . . . ; v21, and ver-
tices v22; . . . ; v39 depict its return clause. The edge ðv6; v7Þ
is a parse edge. The edge ðv30; v25Þ is a varref edge, as the
variable used by v30 is a reference of variable $c
introduced by v25. Thus, a d-graph is in essence a
parse-tree with additional (dashed) edges to indicate
variable usages.

We define three types of dependency relationships upon

the reachability between two vertices x; y in VðGÞ: 1) x

“parse-depends on” y, denoted as x
e

>
p
y, if y is reachable from

x via only parse edges; 2) x “varref-depends on” y, denoted as

x
e

>
v
y, if y is reachable from x via at least one varref edge;

and 3) x “depends on” y, denoted as x
e

> y, if either x
e

>
p
y or

x
e

>
v
y holds. The compositional nature of XQUERY means

that x
e

> y concisely captures all semantic dependencies

between subexpressions. Consider Fig. 2, v15
e

>
p
v16, since

ðv15; v16Þ is a parse edge; v15
e

>
v
v11, as v11 is reachable from

v15 via ðv15; v16Þ; ðv16; v11Þ, and ðv16; v11Þ is a varref edge.
For a d-graph G and a vertex rs2VðGÞ, we use the term

subgraph to mean the vertex-induced subgraph of rs,

denoted Grs , including rs and all u 2 V ðGÞ where rs
e

>
p
u;

rs is called the root of the subgraph. For instance, the
subgraph rooted at vertex v22 contains vertices v22; . . . v39,
but does not contain vertices v3; . . . ; v21. Throughout this
paper, we use the terms (sub)graph and (sub)query
interchangeably, as a (sub)query is represented by the
induced subgraph rooted at some vertex.

XRPCExpr insertion. We can decide to evaluate a certain
subgraphGrs rooted at rs remotely over XRPC, by inserting a
vx:XRPCExpr node above it. This may only be done if we can
ensure that the result of the rewritten query is identical to the
original query. Such an insertion means that a new function
will be defined that contains Grs as its body. In the main
query graph, Grs is replaced by a remote XRPC call to this
function, which receives as parameters all variable refer-
ences in Grs that resolve to variable bindings outside Grs :

1. Insert a vertex vx:XRPCExpr, a parse edge (vx; rs),
and replace each incoming edge ðvin; rsÞ with a new
edge ðvin; vxÞ.3

2. For each outgoing varref edge from vertex vi2VðGrsÞ
to vj2VðGÞnVðGrsÞ, where edge ðvi; vjÞ2EvðGÞ is a
varref edge as (vi:VarRef[$qname], vj:Var[$qname]),
we insert a new vertex vk, a new parse edge ðvx; vkÞand
replace the varref edge ðvi; vjÞ by ðvi; vkÞ and ðvk; vjÞ.
Here, vk has the form vk:XRPCParam[$p :¼ $qname],
which introduces a new variable $p and binds it to
$qname in vj.

3. If there are no outgoing edges as stated in step 2, we
insert a vertex vl with the form vl:XRPCParam[()]
(i.e., empty parameter), and a parse edge ðvx; vlÞ.

Example 3.2. Consider the d-graph in Fig. 2. Suppose that
the subgraph rooted at v22 is identified for an
XRPCExpr insertion (Fig. 3). First, insert vertex v40

and replace edge ðv2; v22Þ by ðv2; v40Þ and ðv40; v22Þ. For
the outgoing varref edge ðv36; v3Þ, vertex v41 is inserted
below v40 and the varref edge is replaced by two new
varref edges: ðv36; v41Þ, ðv41; v3Þ.

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1063

TABLE 3
Example Query Q2

Fig. 2. d-graph of the normalized XCORE variant Qn
2 in Table 3.

3. Determined by the algorithms (Section 4.6) that compute the insertion
points (i.e., determine if a vertex may be an rs), rs is the only vertex in the
subgraph Grs that has incoming edges from vertex outside Grs .

4 CONSERVATIVE DECOMPOSITION

In this and the next two sections, we first describe
algorithms to decompose read-only XCORE queries. We
delay the discussion of decomposing queries containing any
UpdExpr and TransformExpr expressions until Section 7.

By-value insertion conditions. Given a d-graph G and a
subgraph Grs of G rooted at rs, under the pass-by-value
semantics, vertex rs is in the set IðGÞ of valid decomposition
points (d-points), iff rs satisfies all of the following conditions:

1.

6 9n 2 V ðGÞ : n:rule 2 fRevAxis;HorAxisg
^ ðuseResultðn; rsÞ _ useParamðrs; nÞÞ;

2.

6 9n 2 V ðGÞ : n:rule 2 fNodeCmp;NodeSetExprg
^ ððrs:rule 2 fNodeCmp;NodeSetExprg ^ n
62 V ðGrsÞÞ _ useResultðn; rsÞ _ useParamðrs; nÞÞ;

3.

6 9n 2 V ðGÞ; 9m 2 V ðGÞ : n:rule ¼ AxisStep

^m:rule 2 fForExpr;OrderExpr;ExprSeq;

NodeSetExpr;AxisStepnfself; child; attributegg
^ ððuseResultðn;mÞ ^m

e

> rsÞ _ ðuseResultðn; rsÞ

^m 2 V ðGrsÞÞ _ ðm 62 V ðGrsÞ ^ rs
e

>
p
n
e

>
v
mÞÞ;

4.

6 9n 2 V ðGÞ : n:rule ¼ FunCall ^ n:val 2
ffn : rootðÞ; fn : idðÞ; fn : idrefðÞ; fn : langðÞg
^ ðuseResultðn; rsÞ _ useParamðrs; nÞÞ:

where we impose these restrictions symmetrically both on
expressions that use the result of the remote expression rs,
and on the way remote expressions (below rs) use their
shipped parameters:

useResultðn; rsÞ , n
e

> rs

useParamðrs; nÞ , n 2 V ðGrsÞ; 9v 2 V ðGÞ V ðGrsÞ : n
e

> v

Conditions 1 and 2 guard against using any node compar-
isons, and horizontal and reverse XPATH steps on shipped
nodes, avoiding Problems 1-3 (Section 2). Condition 2 also
disallows decomposing any node comparisons, when a
query contains multiple such expressions, to avoid the
problem with document order of nodes from different
documents. Condition 3 avoids using downwards XPATH

steps (per Condition 1) on shipped nodes from expressions
that might be so-called “mixed-call sequences” (ForExpr,
ExprSeq, NodeSetExpr), avoiding Problem 4. It also guards
against sequences not in node order (ForExpr, OrderExpr) or
with nodes that may be overlapping (the restrictions on
NodeSetExpr and XPATH steps). This ensures that down-
wards XPATH steps can be used on shipped node sequences
that are ordered and nonoverlapping. Condition 4 states that
shipped nodes may not be used as parameters of the listed
built-in functions (Problem 5).

Example 4.1. In the d-graph of example query Qn
2 (Fig. 2),

we mark in gray colors the d-points identified by the
conservative decomposition strategy. The XPATH step /
grade that is performed on the result of a for-loop,
matches condition iii and causes all vertices that depend
on v10 and v22 (the ForExprs) as well as all their
descendants to be excluded from IðGÞ, leaving v1 and
the subgraphs rooted at v5 as d-points.

Interesting decomposition points. While a d-point may
be semantically valid, remote evaluation of the subquery
below it might be senseless. Consider the d-point v8, which
contains only an fn:doc() function call in its subgraph.
Executing this function remotely provides no performance
gain, as it only demands the shipping of a whole document.
Similarly, remote execution of expressions that do not
involve any XML documents should be avoided. Therefore,
we filter d-points by first annotating each vertex vx2VðGÞ
with the URI dependency set DðvxÞ. Here, DðvxÞ represents
the set of URIs that are used as parameters of fn:doc() in
vertices that the vertex vx can reach via parse edges:

DðvxÞ ¼ furi ::vyjfvy; vzg 2 EðGÞ : uri ¼ vz:val ^ vx
e

>
p
vy

^ vy:rule ¼ FunApp ^ vy:val ¼ ‘‘doc’’ ^ vz:rule
¼ Literalg:

We tag each uri with the vertex vy where the document is
opened, to be able to distinguish the use of the same
document through multiple fn:doc() calls. This definition
does not cover the case that the parameter of fn:doc() is an
expression instead of a literal. In those cases, we use a
wildcard symbol “�” asuri. In this paper, the built-in function
fn:collection() is treated as an fn:doc(�), and an element
construction is assigned an artificial unique URI fn:doc(vi::vi).

