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1 Introduction

In this course, the first mathematical objects we will consider are known as lattices. What is a
lattice? It is a set of points in n-dimensional space with a periodic structure, such as the one
illustrated in Figure 1. Three dimensional lattices occur naturally in crystals, as well as in stacks
of oranges. Historically, lattices were investigated since the late 18th century by mathematicians
such as Lagrange, Gauss, and later Minkowski.

Figure 1: A lattice in R2

More recently, lattices have become a topic of active research in computer science. Algorith-
mic problems based on lattices (e.g. Shortest and Closest Vector Problems, . . . ) has found a wide
variety of applications; they have used within optimization algorithms, in the design of wire-
less communication protocols, and perhaps the most active research area, in the development
of secure cryptographic primitives (cryptography) and in establishing the insecurity of certain
cryptographic schemes (cryptanalysis). In this course, our focus will be three-fold: to provide
a solid understand of the geometric properties of lattices, to present algorithms and complexity
results for fundamental lattice problems, and to explain applications of lattice techniques to the
study of cryptography and cryptanalysis.

2 Notation and Basic Concepts

We use R for the real numbers, Z for the integers and N for the natural numbers (positive
integers). Correspondly, we use Rn and Zn to denote the n-dimensional versions for some n ∈N.
We write generally matrices as B in uppercase bold, vectors x ∈ Rn in lowercase bold and scalars

as x ∈ R. The Euclidean norm of a vector x ∈ Rn is denoted ‖x‖ def
= (∑n

i=1 x2
i )

1/2 and the unit

Euclidean ball in Rn is denoted by Bn
2

def
= {x ∈ Rn : ‖x‖ ≤ 1}. For two vectors x, y ∈ Rn, we

denote their inner product by 〈x, y〉 def
= ∑n

i=1 xiyi. Given a linear subspace W ⊆ Rn, we let W⊥ =

{x ∈ Rn : 〈x, y〉 = 0∀y ∈W} denote the orthogonal complement of W. We define πW : Rn → W
to be the orthogonal projection onto W.

1



For a set A ⊆ Rn, we use span(A) to denote its linear span of A, i.e. the smallest linear
subspace containing A. We define the dimension dim(A) of A to be the dimension of the linear

span, that is, dim(A)
def
= dim(span(A)). We denote the volume of A by voln(A). For a matrix

T ∈ Rm×n, we define TA def
= {T a : a ∈ A}. For two sets A, B ⊆ Rn, s, t ∈ R, we define their

Minkowski sum sA + tB def
= {sa + tb : a ∈ A, b ∈ B}.

3 Definitions of Lattices

The main goal of this lecture is to introduce the basic concept of a lattice, define one of its basic
geometric parameters (the shortest non-zero vector), and present various equivalent definitions
of a lattice. Our abstract definition of a lattice is given below:

Definition 1 (Lattice) L ⊆ Rn is a lattice if L is a discrete additive subgroup of Rn. L is a rank
k lattice, or k-dimensional, if dim(L) = k. L is said to be full-rank if dim(L) = n (dimension of the
ambient space).

To be able to interpret this, one needs to define both what discrete and what additive sub-
group means. Since our lattices are embedded in Rn, the definitions given below rely on the
additive structure and topology of Rn.

1. Discrete: L is discrete if the induced topology on L is discrete.
That is, every subset of L is open.

2. Additive subgroup:

(a) ∀x, y ∈ L, x + y ∈ L.

(b) ∀x ∈ L,−x ∈ L.

The above definitions encapsulate the essential properties of a lattice, however it does not tell
us how to build them or describe them. As we will show, every lattice can be described either by
a set of linearly independent generators, known as a basis, or via a system of modular equations.
We give some examples below.

To build a rank k lattice in Rn, we may take any set b1, . . . , bk ∈ Rn of linearly independent
vectors and define

L(b1, . . . , bk) = {
k

∑
i=1

zibi : z1, . . . , zk ∈ Z}. (Basis Rep.)

Here we say that b1, . . . , bk is a basis for the lattice L = L(b1, . . . , bk). We denote the basis matrix
for b1, . . . , bk as B = (b1, . . . , bk), i.e. the matrix whose columns are b1, . . . , bk. For convenience,
we will use the notation L(B) = BZk, where we note that L(B) = L. Furthermore, we will often
interchangeably refer to B and b1, . . . , bk as a basis for L. While the above definition requires
linear independence, we will make an exception for the trivial lattice {0}, for which we will
consider 0 to be a basis.

For the most basic example, we can take Z2 = {(x, y) : x, y ∈ Z}, i.e. the standard integer
lattice in 2 dimensions. Here it is easy to see that Z2 = L(b1, b2) where b1 = (0, 1) and b2 =

(1, 0). Note that Z2 admits more than one basis, in particular the basis (0, 1), (1, 1) still generates
the same lattice. In fact, for any lattice L of rank n > 1 admits infinitely many distinct bases.
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(0, 0) (1, 0)

(0, 1)

(a) A basis of Z2

(0, 0)

(1, 1) (2, 1)

(b) Another basis of Z2

(0, 0)

(1, 1)

(2, 0)

(c) Not a basis of Z2

(0, 0)

(2, 1)

(d) Not a full-rank lattice

Figure 2: Some lattice bases

We note that it is important that to use a set of linearly independent generators to build the
lattice. Indeed, without this restriction one can easily build additive subgroups of Rn which are
not lattices (e.g. the subgroup generated by 1,

√
2 is dense in R).

The second way to define lattices is via a set of modular equations. Given any matrix A ∈
Rm×n, we may examine:

Λ⊥(A) := {x ∈ rowspan(A) : Ax ≡ 0 (mod 1)} . (Dual Rep.)

Here, the modular equations should hold for each row, where x ≡ y (mod 1) iff x − y ∈ Z.
Thus, the above is in fact equivalent to Ax ∈ Z. The condition x ∈ rowspan(A) is imposed
to disallow non-zero vectors in the kernel of A, since then Λ⊥(A) would contain an entire line
through the origin and hence would not be discrete. The trivial lattice {0} may be expressed
as Λ⊥(0T), where 0T corresponds to the row of zeros. Note that as long as Λ⊥(A) 6= {0}, we
may remove any zero row from A without changing the lattice. Perhaps the most important
instantion of the above is to isolate a sublattice of Zn via a so-called “parity check” matrix. For
example, if we let C be an m× n matrix with entries in Zp := Z/pZ, then we may examine:

Λ⊥p (C) = {x ∈ Zn : Cx ≡ 0 (mod p)} . (Parity Check)

Lattices of the above type will be very useful in this course, as they are easy to generate at “ran-
dom”. In particular, one may choose the entries of C uniformly from Zp. We will see properties
of these types of lattices “random lattices” later in the course. As a specific example of the above,
one may look at the lattice {(x, y) ∈ Z2 : x + y ≡ 0 (mod 2)}, i.e. all integer points in Z2 whose
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coordinate sum is even. A little thought, will reveal that this lattice can in fact be generated by
the basis (1, 1) and (0, 2), and hence this lattice can be represented using form (Basis Rep.).

While it is not obvious that every lattice of the above type admits a basis, it is easy to see that
lattice of form (Parity Check) can be expressed as a lattice of form (Dual Rep.). In particular, by
identifying the entries of C with integers in {0, . . . , p− 1}, one can verify that

Λ⊥p (C) = Λ⊥
(

C/p
In

)
.

The main theorem of this lecture is that all the different lattice representations are equivalent.

Theorem 2 (Lattice Representations) Let L ⊆ Rn. The following are equivalent:

1. L is a lattice.

2. L can be expressed using (Basis Rep.).

3. L can be expressed using (Dual Rep.).

We will develop the tools to prove the above theorem throughout the next sections. To begin,
we first show that anything of type (Basis Rep.) or (Dual Rep.) is indeed a lattice. While the
additive subgroup property is essentially immediate, discreteness (or at least useful quantitative
bounds on it) requires some work and is the subject of section 4. The bulk of the effort will be
in the reverse direction, where the principal aspect is showing that every lattice indeed admits a
basis. This is the content of section 5.

4 The Shortest Non-Zero Vector

We begin by the main lattice parameter which controls “how discrete” a lattice is. For a lattice
L ⊆ Rn, we define

λ1(L) = inf
y∈L\{0}

‖y‖.

The following lemma establishes that the discreteness property is encapsulated by the posi-
tivity of λ1 when the lattice is non-trivial (i.e. L 6= {0}).

Lemma 3 Let L be a non-trivial additive subgroup of Rn. Then the following are equivalent:

1. L is a lattice.

2. λ1(L) > 0.

3. |L ∩ S| < ∞ for any bounded set S ⊆ Rn.