One can use the URI dependency set to partition the VðGÞ
into equivalence classes, i.e., those vertices with the same URI

dependency set belong to the same class. Using all vertices
in an equivalence class, we can consider its induced
subgraph in G, and try to handle it in a single XRPC

subquery. Thus, we define interesting decomposition points (i-
points) I 0ðGÞ as those valid insertion points that 1) are a root
vertex in their induced subgraph (if the root node happens
to be a Var vertex, we consider its value expression instead
as root), 2) contain at least one fn:doc() and 3) execute at
least one XPATH step on the fn:doc() function:

I 0ðGÞ ¼ fvxjvx 2 IðGÞ :6 9vy : vy
e

>
p
vx ^DðvxÞ ¼ DðvyÞ

^ 9vz : vx
e

>
p
vz ^ vz:rule ¼ AxisStep

^ 9xrpc : ==uri 2 DðvxÞg:

This definition is also used by the next two algorithms to
filter d-points.

1064 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

Fig. 3. XRPCExpr insertion.

Example 4.2. In Fig. 2, the two subtrees rooted at v5 and v25

correspond to two different equivalent classes

Dðv5Þ¼fxrpc : ==A=students:xml ::v9g

and Dðv25Þ ¼ fxrpc : ==B=course42:xml ::v27g. However,
v25 is not a valid insertion point. The vertices in I 0ðGÞ
(colored dark gray) are v6 (the highest non Var vertex in
the subtree rooted at v5) and the root v1. Thus,
I 0ðGÞ ¼ fv1; v6g.
Normalization. Rewriting algorithms that operate on the

XCORE level are vulnerable to syntactic variation. In the
case of our decomposition strategy, an important vulner-
ability comes from the behavior of the strategy to ship
subgraphs consisting of parse-edges only. That is, varref-
edges are not pushed, but rather become parameters to the
function. The syntactic freedom one has in XQUERY of
defining subexpressions, e.g., inline or via a variable
reference to a previous let-binding, therefore affects our
strategy. For this purpose, as part of XCORE normalization,
we reorder let-bindings, moving them as deep into the
query as possible. More specifically, let-bindings are moved
to just above the lowest common ancestor vertex (defined in
terms of parse-edges) of all vertices that reference its
variable. The query Qc

2 (Table 3) can be normalized to Qn
2

(Table 3), which can thus be rewritten as Qv
2 in Table 4.

The main achievement of normalization in the above case
is to relate the call to doc(“../course42.xml”) through parse-
edges (directly calling $c in Qn

2), instead of varref edges
(referencing $c in Qc

2), with its use in the /child::enroll/
child::exam XPATH steps. However, these being part of a
ForExpr with the /grade step on top, causes insertion
Condition 2 to prohibit pushing it. In the next section on
pass-by-fragment, however, we will see that normalization
was not in vain, and the query can be decomposed into Qf

2

(Table 4).

Distributed code motion. The let-normalization phase
has the effect of pushing expressions that depend on the
same documents downwards, potentially below an interest-
ing insertion point (which makes them be executed remo-
tely). However, it can happen that some of the expressions
initially found below an interesting insertion point can in fact
better be moved above it (to be executed locally). In
particular, it is safe to assume that expressions that solely
depend on a parameter of a function, can better be evaluated
on the caller side. Moving a subexpression out of a function
can be done by passing that subexpression as an additional
parameter to the function. With pass-by-value passing, such
a rewrite may not always be safe, however if only d-points
are moved, the technique is semantically safe. Analogous to
well-known compiler technique of moving invariant state-
ments out of the loop (and its use in parallel processing [17])
we call this technique distributed code motion.

Example 4.3. Consider the function fcn2() in Table 4, we may
observe that the expression $para1/child::id only depends
on the function parameter $para1. Shipping full person
nodes $para1 from peer A to B, only to extract the string
value of its id child at B, may waste bandwidth, especially
if person carries much more data than just an id. Instead, it
would be better to extract the string value of id at peer A
and only ship the strings. This optimization can be realized
by adding a new parameter $para2 to the function, and
substituting $para1/child::id in the body with it. In the
function fcn0() that calls fcn2new(), we save the original
function parameter $t in a new let -binding $l, and pass $l
instead of $t. The additional function parameter is passed
as $l/child::id. Finally, the affected function parameter
$para1 is no longer used, so we remove it, arriving at the
result as the code motion part in Table 4.

5 BY-FRAGMENT DECOMPOSITION

The node copying done by pass-by-value is the main source
of semantic differences. This, in turn, leads to serious
restrictions in the way the decomposition strategy can push
expressions remotely. For this reason, we extend the pass-
by-value message passing semantics into a new pass-by-
fragment message passing semantics that better preserves
structural relationships of XML nodes. The basic idea is to
avoid serializing the same nodes twice, by grouping all
node-valued data in the message in a preamble element
fragments. In principle, each node parameter is serialized
below a separate fragment child element. However, if a sent
node is a descendant of another one, it is not serialized
twice, as we can reuse the XML fragment of the other node.
We also ensure that the XML fragments are sorted in
original document order, which means that ancestor/
descendant relationships in the same message, as well as
node identity and document order, are preserved.

Later in the message, where XQUERY sequences are
serialized (inside sequence tags), we just provide references
to the nodes that were previously serialized in the
fragments. In particular, element tags, which are used to
contain as a child the fully serialized copy of a node, now
just carry two numeric attributes, fragid and nodeid. In
order to keep XRPC an interoperable protocol that is easy to
implement for XQUERY engines and the XRPC WRAPPER

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1065

TABLE 4
Query Decomposition and Code Motion

[38], node referencing is also expressible in XQUERY.
Supposing $msg is the root of the message, with $fragid

and $nodeid numbers, we can identify the referenced nodes
as follows:4

Example 5.1. Going back to Q1 in Table 1, the lower part of
Table 5 shows the XRPC request message sent for the call
execute at {“example.org”} {earlier ($bc, $abc)} from the
discussion of Problem 3. Recall that the node $bc with
value hbihc=ih=bi is contained in the $abc fragment
haihbihc=ih=bih=ai. The lower part of the figure shows an
excerpt of the message as produced for pass-by-fragment.
Here, both node parameters $bc and $abc are represented
in element nodes with fragid and nodeid attributes. The
XQUERY engine handling the call will use these attributes
to evaluate:

such that earlier($bc,$abc) correctly returns $abc, because
$abc � $bc,, just like on the peer that invoked this
function. The upper part, with the changed part of the old
pass-by-value message (element call), shows that node
parameters were previously repeatedly serialized, caus-
ing node order and identity relationships between
parameters to be lost.

We made a conscious choice not to rely on ID/IDREF for
referencing nodes, since this would require adding ID

attributes to the XML data in the fragments. As XRPC is
designed to respect and conserve XML SCHEMA type
information, this would cause the XRPC message to no longer
respect user-defined schemas.

By-fragment insertion conditions. Given a d-graphG and
a subgraphGrs ofG rooted at rs, under the pass-by-fragment
semantics, vertex rs is in the set IðGÞ of valid decomposition
points, iff rs satisfies all of the following conditions:

1.

6 9n 2 VðGÞ : n:rule 2 fRevAxis;HorAxisg
^ ðuseResultðn; rsÞ _ useParamðrs; nÞÞ;

2.

6 9n 2 VðGÞ : n:rule 2 fNodeCmp;NodeSetExprg
^ ððrs:rule 2 fNodeCmp;NodeSetExprg
^ n 62 VðGrsÞ ^ hasMatchingDocðn; rsÞÞ
_ ððuseResultðn; rsÞ _ useParamðrs; nÞÞ
^ hasMatchingDocðn; nÞÞÞ;

3.

6 9n 2 VðGÞ; 9m 2 VðGÞ : n:rule ¼ AxisStep ^m:rule
2 fForExpr;ExprSeq;NodeSetExprg
^ ððuseResultðn;mÞ ^m

e

> rsÞ _ ðuseResultðn; rsÞ

^m2V ðGrsÞÞ _ ðm 2 VðGÞnVðGrsÞ ^ rs
e

>
p
n
e

>
v
mÞÞ

^ hasMatchingDocðm;mÞ;

4.