4. L contains a shortest non-zero vector.

Proof:

(1⇒ 2). Since L is an additive subgroup of Rn, 0 ∈ L. By discreteness of L, {0} forms an open
set in L. Thus, there exists a radius r > 0 such that rBn

2 ∩ L = {0}. Since L contains non-zero
vectors by our non-triviality assumption, we see that λ1(L) ≥ r, as needed.
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(2 ⇒ 3). Let λ = λ1(L) > 0, and let A = L ∩ rBn
2 . For any distinct x, y ∈ A note that

x − y ∈ L \ {0} and hence ‖x − y‖ ≥ λ. From here, we must have that open balls of radius
λ/2 around x and y must be interior disjoint, i.e. (x + λ

2 interior(Bn
2 )) ∩ (y + λ

2 interior(Bn
2 )) = ∅.

Furthermore, x + λ
2Bn

2 ⊆ S + λ
2Bn

2 . If |L ∩ S| = ∞, then

voln(S +
λ

2
Bn

2 ) ≥ ∑
x∈L∩S

voln(
λ

2
Bn

2 ) = ∞.

However, since S+ λ
2Bn

2 is clearly bounded (given that S is bounded), we must have that voln(
λ
2Bn

2 +

S) < ∞, a clear contradiction.

(3 ⇒ 4). Since L is non-trivial, we can pick y ∈ L \ {0}. Let r = ‖y‖, and examine A =

(L ∩ rBn
2 ) \ {0}. Notice that non-zero vector shorter than y must be contained in A. Since rBn

2 is
bounded, by assumption we have that |A| < ∞. Since A is finite, we can pick y ∈ A of minimum
`2 norm. By construction, y is a shortest-nonzero vector of L, as needed.

(4⇒ 1). Let λ1 := λ1(L). Since by assumption there exists a non-zero vector in L of length λ1,
we clearly have that r > 0. To now show that L is discrete it suffices to show that all sets are
open, in particular for any x ∈ L, it suffices to show that {x} is open (since arbitrary unions of
open sets are open). Taking the open ball of radius λ1 around x, it suffices to show that this ball
uniquely intersects L in x. If not, then there exists y ∈ L, y 6= x in L such that ‖x− y‖ < r. But
then x− y is a non-zero lattice vector of length less than λ1(L), a clear contradiction. �

The following exercise helps illustrate certain canonical situations where additive groups are
or are not lattices.

Exercise 1

1. Let A = {x + αy : x, y ∈ Z} ⊆ R, where α > 0 is irrational. Show that A is not a lattice.

2. Let v1, . . . , vm ∈ Qn. Show that L(v1, . . . , vm) is a lattice (note that vi’s need not be linearly
independent, in particular m maybe greater than n).

The following lemmas establish that non-trivial sets of type (Basis Rep.) or (Dual Rep.) admit
lower bounds on λ1 and hence are discrete. This corresponds to “half” the proof of

We note that the lower bounds presented below can vary greatly depending on the precise
representation (there are in fact infinitely many such representations in general). One of the focus
areas of the course will be to develop algorithms to produce “high quality” representations of a
lattice, most often in the form of a “short” basis.

Lemma 4 Let B ∈ Rk×n, k ≥ 1, be a non-singular matrix. Then λ1(L(B)) ≥ σmin(B) > 0, where
σmin(B) is the smallest singular value of B.

Proof: Recall that for any matrix B, the minimum singular value is

σmin(B) := min
‖x‖=1

‖Bx‖ . (1)

For B is non-singular, ‖Bx‖ 6= 0 if x 6= 0. Since ‖Bx‖ is clearly continuous and the unit sphere in
Rn is compact, the minimum in (1) is achieved, and hence σmin(B) > 0 as needed.
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Now let x ∈ L(B) be a non-zero vector. We will show that ‖x‖ ≥ σmin(B) to prove the lemma.
Clearly, we may express x = Bz where z ∈ Zn \ {0}. Therefore

‖x‖ = ‖Bz‖ ≥ σmin(B)‖z‖ ≥ σmin(B) ,

where the last inequality follows since any non-zero integer vector has `2 norm at least 1 (since
one of its coordinates has absolute value at least 1). �

Lemma 5 Let A ∈ Rm×n with rows a1, . . . , am ∈ Rn such that Λ⊥(A) is non-trivial. Then we have that
λ1(Λ⊥(A)) ≥ mini∈[m]

1
‖ai‖ > 0.

Proof: Let x ∈ Λ⊥(A) be a non-zero vector, which exists since by the non-triviality assumption.
Since x ∈ rowspan(A), there exist j ∈ [m] such that 〈x, aj〉 6= 0. Since by definition 〈x, aj〉 ∈ Z,
we must in fact have |〈x, aj〉| ≥ 1. Thus, by Cauchy-Schwarz

1 ≤ |〈x, aj〉| ≤ ‖x‖‖aj‖ ⇒ ‖x‖ ≥
1
‖aj‖

≥ min
i∈[m]

1
‖aj‖

> 0 ,

as needed. �

5 Building a Lattice Basis

In this section, we will show that a lattice analogue of the basis extension theorem for linear
subspaces holds. Recall that for a finite dimensional linear subspace, any subset of linearly
independent vectors can be extended to a basis.

In the context of lattices, the direct analogue of this statement is unfortunately false. As an
example, it is easy to see that the vector 2e1 cannot be extended to a basis of Z2, since the vector
e1 will have to be expressed as 1

2 (2e1) (which is not an integral combination) regardless of how we
attempt to extend 2e2 to a basis. Note that the issue here is that the vector 2e2 can be scaled down
to a lattice vector in Z2. Vectors for which this is not possible are called primitive. More precisely,
y ∈ L is said to be primitive for L if ∀t ∈ R, ty ∈ L if and only if t ∈ Z. A natural question is
thus whether any set of primitive lattice vectors can be extended to basis? Starting from exactly
one vector, this will indeed turn out to be sufficient, as we will see below. However, already with
two vectors the situation is not quite so simple. As another example, we may examine the vectors
e1 and e1 + 2e2. Both these vectors are primitive but do not generate Z2, since e2 must be written
as 1

2 (e1 + 2e2)− 1
2 e1. To deal with this, we extend the notion of primitive to a set of vectors.

Definition 6 (Primitive) Let L ⊂ Rn be a lattice. A set of linearly independent vectors y1, . . . , yk ∈ L
is primitive w.r.t. L if L ∩ span(y1, . . . , yk).

The next theorem shows that any primitive set of vectors can indeed be extended to a lattice
basis.

Theorem 7 Let L ⊆ Rn be a k ≥ 1 dimensional lattice. Then L admits a basis of lattice vectors.
Furthermore, given b1, . . . , bi ∈ L primitive w.r.t. to L, there exists bi+1, . . . , bk ∈ L such that the
extension b1, . . . , bk is a basis of L.
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Our strategy for proving the above will be to pick an arbitrary primitive vector in L, continue
inductively on the lattice projected orthogonal to this vector, and then lift the projected basis to
the one for the full lattice. For this purpose we will need the following two lemmas. The first
relates to when a projection of a lattice is a lattice, and the second explains how to lift a basis of
a projected lattice.

Lemma 8 Let L ⊂ Rn be a lattice. Let b1, . . . , bk ∈ L and W := span(b1, . . . , bk)
⊥. Then πW(L) is a

lattice.

Proof: To show that πW(L) is a lattice we must show that it is an additive subgroup of Rn and
that it is discrete. The additive subgroup property follows directly from linearity of πW and that
L is an additive subgroup. Thus, the main property to check is that πW(L) is discrete.

By Lemma 3, it suffices to show that for any bounded set S ⊆ Rn that |S ∩ πW(L)| < ∞.
For this purpose, we will build an injective map τ : πW(L) → L satisfying that ‖τ(x)− x‖ ≤ R
where R = ∑k

i=1
1
2‖bi‖. Given such a τ, note that if x ∈ πW(L) ∩ S then τ(x) ∈ L ∩ (S + RBn

2 ).
By injectivity of τ and discreteness of L, we thus have that

|S ∩ πW(L)| ≤ |(S + RBn
2 ) ∩ τ(πW(L))| ≤ |(S + RBn

2 ) ∩ L| < ∞ ,

as needed. Thus it suffices to build the required τ. To define τ on x ∈ πW(L), we first pick x̂ ∈ L
such that πW(x̂) = x. Given that x̂− x ∈ W⊥ by construction, there exists a linear combination
∑k

i=1 ax,ibi = x̂− x (since span(b1, . . . , bk) = W⊥). We now define τ(x) = x+∑k
i=1(ax,i−bax,ie)bi,

where b·e rounds to the nearest integer. We now show that τ satisfies the desired properties. That
τ maps into L follows since

τ(x) = (x +
k

∑
i=1

ax,ibi)−
k

∑
i=1
bax,iebi = x̂︸︷︷︸

∈L

−
n

∑
i=1
bax,iebi︸ ︷︷ ︸
∈L

∈ L .