6 9n 2 VðGÞ : n:rule ¼ FunCall ^ n:val 2 ffn : rootðÞ;
fn : idðÞ; fn : idrefðÞ; fn : langðÞg ^ ðuseResultðn; rsÞ
_ useParamðrs; nÞÞ:

Thus, with the pass-by-fragment semantics, we modify
the pass-by-value decomposition conditions listed in Sec-
tion 4 by restricting the prohibitions to decompose a node rs
formulated in Conditions 2 and 3 to only those rs, for which
the predicate hasMatchingDoc() holds:

hasMatchingDocðv1; v2Þ , 8uril::vi2Dðv1Þ;
9urir::vj2Dðv2Þ :vi 6¼ vj ^ ðuril¼urir _ uril¼� _ urir¼�Þ:

By stating that the given expressions depend on two different
applications of fn:doc() with the same URI (taking into account
computed URIs as wildcards), this predicate precisely isolates
the problem of creating result sequences with remote nodes
from multiple calls to the same document.

The ForExpr is a special form of combining the results of
multiple calls. A remote call nested in a for-loop, which
depends on the same remote document, is treated as a
single call, since bulk RPC ensures that all iterations of the
remote call nested in the for-loop, are handled in a single
message exchange (where pass-by-fragment now ensures
proper conservation of node relationships). Finally, we
remove from Condition 3 the restrictions that arbitrary
ordering (OrderExpr) cannot be used and that all pushed
AxisSteps should be of the nonoverlapping kind (parent,
preceding-sibling, following-sibling, self, child, and attribute),
as the pass-by-fragment message passing is able to properly
conserve sequence order and the ancestor/descendant
relationships between transported nodes. As the remaining
problems with mixed-call sequences are related to dealing
with multiple network message exchanges in the same
query, this problem can not be solved inside the message
passing semantics alone and is beyond our current scope.
The restrictions to avoid horizontal and reverse XPATH

steps on remote nodes (Condition 1) and on using built-in
functions (Condition 4) will be addressed in the next section:

1066 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

TABLE 5
By-Value versus By-Fragment Messages

4. Note that descendant::node() does not return attribute nodes. We use
the nodeid of its parent and include the name of the attribute in an attribute
element, so it can be found back with an additional attribute step.

Example 5.2. Consider Fig. 2, as the constraint hasMatch-
ingDoc() in Condition 3 does not hold, all vertices in
the graph are identified as valid decomposition points
under the pass-by-fragment semantics. However, most
vertices will be filtered out by the definition of
interesting decomposition points, which leads to
I 0ðGÞ ¼ fv1; v2; v4; v6; v22; v24g.

6 BY-PROJECTION DECOMPOSITION

The basic idea of using XML projection [21] is, for a given
XQUERY query Q and an XML document D, to extract a
minimal part of data D0 needed to execute Q such that
QðDÞ ¼ QðD0Þ. The projection technique conducts a compile-
time path analysis on Q, to derive a set of simple path
expressions that over-estimate the nodes that Q touches.
These simple paths are referred to as projection paths. Here, a
projection path is an XML path that starts from the document
root, containing forward navigation but not predicates (e.g.,
docð$uriÞ=a=b=@id). Projection paths consist of returned
paths and used paths. Returned paths describe the nodes that
are returned by the expression. Used paths indicate the nodes
necessary to answer the query but are never returned as
results (e.g., predicates). Based on the projected paths P of
queryQ from path analysis, a loading algorithm is applied to
P and an XML document (from a file or a stream) D. A
projected XML document (or stream) D0 is then generated,
which contains all used and returned nodes plus the
descendants of the returned nodes, and is queried with Q.

There are three reasons why projecting XML is extremely
interesting for distributed XML processing: 1) until now,
when sending nodes, we had to serialize all descendants—
which potentially contain huge subtrees that may remain
untouched on the other side. This amounts to wasted
network bandwidth as well as serialization and shredding
effort. 2) if documents are projected into lean skeletons that
only contain the relevant portions, it becomes feasible to
serialize XML fragments from some lowest common ancestor
on, possibly even the document root. Even with pass-by-
fragment, the execution of reverse/horizontal XPATH axes
on remote nodes is impossible. By extending projecting XML

with support for reverse and horizontal axes, however, we

get a tool to precisely identify the lowest common ancestor of
an XML document that needs to be included to allow correct
remote execution of those axes. 3) The projection technique
can even be applied to support the built-in functions
fn:root(), fn:id(), fn:idref() and fn:lang(), i.e., by taking the
lowest common ancestor of those, if a path contains one of
these functions. For these reasons, we further refine the pass-
by-fragment message passing semantics into a so-called
pass-by-projection semantics. XML projection can be used in
both directions: to project the parameters in a request
message, and to project the function’s result sequence before
shipping back the response.

Insertion conditions. Pass-by-projection removes the by-
fragment insertion conditions (in Section 5) 1 and 4, such
that only 2 and 3, i.e., the application of node comparison,
node set operators and axis steps on top of multiple calls to
fn:doc() with the same URI, remains illegal.

Message extension: projection paths. We introduce an
optional element as a subelement of a request tag: projection-
paths, which in turn has zero or more child elements
returned-path and used-path. In the new pass-by-projection
semantics, the absence or presence of this element deter-
mines whether the response message should be in the
original pass-by-value or the new pass-by-projection format.

Example 6.1. To illustrate projected XRPC messages, the
upper part of Table 6 shows part of the request message
for the call from Q1 (discussed in Problem 4):

since the projection path analysis detects that $bc will
subsequently be used as context node by a parent step:
$abc := $bc/parent::a, the request message specifies
parent::a as a returned path. Therefore, the response
message contains the full fragment haihbihc=ih=bih=ai to
which $abc then gets correctly bound.

6.1 Extending Projected XML

We extend the path grammar rules [21] and path annota-
tions, to handle full-fledged XQUERY involving reverse/
horizontal XPATH steps and built-in functions. The ex-
tended grammar rule for ProjectionPath is given in Table 7.

We denote path annotations in projected XML as:

EnvðviÞ ‘ Expr) Paths using UPaths:

The notation EnvðviÞ is used to identify the path annotation
environment at a certain vertex vi in the XQUERY d-graph.

Path annotations are constructed bottom up by path
analysis rules that derive the set of used (UPaths) and returned
(Paths) paths for each XCORE expression in terms of used and

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1067

TABLE 6
Pass-By-Projection Messages

TABLE 7
Grammar Rule Extension of Projectionpath (Bold)

returned paths of its subexpressions. Therefore, we extend
the notation of the vertices and use vi:UPaths and vi:Paths to
refer to the path sets, with which the vertex vi is annotated.

Example 6.2. Assume that the subgraph Gv22
rooted at v22 in

Fig. 2 is identified to be evaluated remotely. The subgraph
Gv22

has one parameter, $t, via the VarRef edge ðv36; v3Þ. We
show the path annotations of v3 and v22 in Fig. 4.
Comparing the returned path of v3 with all projection
paths of v22 and, v1, we know that v3 is only used in the
subgraph rooted at v22 (i.e., it is not returned by v22), and
that only the id child elements of the person elements are
used. Thus, only those elements will be projected and
serialized in the request message for v22. For reasons of
space, document URIs are abbreviated, and the annota-
tions of v1 and v2 are omitted, which in reality also have
such annotations.

The basic path analysis rules have been discussed in [21],
such as literal values, sequences, for and let expressions, and
XPATH steps, etc. Our extension to include reverse and
horizontal XPATH steps brings no changes for the path
analysis rules, but must be supported by the loading
algorithm, which is described in Section 6.2. We comple-
ment the rules for built-in functions, which apart from the
unsolved cases mentioned under Problem 5 in Section 2
(fn:root(), fn:id(), fn:idref(), and fn:lang()) also includes
fn:doc(). The description of the basic projection technique
assumes a single document. As in distributed query
processing there are always multiple documents, our paths
always start with fn:doc(URI).

Path analysis rules. We provide one rule for fn:doc()
with a constant parameter and another for computed URIs:

As mentioned in Section 4, in the definition of DðvxÞ,5 we
use a wildcard URI� if the document name is an expression.
All paths start with doc(uri::vi), thus, they identify both
document URI and the vertex vi where it is loaded. This
notation facilitates the identification of situations where the
same URI is loaded twice (the function hasMatchingDoc()).