Injectivity of τ follows immediately from the fact that πW(τ(x)) = x, since b1, . . . , bk are in the
kernel of πW . Lastly, for the distance property, we see that

‖τ(x)− x‖ = ‖
k

∑
i=1

(ax,i − bax,ie)bi‖ ≤
k

∑
i=1

1
2
‖bi‖ = R ,

as needed. �

Lemma 9 Let L ⊂ Rn be k-dimensional lattice. Assume that b1, . . . , bi ∈ L is primitive w.r.t. L and
that b̃i+1, . . . , b̃k ∈ πW(L) is a basis of πW(L) where W := span(b1, . . . , bi)

⊥. Then for any choice of
bi+1, . . . , bk ∈ L such that πW(bj) = b̃j, j ∈ {i + 1, . . . , k}, the vectors b1, . . . , bk form a basis of L.

Proof: Take x ∈ L. To prove the lemma, we must show that we can express x as an integer
combination of b1, . . . , bk. Since these vectors are already linearly independent by construction,
this will suffice to prove that they form a basis of L.

Since by assumption b̃i+1, . . . , b̃k is a basis of πW(L), we may write πW(x) = ∑k
j=i+1 zjb̃j

where zj+1, . . . , zk ∈ Z. From here, we see that

πW(x−
k

∑
j=i+1

zjbj) = πW(x)−
k

∑
j=i+1

zjb̃j = 0⇒ x−
k

∑
j=i+1

zjbj ∈ span(b1, . . . , bi) .
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In particular, x− ∑k
j=i+1 zj ∈ L ∩ span(b1, . . . , bi), since L is an additive group. Since b1, . . . , bi

is primitive w.r.t. L, they form a basis for L ∩ span(b1, . . . , bk), and hence we may write x −
∑k

j=i+1 zjbj = ∑i
j=1 zibj, for z1, . . . , zi ∈ Z. Rearranging, we get x = ∑k

j=1 zjbj, as needed. �

We are now ready to give a proof of the main theorem.
Proof of Theorem 7: We first show that L admits a basis. The proof will proceed by induction
on the lattice dimension k.

To begin, we pick y ∈ L \ {0} arbitrarily (note that y exists since L has dimension at least 1).
Let L1 = span(y) ∩ L. Clearly L1 is a 1 dimensional sublattice of L. By Lemma 3, we can pick a
b1 ∈ L1 \ {0} to be a shortest non-zero vector of L1. The next claim shows that b1 is primitive.

Claim 10 L1 = L(b1).

Proof: Assume not, then there exists w ∈ L1 such that w /∈ Zb1. Since L1 is 1-dimensional and
b1 is non-zero, we have that w ∈ span(b1) and hence w = αb1 for some α ∈ R \Z. Examine
w′ = (α− bαc)b1. Since bαc ∈ Z and b1 ∈ L1, we must have that w′ = w− bαcb1 ∈ L1. Since
α ∈ R \Z, we have that α− bαc ∈ (0, 1) and hence

‖b1‖ > (α− bαc)‖b1‖ = ‖w′‖ > 0,

a clear contradiction to b1 being a shortest non-zero vector of L1. Therefore L1 = Zb1 = L(b1)

as needed. �

Note that if k = 1, b1 is the desired basis, and so we are done. If k ≥ 2, examine the projection
πb⊥1

(L), which by Lemma 8 is indeed a lattice. Since L2 has dimension k− 1, by the induction

hypothesis L2 admits a basis b̃2, . . . , b̃k. By construction, we may choose b2, . . . , bk ∈ L such that
πb⊥1

(bj) = b̃j ∀j ∈ {2, . . . , k}. By Lemma 9, b1, . . . , bk is the desired basis for L, as needed.
Using the first part, we can now easly show that any primitive set of vector b1, . . . , bi ∈ L can

be extended to a basis. The proof is essentially identical to the proof in the previous paragraph,
with the exception that we lift a basis from the projected lattice πspan(b1,...,bi)⊥

(L). We leave the
details to the reader. �

6 Proof of Theorem 2 (Lattice Representations)

We now have the tools to easily show that all definitions of lattices are equivalent. Note that if
L = {0}, the statement is trivial, so we may assume that L 6= {0}.