A similar rule can be formulated for XML element
construction, producing a return path doc(vi::vi) with an
artificial unique URI. Also note that XQUERY implicitly
converts the actually values of function parameters, thus, in
all rules in this section, we add a descendant::text() step to
each returned path of a parameter. The rule for fn:root() is:

The built-in function fn:root() with a single parameter is
treated in the path annotations much like XPATH axis steps,
where the parameter has become the path prefix. In this
path notation, functions remain easily recognisable by the
parentheses. The rules for the built-in functions fn:id()/
fn:idref(), are highly similar (only fn:id() provided):

The first parameter of fn:id() is ignored by the annotations,
as it contains string values, and the annotation framework
only allows for the estimation of node sets. This has the
consequence that our loading algorithm will conserve all
elements with an ID/IDREF attribute. Finally, the rule for
fn:lang() is:

The built-in function fn:lang() tests whether the language of
its node parameter Exprk, as specified by xml:lang
attributes, is the same as (or is a sublanguage of) the
language specified by its string parameter Exprj. The
language of Exprk is determined by the value of the XPATH

expression: (ancestor-or-self::�/attribute::xml:lang)[last()].
All paths are propagated as used paths, as this function
returns a boolean value.

6.2 Runtime XML Projection

The extensions we made to XML projection, namely support
for reverse/horizontal XPATH axes and fn:root(), fn:id(),
fn:idref(), and fn:lang(), could not be trivially integrated in
the loading algorithm of [21]. However, in this case we are
not really looking for a loading algorithm that efficiently
reads (shreds) an XML file into a projected representation.
Rather, the documents are already present (and indexed) in
the XQUERY engine, and runtime message projection is a
serialization task. Therefore, we propose a new runtime
approach for projection, targeted at serialization, rather
than at shredding. Whereas the original loading algorithm
starts at the document root, and evaluates absolute used and
returned paths, our runtime projection algorithm starts in a
runtime state, that is, with a real, materialized context sequence
(e.g., the parameter values that are about to be serialized in
a SOAP message), and executes only relative paths on them.
Because the node sequence bound at runtime to a function
parameter is only a subset of the node set characterized by

1068 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

Fig. 4. Path annotation example.

5. We use the doc(..) prefixes of the returned paths annotations on v as a
more precise form of the DðvÞ property. Documents that were only used but
not returned will also be part of the original DðvÞ, but these will not cause
semantic problems.

its compile-time path annotation (e.g., its contents may well
have been reduced by applying a selection predicate), this
runtime projection technique can be much more precise
than the original projection algorithm. As a final considera-
tion, the projected XRPC messages trade projection effort for
network bandwidth, which especially in WAN scenarios
plays in the advantage of projection.

For these reasons, our runtime approach for projection
simply relies on the normal XPATH evaluation capabilities
of the XQUERY engine for fully evaluating all used and
returned path annotations one-by-one (and uniting them
with union()). Doing so, it produces a used node set U and a
returned node set R. These two sets are the input for the
runtime projection algorithm listed in Algorithm 1.

Algorithm 1. RUNTIME XML PROJECTION (U;R;D)

input: U- used nodes

R- returned nodes

D- the original XML document

output: D0- the projection of U and R on D
1 projection nodes P sortðU [RÞ;

.P is union of U and R sorted by document order

2 proj first node in P ;
3 cur first node of D, i.e., root node;

4 while :P:endðÞ do

5 if proj is a descendant of cur then

6 add cur to D0;
7 cur next node in D;

8 else if proj ¼ cur then

9 if proj is a returned node then

10 add cur and all descendants of cur to D0;
11 cur next following node of cur in D;

12 while proj:next is a descendant of proj do

13 proj proj:next; . prune projection nodes;

14 end

15 else

16 add cur to D0;
17 cur next node in D;

18 end

19 proj proj:next; . next projection node;

20 else

21 cur next following node of cur in D;

22 end

23 end

24 cur root node of D0;
25 while cur has only one child node ^ cur 62fU [Rg do

26 cur first child of cur;
27 end

The runtime projection algorithm. This algorithm
identifies all projection nodes in the XML tree representation
of the original document, by traversing the tree top-down
depth-first. During traversal, if the current node cur of the
XML document is an ancestor of the current projection node
proj (line 5), cur is added to output D0 and moved to the
next node in document order. If a proj is found (line 8), proj
is added to D0; if this proj is a returned node, all its
descendants are also appended. Then, cur is moved to its
next following node in the document. Otherwise, if the
current projection node proj is not a descendant of cur,
the subtree of cur can be skipped (line 21). Though this

algorithm is formulated on an abstract level that is
independent of the particular XML storage scheme used in
an XQUERY engine, it is safe to assume that skipping a
subtree is fast (either Oð1Þ or OðlogðjDjÞÞ). At the end of the
algorithm (lines 24-27), postprocessing is performed to
remove unnecessary nodes, as we are only interested in the
lowest common ancestor of all input nodes in the projected
document D0.
Example 6.3. Consider an XML document D in Fig. 5a.

Assume that the used node set U is fig, and the returned
node set R is fd; kg. Fig. 5b shows the projected
document D0 of applying Algorithm 1 on U , R and D.

The algorithm starts with P fd; i; kg; proj d and
cur a. We traverse the tree using cur from a to d. Nodes
a, b, and c are added to D0, since they are ancestors of the
current context node d. Nodes d; e, and f are also added to
D0, as d is a returned node. Then, cur is advanced to g
(d’s next following node). Because the next context node i
is not in the subtree of g, the subtree is skipped by
advancing cur to i. Recall that i is a used node, thus only i
is added to D0. The last context node is k. Our current
document node cur traverses from i to j, and then to k,
where we can add nodes k, l, and m to D0. The traversal
can be terminated, because there is no more context nodes
to process. However, the intermediate result D0 contains
all common ancestors of fd; i; kg. The postprocessing
removes node a from D0, which produces the final
projected document D0 as shown in Fig. 5b.

Relative projection paths. At compile time, the XQUERY

compiler builds a query graph (d-graph) with root vroot,
normalizes it followed by decomposition and code motion.
For each inserted XRPCExpr vxrpc, and for each XRPCParam

parameter vertex vparam, it then extracts the relative paths:

At runtime,[8vparamUrelðvparamÞ and[8vparamRrelðvparamÞ are used
to project the parameters in the outgoing XRPC request
message. UrelðvxrpcÞ and RrelðvxrpcÞ are passed in the projec-

tion-paths element such that a remote peer can appropriately
apply these paths to project the response message. When
computing the relative used and returned paths for vparam,
we need to take into account that (parts of) vparam could be
returned by vxrpc, and thus will be used by vertices
depending on vxrpc. Hence, in allSuffixesVia(), we not only

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1069

Fig. 5. Runtime XML projection example (a) original tree D (b) projected
tree D0.

find the relative paths that vxrpc will apply on vparam, but also
the relative paths that vroot will apply on vparam. In both
auxiliary functions, we use a dot “.” to denote a self step, if
two paths from different sets equal to each other. If, for
instance, a returned path of vroot equals to a returned path of
vxrpc, there will be a dot “.” in RrelðvxrpcÞ indicating that the
XML subtrees returned by vxrpc should be serialized.

Projecting a document using Algorithm 1 requires pre-
calculated used and returned node sets. These sets are
simply computed using the XPATH evaluation infrastruc-
ture of the underlying XQUERY engine, by feeding the
intermediate result $ctxparam corresponding to vparam as
context sequence into all suffix paths si 2 UrelðvparamÞ
(respectively, RrelðvparamÞ):

Paths $ctx=pathi=root()=pathj with function fn:root() are
executed as root($ctx)=pathj. Similarly, $ctx=pathi=id()=pathj
is executed as root($ctx)==attribute()::ða1j::janÞ=::=pathj,
where a1; ::; an are all ID attributes6 (resp., IDREF in case of
idref()).

The request handler on the remote side uses the same
method to evaluate the suffix paths UrelðvxrpcÞ and RrelðvxrpcÞ
using the result sequence of the function as $ctxxrpc during
serialization of the response message.

Interoperability. We have devised a way to support
pass-by-projection in the XRPC WRAPPER by substituting
the projection algorithm with a variant that serializes the
lowest common ancestor of the used and returned node
sets. Since document projection is not expressible in
XQUERY (not even with the TRANSFORM feature of XQUF),
this is as far as a pure XQUERY engine can get. We
contemplate the possibility to let the XRPC WRAPPER echo
the SOAP response message it generates to a stream, and
implement a streaming version of our projection algorithm
(that first gets a stream of used and returned nodes, and
then the to be projected fragments) inside the XRPC

WRAPPER java program. In case of XML data with a user-
defined XML SCHEMA, the default projection algorithm is
likely to throw away mandatory elements and attributes.
For this reason, the runtime projection algorithm should be
made schema-aware. A simple solution is to ensure that
only elements with a minoccurs declaration of zero (i.e.,
optional elements) are removed. One can also envision
more advanced variants that further reduce the size of a
typed XML document.

7 DECOMPOSITION OF XQUF QUERIES

Since the introduction of the W3C XQUF [7] specification,
which has been well received and adopted by various
XQUERY engines (e.g., [9], [11], [16], [23], [26], [27], [36]),
XQUERY is no longer a read-only query language. We now
show how we can leverage such update-capable XQUERY

engines to automatically rewrite purely local updates into
queries that may push some computations to remote peers.
We recall that the general processing model of XQUF is that

first the read-only part of a query is executed that defines
which nodes are going to be updated, and how. This first
phase results in a pending update list (PUL). In the second
phase all update actions in this list are executed. Therefore,
the first phase of XQUF execution is identical to a read-only
query, and can in principle be distributed in the same way
as described in the previous sections. However, systems
implementing the XQUF typically only allow to update
persistently stored documents, e.g., updating documents on
an HTTP URI is not allowed. In this section, we first explain
the restrictions the XQUF imposes on XRPC query distribu-
tion. Then, we extend the semantics of XQUF to allow
updates on documents opened with fn:doc() using xrpc://P/
D URIs (in short: remote documents) and also support the
fn:put()XQUF built-in function to write entire new docu-
ments to such URIs. This extended semantics again creates a
possible trade-off between data shipping versus function
shipping, namely retrieving and updating a local copy of a
remote document followed by an fn:put() versus executing
an XQUF updating function over XRPC. We introduce the
necessary constraints to our query distribution techniques
that guarantee semantic equivalence for such queries.

7.1 Distributing Normal XQUF Queries

XQUF has extended the XQUERY language with four kinds
of updating expressions: UpdExpr = {InsertExpr, DeleteExpr,
RenameExpr, ReplaceExpr} (Table 2). An XCORE query
containing at least one UpdExpr is an updatingXCOREquery
(in short: updating query). Each UpdExpr has a TargetExpr
that identifies the target nodes to be updated, and (except for
DeleteExpr) each has an ExprSingle that computes the new
values. For simplicity, we refer to those ExprSingle as
SrcExpr, although XQUF uses different names. The func-
tionality of the first three kinds of expressions is self
explanatory. With ReplaceExpr, one can replace the target
node with a new sequence of nodes (“replace node”), or
replace the value of the target node (“replace value”). The
expressions RenameExpr and “replace value” only modify
some properties of the target node without changing its
node identity.

XQUF also defines a transform expression (TransformExpr)
that creates (and possibly modifies) copies of existing XML

nodes. Each node created by a TransformExpr has a new
node identity. The result of a TransformExpr is an XDM

(XQuery Data Model) instance that may include both new
nodes created by the TransformExpr and existing nodes.
TransformExpr has special semantics: it is not an updating
expression, as it does not modify any existing nodes. Hence,
an XCORE query that merely contains UpdExpr as sub-
expressions of a TransformExpr is not an updating query.

In our XCORE rewriting framework, all three algorithms
use a by-value based semantics, which means that target
nodes may not stem from an XRPC function result, or from a
function parameter (if the updating expression occurs
inside an XRPC function body). Hence, we enforce that all
UpdExprs, denoted Vu, must be executed on the same peer
that opened the document using fn:doc(). This, in turn,
enforces that all expressions Vai (except TransformExpr),
which depend on a vui 2Vu, must be executed on the local
peer. This is because Vai could only parse-depend on a vui ,
as updating expressions are not allowed in a variable

1070 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

6. Note that these ai should be determined at runtime by the XRPC

projection algorithm. The impossibility to express selection of all ID/IDREF
attributes in XQUERY, and thus in the XRPC WRAPPER, forces us to still avoid
shipping expressions where the result of vxrpc is used as input to id()/idref().

binding. Decomposing an expression in Vai would cause the
vui to be executed on a remote peer. To correctly identify
the target nodes of an UpdExpr, all expressions Vti that
produce target nodes for a vui , must also be executed on the
local peer. When decomposing an updating query, the
vertices Vu, Vti , and Vai in the query’s d-graph are never
valid decomposition points, regardless of the parameter
passing semantics used by the decomposition algorithm.
The following XQUF insertion conditions should be added to
the insertion conditions of each decomposition algorithm.

XQUF insertion conditions. Given a d-graph G and a
subgraph Grs of G rooted at vertex rs, under any semantics,
rs is in the set IðGÞ of valid decomposition points, iff rs also
satisfies all of the following conditions:

Condition a avoids decomposing any UpdExpr and
Target-Expr. Condition b states that if rs is not a
TransformExpr, rs may not depend on an UpdExpr, unless
the UpdExpr is a subexpression of a TransformExpr, on
which rs depends. Condition c states that rs may not be
decomposed, if rs produces target nodes of an UpdExpr. We
say rs produces target nodes, iff a returned path ps of rs is a
prefix of a returned path pt of vt, i.e., nodes returned by rs
include target nodes. Note that condition b allows a
TransformExpr to be decomposed by all three decomposi-
tion algorithms, as it always makes (deep) copies of its
source nodes. If a TransformExpr is executed on peer P, P
becomes the “local peer” for all new nodes created by this
TransformExpr. With Condition a, we prevent UpdExprs in
the modify clause of a TransformExpr from being separated
from the TransformExpr (i.e., executed on another peer than
P). Thus, the UpdExprs in the modify clause will also be
executed on P, which is the local peer of their target nodes.
This confirms the XQUF semantics that UpdExprs may only
be applied to local nodes. In the remainder of this section,
we continue our discussion on processing UpdExprs that are
not subexpressions of a TransformExpr.

7.2 Updating XCore Queries on Remote Documents

We now extend the semantics of XQUF to allow updates on
remote documents (i.e., documents identified by an xrpc://
URI scheme). We first provide a semantics for such updates
in normal nondistributed execution (i.e., data shipping): the
read-only part of the query is evaluated first, retrieving (a
copy of) all accessed remote documents to the local peer,
which results in a PUL. Then, the standard XQUF function
upd:applyUpdates() is executed to carry through all update
actions in the PUL. This could modify (some of) the local
copies of the remote documents. Finally, as an additional
step, for each affected remote document, an fn:put() is
executed by passing the document’s original URI and its new
contents, effectively replacing the existing document on the
remote peer with the modified one. This semantics does not
apply to XCORE queries only containing transform expres-
sions, as they are read-only queries. Thus, no additional
fn:put() is executed to overwrite the existing documents.

Formal semantics. Let Qu denote an XCORE query
containing at least one UpdExpr on a remote document and
Gu its d-graph. DuðQuÞ denotes the set of affected documents
that may be updated by Qu:

Dr
uðQuÞ is a subset of DuðQuÞ, which contains the affected

remote documents:

8dri 2 Dr
uðQuÞ : starts� withðdri :uri; ‘‘xrpc : ==’’Þ:

The auxiliary functions host() and path() extract, from an
XRPC URI “xrpc://P/D”, the peer identifier P and the
document name D, respectively. Each query operates in a
database state (dbp), which includes the documents and their
contents persistently stored in the XML database on p. The
dynEnv:docV alue from [10] corresponds to dbp used here.

The formal semantics of distributed updates is7:

The ruleRv states that the execution of an updating queryQu

at the local peer p0 in the database state dbp0 starts with
retrieving the remote documents Dr

uðQuÞ, which could
potentially be affected by Qu, to p0.8 This yields a set of local
copies Dr0

u ðQuÞ of Dr
uðQuÞ. Note that this step does not change

dbp0 , as the documents in Dr0
u ðQuÞ are transient documents.