Firstly, if L = L(B) (i.e. Basis Rep. form), B non-singular, or L = Λ⊥(A) (i.e. Dual Rep.
form), we claim that L is indeed a lattice. In both cases, proving that L is an additive subgroup
of Rn is direct, i.e. showing that ∀x, y ∈ L, −x ∈ L, x + y ∈ L, so we leave the details to the
reader. To show discreteness, by Lemma 3 it suffices to show that λ1(L) > 0. For (Basis Rep.)
a non-zero lower bound is given by Lemma 4, since B is non-singular, and for (Dual Rep.) by
Lemma 5, since A must contains a least one non-zero row.

For the reverse direction, Theorem 7 shows that every lattice admits a basis. Thus, to finish the
proof, it suffices to show that L = L(B) can be expressed as Λ⊥(A). From basic linear algebra,
B = (b1, . . . , bk) admits a corresponding dual basis B∗ = (b∗1 , . . . , b∗k ), satisfying 〈bi, b∗j 〉 = 1 if
i = j and 0 if i 6= j, and span(B) = span(B∗). We now claim that L(B) = Λ⊥(B∗T). Assume that

8



x ∈ L(B), so x = Bz for z ∈ Zk. Then clearly x ∈ span(B) = span(B∗) = rowspan(B∗T). From
here, we see that

B∗Tx = B∗TBz = Ikz = z ∈ Zk ⇒ x ∈ Λ⊥(B∗T) ,

as needed. Now assume that x ∈ Λ⊥(B∗T). Letting x′ = BB∗Tx, note that x′ ∈ L(B) since by
assumption B∗Tx ∈ Zk. Thus it remains to show that x = x′. Since by construction B∗T(x− x′) =
0 and both x, x′ ∈ span(B∗), we indeed get x = x′, as needed.

7 Equivalent Lattice Bases

From Theorem 7, we see that in fact a lattice can have many equivalent bases. A first question we
ask is given two lattices bases B1, B2, when is it that L(B1) = L(B2)? In this section, we derive
the basic relationship between equivalent lattices bases.

Definition 11 (Unimodular matrix) A matrix U ∈ Zn×n is unimodular if det(U) = ±1.

For example, the matrix (
1 2
0 1

)
is unimodular. The following lemma tells us that the inverse of a unimodular matrix is also
unimodular (so it follows that the set of unimodular matrices forms a group under matrix mul-
tiplication).

Lemma 12 U ∈ Zn×n is unimodular iff U−1 ∈ Zn×n.

Proof: Assume U is unimodular. Let Mij ∈ Z(n−1)×(n−1) denote the principal minor of U ob-
tained by deleting the ith row and jth column. Then by Cramer’s rule, we know that U−1

ij =

−1i+jdet(Mij)/det(U). Since the determinant of an integer matrix is an integer, and since
det(U) = ±1, we have that U−1 ∈ Zn×n as needed.

Assume U−1 ∈ Zn×n. Then note that 1 = det(I) = det(UU−1) = det(U)det(U−1). Since
both U and U−1 are integer matrices, we know that both det(U), det(U−1) ∈ Z. Since the only
integers dividing 1 are ±1, we must have that det(U) = ±1 as needed. �

The next lemma tells us the two lattices bases generate the same lattice if and only if they are
related by a unimodular transformation.

Lemma 13 For non-singular matrices B1, B2 ∈ Rn×k, L(B1) = L(B2) iff and only if B1 = B2U for
some unimodular matrix U ∈ Zk×k.

Proof: Assume L(B1) = L(B2). Since each column of B1 is in L(B2), we can write B1 = B2U
for some U ∈ Zk×k. Similarly, we get that B1 = B2U′, for some U′ ∈ Zk×k. Hence we get that
B1 = B2U = B1U′U. Since B1 is non-singular, B1U′U = B1 ⇔ U′U = Ik, where Ik is the k× k
identity. Hence U is unimodular as needed.

Assume B1 = B2U for some unimodular matrix U ∈ Zk×k. Clearly L(B1) ⊆ L(B2). Since U
is unimodular, B2 = B1U−1, where U−1 ∈ Zk×k, and hence L(B2) ⊆ L(B1), as needed. �

As an immediate corollary, we obtain that B is a basis of Zn if and only if it is unimodular
(verify this with the examples in Figure 2).

The following lemma, which we give as an exercise, provides a different way to check whether
two lattice bases are equivalent.

9



Exercise 2 Two bases are equivalent if and only if one can be obtained from the other by the
following operations on columns:

1. bi ← bi + kbj for some k ∈ Z,

2. bi ↔ bj,

3. bi ← −bi.
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