Then, Qu is executed in dbp0 with the additional documents
Dr0
u ðQuÞ, which first yields a PUL �. Subsequently, upd:ap-

plyUpdates() is executed to apply all update primitives in �
to the affected documents. Updates in � that should be
applied on remote documents Dr

uðQuÞ are applied on their
local copies Dr0

u ðQuÞ instead. This step produces a new
current database state db0p0 , which could differ from dbp0 (if �
contains updates on really local documents), and a set of
changed local copies Dr00

u ðQuÞ. Finally, an additional step is
executed, which calls fn:put() to store each dr

00

i 2Dr00

u ðQuÞ on
its hosting peer and overwrite the existing dri 2Dr

uðQuÞ. This
step also creates a new current remote database state
dbhostðd

r00
x :uriÞ on each hosting peer. As the rule Ru only applies

� at the end of query execution, updates are not visible for
the same query, which confirms the XQUF semantics. Hence,
if � only contains updates on a single document, this rule
already provides atomic updates.

Isolation levels. Note that the—potentially multi-
ple—fn:put(“xrpc://..”) together with potential updates on
some local documents constitute a distributed updating query.
Depending on the semantics desired by the user, this
distributed updating query could be run in a certain
consistency level, which has been discussed in detail in

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1071

7. We use the “:” sign to suggest an order in the evaluation of the
premises.

8. As explained in Section 4, computed URIs and invocations of
fn:collection() are represented by �. During the runtime, when the actually
value of the wildcard symbols are available, more URIs might be added to
the set Dr

uðQuÞ on the fly.

our previous work [38]. One option is no consistency at all, in
which some documents may get updated, but other
document updates may fail or get lost. By tagging queries
with a unique ID, the repeatable read consistency level can be
easily achieved. To ensure distributed atomic updates, [38],
[39] shows how the WS-AtomicTransaction standard [35]
can be integrated into XRPC to provide 2PC. In addition to
repeatable reads and atomic commits, the lost updates
anomaly can be avoided if participating peers abort the
2PC commit when another updating query or fn:put() has
modified an updated document already. Note that these
semantics can also be supported by the XRPC WRAPPER if
the XQUERY engine is XRPC oblivious. Given the design
goal for XRPC of supporting P2P applications on the
Internet, we refrained from attempting to define higher
consistency levels (e.g., distributed serializability), as the
overhead of these are impractical in such environments. We
consider more advanced distributed consistency levels for
P2P on the Internet a topic of future work, and consider it
out of scope here, where we focus on semantically correct
distributed query rewriting.

XQUF rewrites. In principle, we cannot push any
UpdExprs, except homogeneous updating expressions. An
UpdExpr vhu is homogeneous, iff all returned paths of its
TargetExpr vhtu start with the same “xrpc://P”, i.e., the update
affects only nodes that stem from a single peer. Hence, the
update can be pushed to that peer using an XQUF updating
function such that it acts only on local documents there. The
insertion conditions for updates formulated in Section 7.1
also applies for pushed updating expression: target nodes
of an UpdExpr vu may not be passed to a remote peer as
function parameters or results. Decomposition of vhu thus
requires that all expressions V h

tu
that produce target nodes of

vhu must be executed in the same remote function as vhu. So,
we need to find the smallest (super-)expression vs that
contains both vhu and V h

tu
.

LetQu be an updating query containing the homogeneous
UpdExpr vhu and Gu its d-graph. Let vhw be the TargetExpr of
vhu (i.e.: ðvhu; vhwÞ2EðGuÞ ^ vhw:rule¼TargetExpr). We define
V h
tu

as:

8vi 2 V h
tu

: vhw
e

> vi^
ð8pt 2 vi:Paths; 8pw 2 vhw:paths : starts� withðpw; ptÞÞ

and define vs as:

ðvs
e

> vhu _ vs ¼ vhuÞ ^ 8vi 2 V h
tu

: vs
e

> vi^
6 9vx 2 V ðGuÞ : vs

e

> vx ^ vx
e

> vhu ^ 8vi 2 V h
tu

: vx
e

> vi

Then, vs could be a valid decomposition point. If no such
point can be found, we fall back to the data shipping
strategy (i.e., local execution and a fn:put(“xrpc://P/D”) at the
end of query execution). For updating queries containing
both push-able and not push-able UpdExprs, however, there
is an additional issue to deal with: we can only push an
UpdExpr vu0

if we can guarantee that no other UpdExprs
elsewhere in the query update nodes from the same
documents (a clash), or, if another UpdExpr does, it can also
be pushed. This is because all UpdExprs that are not pushed
will generate an fn:put() in the end, which would potentially
overwrite the pushed updating actions or other fn:put()s,
from the same transaction. However, if all updates to the

same document are pushed, the 2PC protocol used in XRPC

ensures correct execution [38].

8 EVALUATION IN MONETDB/XQUERY

We have implemented the proposed algorithms in Mon-
etDB/XQuery [4], a purely relational XDBMS that uses the
Pathfinder [14] XQUERY compiler. We use the XRPC

extension for remote function evaluation. Note that, as
there are no other comparative results exist, the main goal
of our experiments is to show the impact of the proposed
techniques in a step-by-step fashion.

8.1 Read-Only Queries

For the all our experiments, the test platform consisted of
three 2 GHz Athlon64 Linux machines connected in a local
network (LAN). Each was equipped with a 2 GB RAM. The
benchmark data used is XMark [29], a popular XML bench-
mark for evaluating XQUERY efficiency and scalability. The
data set was generated using scalar factors 0.1, 0.2, 0.4, 0.8,
and 1.6. A data set is stored on each remote peer. We
conducted three groups of experiments: bandwidth usage,
query execution time, and runtime projection precision.

We slightly modified the query Qn
2 (in Table 3) so that it

conforms to the XMark schema as the following:

All techniques discussed in this paper are applied on the
above query: 1) under the pass-by-value semantics, only
the expression “doc(‘xrpc://peer1/xmk_nn_MB.xml’)/.../
child::person” can be decomposed and executed on peer1;
2) under the pass-by-fragment semantics, we can decom-
pose both the second let clause (“let $s := ...”) and the
second for-loop (“for $e in ...”), and execute them on peer1
and peer2, respectively. The variable $t becomes the
parameter of the generated function containing the second
for-loop (see also Table 4); 3) under the pass-by-projection
semantics, the query is decomposed in the same way as
using pass-by-fragment, however, when serialising the
request messages, a projection of $t/attribute::id (parameter
projection) and $c/child::annotation/child:author (result pro-
jection) is calculated. The test set thus contains four queries
in total, and each of them is executed on two documents of
sizes 10, 20, 40, 80, and 160 MB.

In this case, code motion is ideal, as it is able to send just
strings, not nodes. However, if we would replace the final
step child::author by parent::�, then just applying code
motion and no projection provides mediocre performance
similar to by-value. It is the ability of projection to
decompose almost any query at little cost, that makes it
the overall method of choice.

Execution time. Fig. 6 shows the execution time of all
queries on documents of increasing sizes, which indicates
that the two enhanced parameter passing techniques
achieve good scalability. On average, pass-by-fragment
and pass-by-projection achieve a performance improvement

1072 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

of roughly 94 percent, comparing with data-shipping; this is
proportional to the decreasing in bandwidth usage, which is
approximately 96 percent. Even on small documents
(20 MB), the proposed techniques are preferred over the
data-shipping methods.

Fig. 7 shows the execution time breakdown of all four
queries on documents of 320 MB in total. The execution
time is divided into five parts: shred is the time to receive a
document from the remote peer and shred it in to the XML

database; local exec is the execution time of the query at local
peer, including query parsing, module loading, etc; (de)ser-
ialize is the time spent on generating/shredding XML

messages and extracting parameter/result values from the
messages; remote exec is the time to execute the called
functions on remote peers; and network is the time spent on
sending/receiving XML messages. From Fig. 7, the follow-
ing observations can be made: 1) in the data-shipping-only
query and the by-value-decomposed query, data shredding
is the main bottleneck, either because the whole document
is shipped (data-shipping), or an XML node might be
shredded multiple times (by-value). Especially in the data-
shipping query, more than 99 percent of the total execution
time is spent on getting the documents from remote peers
and shredding them; 2) when pass-by-fragment and pass-
by-projection semantics are used, the total execution time is
significantly reduced (about 84�94 percent, comparing
with data-shipping and pass-by-value). This is easily
explained as these techniques reduce the amount of data
exchanged to be less than 10 percent of the original
document sizes. Even with the overhead introduced by
remote execution (i.e., “(de)serialize”+“remote exec”), pass-
by-fragment or pass-by-projection are preferred over the
data-shipping method. 3) pass-by-projection performs even
better than pass-by-fragment (about 35 percent improve-
ment), which is again explained by the reduced bandwidth
usage, as shown in Fig. 8.

Bandwidth usage. Fig. 8 shows the bandwidth used by
each benchmark query on different set of documents, i.e., the
total size of XML documents plus total size of XML messages
transferred among peers, in its y-axis. The x-axis is the total
size of the XML documents used by each query. The pure data-
shipping XQUERY query (the left most bar) costs the largest
bandwidth usage, as both documents used by the query have
to be shipped. By-value decomposition can push the XPATH

step doc(“xrpc://peer1/xmk_nn_MB.xml”)/.../child::person to
be evaluated on peer1, which reduces the amount of data sent
from peer1 to the local peer. However, the second document
“xmk_nn_MB.auctions.xml” still has to be sent fully. The by-
fragment passing semantics allows to push predicates to both

peers, achieving a distributed semijoin plan. Also, it strongly
reduces message size by avoiding duplicating the same XML

node multiple times. Pass-by-projection further brings down
message sizes due to reduced response message size. For
example, when sending the result of remote execution of the
second for-loop, the response message will only contain
annotation nodes with their author child nodes. When applied
on pass-by-fragment, code motion has larger effect in
reducing message size than it is applied on pass-by-
projection. This is because in pass-by-fragment, complete
person nodes (i.e., including all their descendants) are
serialized, while in pass-by-fragment with code motion, only
the values of the id attributes are serialized. In pass-by-
projection, however, the message size has already minimized
the data to be sent, i.e., only person nodes and their id
attributes, hence, the effect of applying code motion here is
negligible. In general, we observe good scalability of pass-by-
fragment and pass-by-projection in bandwidth usage.

Runtime projection precision. Our new runtime projec-
tion technique combines intermediate query results with
runtime execution or relative XPATH paths. Due to
selections (by, e.g., predicates and value comparisons), the
runtime projection node sets obtained may be much smaller
than suggested by compile-time projection paths, used in
[21]. We used our by-projection benchmark query to
compare runtime projection with compile-time projection,
on various sizes of the XMark document “xmk_nn_MB.xml”.
In this experiment, the compile-time technique projects all
person elements and their age, while our runtime projec-
tion technique will only project those person elements that
have an age descendant larger than 45. Fig. 9 shows
runtime projection to be five times more precise in terms of
the size of projected document. In the case of this
experiment, the investment in runtime XPATH evaluation
pays off due to the more precise results, as shown in Fig. 10.

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1073

Fig. 8. Bandwidth usage.

Fig. 7. Time breakdown (320 MB data).Fig. 6. Execution time.

8.2 XQUF Queries

For the updating XCORE queries, we have conducted two
groups of experiments to compare performance of updating
remote documents with or without XRPC. The first group
corresponds to the generic strategy discussed in Section 7
where a remote document is first retrieved to the local
machine (with fn:doc()), then the updates are applied on the
local copy of the remote document, and finally the updated
document is written to the remote peer using fn:put(). We
call queries in this group “GUPqueries” (i.e., Get-Update-
Put). In the second group, called “XRPCqueries”, updates are
applied directly on the original document at the remote
peer with XRPC using so-called updating functions as
specified by the XQUF:

We tested all four kinds of updates, keeping the
granularity of the updates constant, affecting 100 person
nodes. For example, the insert query in XRPC looks as follows:

All updating queries were applied on XMark documents of
200, 400, 600, 800, and 1,000 MB, respectively. The data set is
stored on one peer, which acts as the remote peer. The total
execution time of all queries are shown in Fig. 11.

For all four kinds of update queries, XRPC is signifi-
cantly faster than GUP. The relatively small performance

differences between different kinds of updates reflects the
MonetDB/XQuery implementation of the XQUF. We can
conclude that with increasing document sizes, the absolute
benefits of XRPC grow linearly, which is caused by the
additional full serialization, network copy, and shredding
for the “Get” phase, followed by full serialization and
network copy steps in the “Put” phase, performed by the
GUP approach. As the amount of updates is small, the total
bandwidth usage of all GUP queries are approximately
twice the documents size, as shown in Fig. 12, whereas the
XRPC query only sends the function parameters and results
(tens of KB). In Fig. 13, the bars at the left-hand-side show
the time breakdown of GUP queries, while the bars at the
right-hand-side show the time breakdown of XRPC queries;
all were run on a 1 GB document. From Fig. 13, it can be
seen that the GUP queries spend a large amount of time on
adding the document to the local and remote database
(shown as “gup add doc remote” and “gup add doc local”).
They also spend a significant amount of time on ex-
changing the document between the local peer and the
remote peer (shown as “gup network”). However, the
times spent on actually applying the updates (shown as
“gup exec update”) are only a very small portion of the
total execution times. On the other hand, for the XRPC

queries, the only dominant factor in the total execution

1074 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

Fig. 12. Updates bandwidth usage.

Fig. 13. Updates time breakdown (1,000 MB).

Fig. 11. Updates execution time.Fig. 9. Selected nodes.

Fig. 10. Execution time (ms).

time is the time spent on applying the updates (shown as
“xrpc remote exec”), while the times spent on processing
the request and response messages (i.e., serialize, send and
deserialize) are negligible.

We finally recall that in all experiments (including the
read-only ones) we used a local area network (LAN); but in
a WAN environment, where much lower network perfor-
mance is common, the benefits of our query decomposition
techniques will be larger, as we showed by their strongly
reduced network bandwidth use.

9 RELATED WORK

There are three main areas that are related to our proposal
in this paper: distributed query processing, query decom-
position and XML projection.

Much previous work in distributed query processing is
surveyed in [19], [37] and parts of the book [25]. In
distributed XML query processing, DXQ [13] depends on
distributed query plans, in terms of the internal Galax
execution algebra, generated by the Galax optimizer. In this
respect, XRPC differs with its focus on interoperability, as it
acts as a pure XQUERY rewriter (not making any assump-
tions on the system internals of the participating peers).
Galax Yoo-Hoo [24] accesses web services using SOAP RPC

as the communication protocol, which lacks proper support
for XML elements and sequences; a problem addressed by
XRPC using a specific literal SOAP message encoding. Active
XML (AXML) [1] is a declarative framework that harnesses
web services for data integration in a P2P architecture. Like
XRPC, it also uses a (document/literal encoding) SOAP

protocol to represent XML subtree values. However, the
focus in AXML has been in adaptive call materialization
strategies, not on automatic query decomposition and the
semantic challenges this brings in XQUERY, such as
distributed node identity. XQueryD [28] supports function
shipping in XQUERY like XRPC, but it does not define an
open network protocol.

Decomposing queries to address multiple data sources is
by now a well-studied problem in relational [34] and object-
oriented [15], [20] DBMS. Many of these ideas and methods
can be applied to XQUERY, yet we have shown here that
issues of efficiently managing distributed node identity and
document order add interesting challenges. [30], [31]
discuss the decomposition of unstructured query languages
only on a semistructured database (a rooted, labeled graph).
In XML databases, previous approaches require structural
information about peers for supervising decomposition
[33]. Other works, e.g., [6], [8], [32] only focus on a restricted
subset of XQUERY queries. This paper is based on our
previous work on decomposing read-only XQuery queries
[40]. As one of the main goals of our work is to support full-
fledged XQuery, in this paper, we have made our framework
more complete by extending [40] with analysis on how
updating queries can be decomposed. Some preliminary
experiments have been done to show the performance
improvements that could be achieved by executing updates
directly on remote documents at the remote peers, instead
of first retrieving a remote document to the local peer, then
applying updates on the local copy of the document, and
finally put the updated document back to the remote peer.

XML projection [21] drastically reduces the size of the
data model representation using compile-time query
characterization. Bressan et al. [5] introduces a precise
XML pruning technique for a subset of XQUERY FLWOR

expressions, based on the a priori knowledge of a data
guide for underlying XML data. However, it does not
handle XPATH predicates, backward axes, and XQUERY-
like languages. A type-based XML projection technique [2]
is studied to improve current solutions with comparable or
higher precision and less pruning overhead, as well as
supporting backward XPATH axes. However, a DTD is
required. koch et al. [18] discusses runtime XML projection
techniques. Based on the static compilation of runtime
lookup-tables and a runtime-automaton from projection
paths and a DTD, they can filter the input XML document
efficiently using string matching algorithms. This techni-
que, however, still lacks support for reverse XPATH axes
and XQUERY built-in functions.

10 CONCLUSION

We have described a framework for distributed execution of
full-fledged XQUERY including XQUF, focusing on the issue
of providing equivalent query decompositions, in the face
of semantic differences when (parts of) nodes are shipped
across the network in XML messages. We first carefully
characterized the problems that may occur regarding node
identity and structural XPATH relationships in such a
distributed setting. Then, we proposed a series of techni-
ques such as pass-by-fragment and the use of a novel
runtime XML projection method for serializing XML

messages, that remove virtually all semantic problems
and strongly improve performance, as shown by experi-
ments on the open-source MonetDB/XQuery XDBMS

(monetdb.cwi.nl). We also discussed the semantics of
updating both local and remote documents using XQUF

expressions, and additional constraints that should be
added to the proposed techniques to guarantee semantic
equivalence for such queries. Our main future work is an
issue left out-of-scope here: deciding on distributed query
placement after decomposition. In this area, we also
contemplate using runtime methods to improve optimiza-
tion quality.

REFERENCES

[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and
N. Preda, “Lazy Query Evaluation for Active XML,” Proc. ACM
SIGMOD, 2004.

[2] V. Benzaken et al., “Type-Based XML Projection,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2006.

[3] S. Boag et al., “XQuery 1.0: An XML Query Language,” W3C
Candidate Recommendation, June 2006.

[4] P. Boncz et al., “MonetDB/XQuery: A Fast XQuery Processor
Powered by a Relational Engine,” Proc. ACM SIGMOD, 2006.

[5] S. Bressan et al., “Accelerating Queries by Pruning XML
Documents,” Data Knowledge Eng., vol. 54, no. 2, pp. 211-240, 2005.

[6] P. Buneman et al., “Using Partial Evaluation in Distributed Query
Evaluation,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2006.

[7] D. Chamberlin et al., “XQuery Update Facility 1.0,” W3C
Candidate Recommendation, Aug. 2008.

[8] G. Cong et al., “Distributed Query Evaluation with Performance
Guarantees,” Proc. ACM SIGMOD, 2007.

[9] DataDirect XQuery, http://www.datadirect.com, 2010.

ZHANG ET AL.: PROJECTIVE DISTRIBUTION OF XQUERY WITH UPDATES 1075

[10] D. Draper et al., “XQuery 1.0 and XPath 2.0 Formal Semantics,”
W3C Recommendation, Jan. 2007.

[11] eXist, http://exist.sourceforge.org, 2009.
[12] M. Fernández et al., “XQuery 1.0 and XPath 2.0 Data Model

(XDM),” W3C Candidate Recommendation, July 2006.
[13] M. Fernández et al., “Highly Distributed XQuery with DXQ,”

Proc. ACM SIGMOD, 2007.
[14] T. Grust et al., “XQuery on SQL Hosts,” Proc. Int’l Conf. Very Large

Data Bases (VLDB), 2004.
[15] V. Josifovski et al., “Query Decomposition for a Distributed

Object-Oriented Mediator System,” Distributed and Parallel Data-
bases, vol. 11, no. 3, pp. 307-336, 2002.

[16] M. Kay., “SAXON The XSLT and XQuery Processor,” http://
saxon.sourceforge.net, 2010.

[17] J. Knoop and B. Steffen, “Code Motion for Explicitly Parallel
Programs,” ACM SIGPLAN Notices, vol. 34, no. 8, pp. 13-24, 1999.

[18] C. Koch et al., “XML Prefiltering as a String Matching Problem,”
Proc. Int’l Conf. Data Eng. Conf. (ICDE), 2008.

[19] D. Kossmann, “The State of the Art in Distributed Query
Processing,” ACM Computing Surveys, vol. 32, no. 4, pp. 422-469,
2000.

[20] H. Kozankiewicz, K. Stencel, and K. Subieta, “Distributed Query
Optimization in the Stack-Based Approach,” High Performance
Computing and Communications, Springer, 2005.

[21] A. Marian et al., “Projecting XML Documents,” Proc. Int’l Conf.
Very Large Data Bases (VLDB), 2003.

[22] N. Mitra and Y. Lafon, “SOAP Version 1.2 Part 0: Primer,” second
ed., W3C Recommendation, Apr. 2007.

[23] MonetDB/XQuery, http://monetdb.cwi.nl, 2010.
[24] N. Onose and J. Siméon, “XQuery at Your Web Service,” Proc. Int’l

World Wide Web Conf. (WWW), 2004.
[25] M.T. Özsu and P. Valduriez., Principles of Distributed Database

Systems, second ed. Prentice-Hall, Inc., 1999.
[26] IBM DB2 pureXML, http://www-01.ibm.com/software/data/

db2/xml/, 2010.
[27] Qizx, http://www.qizx.com, 2010.
[28] C. Re et al., “Distributed XQuery,” Proc. Workshop Information

Integration on the Web (IIWeb), Sept. 2004.
[29] A. Schmidt et al., “XMark: A Benchmark for XML Data Manage-

ment,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2002.
[30] D. Suciu, “Query Decomposition and View Maintenance for

Query Languages for Unstructured Data,” Proc. Int’l Conf. Very
Large Data Bases (VLDB), 1996.

[31] D. Suciu, “Distributed Query Evaluation on Semistructured
Data,” ACM Trans. Database System, vol. 27, no. 1, pp. 1-62, 2002.

[32] K. Tajima and Y. Fukui, “Answering XPath Queries Over
Networks by Sending Minimal Views,” Proc. Int’l Conf. Very Large
Data Bases (VLDB), 2004.

[33] L.T.T. Thuy, D.D. Duong, V.C. Bhavsar, and H. Boley, “A Bottom-
Up Strategy for Query Decomposition,” Proc. Int’l Conf. Digital
Information Management (ICDIM), 2006.

[34] E. Wong and K. Youssefi, “Decomposition—A Strategy for Query
Processing,” ACM Trans. Database System, vol. 1, no. 3, pp. 223-241,
1976.

[35] Web Services Atomic Transaction, ftp://www6.software.ibm.
com/software/developer/library/WS-AtomicTransaction.pdf.
Aug. 2005.

[36] XQilla, http://xqilla.sourceforge.net/, 2010.
[37] C. Yu and C. Chang., “Distributed Query Processing,” ACM

Computing Surveys, vol. 16, no. 4, pp. 399-433, 1984.
[38] Y. Zhang and P. Boncz, “XRPC: Interoperable and Efficient

Distributed XQuery,” Proc. Int’l Conf. Very Large Data Bases
(VLDB), 2007.

[39] Y. Zhang and P. Boncz, “Distributed XQuery and Updates
Processing with Heterogeneous XQuery Engines,” Proc. ACM
SIGMOD, 2008.

[40] Y. Zhang, N. Tang, and P. Boncz, “Efficient Distribution of Full-
Fledged XQuery,” Proc. Int’l Conf. Data Eng. (ICDE), 2009.

Ying Zhang received the MSc degree in
computer networks from the Vrije Universiteit
Amsterdam, where she has also worked for
three years as an assistant in teaching various
programming courses. Her master thesis is
about optimization and adaptation of an epi-
demic protocol called Newscast in P2P file
sharing applications. She is working toward the
PhD degree in the database architecture re-
search group (INS1) of CWI. For her PhD work,

she has designed and implemented XRPC, a simple yet efficient
extension of the full-fledged XQuery for distributed querying of XML
data. Since 2005, she has been working on distributed XML database
systems, which is part of the project MultimediaN, funded by the Dutch
Government (BSIK).

Nan Tang received the PhD degree in Depart-
ment of Systems Engineering & Engineering
Management from The Chinese University of
Hong Kong, Hong Kong, in 2007. Currently, he
is a postdoctoral fellow in CWI (National
Research Center from Mathematics and Com-
puter Science of The Netherlands), Amsterdam,
The Netherlands. His research interests include
XML database management, scalable string
matching for disk image, and updates for

column-based database.

Peter Boncz is a tenured researcher at CWI,
and coauthor of more than 50 scientific papers.
His academic background is in core database
architecture, with the architecture of the archi-
tecture-conscious columnar store MonetDB the
main topic of his PhD thesis; which also led to
being a corecipient of the 2009 VLDB 10 Year
Award. In recent years, he has worked on
(distributed) XML database systems as well as
RDF. He also received the Dutch ICT Regie

Award 2006 for bridging the gap between academia and commercial
application in the CWI spin-off company Data Distilleries. In 2008, he
founded a new CWI spin-off company called VectorWise, dedicated to
state-of-the art business intelligence technology.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1076 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 8, AUGUST 2010

