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1 Fundamental Parallelepiped and the Determinant

Definition 1 (Fundamental Parallelepiped) Let L = L(B) ⊆ Rn for some basis matrix B ∈
Rn×k. We define the fundamental parallelepiped of L with respect to B as P(B) = B[0, 1)k def

= {Bx : x ∈ [0, 1)k}.

Examples of fundamental parallelepipeds are shown by the gray areas in Figure 1. Notice
that P(B) depends on the basis B. As is easily seen in the pictures, if we place one copy of P(B)
at each lattice point in L(B) we obtain a tiling of the entire span(L(B)) (we prove this in Lemma
4). See Figure 2.
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Figure 1: Some lattice bases

Now that we know that every lattice admits a basis, a next fundamental question is: given
linearly independent vectors b1, . . . , bn ∈ L how can we tell if they form a basis of L? As we have
seen previously, not every set of n linearly vectors in Zn is a basis of Zn. One possible answer is
given in the following lemma.

It says that the basic parallelepiped generated by the vectors should not contain any lattice
points, except the origin. As an example, notice that the basic parallelepiped shown in Figure
1(c) contains the lattice point (1, 0) whereas those in Figures 1(a) and 1(b) do not contain any
nonzero lattice points.

Lemma 2 Let L be a lattice of rank n, and let b1, b2, . . . , bn ∈ L be n linearly independent lattice vectors.
Then b1, b2, . . . , bn form a basis of L if and only if P(b1, b2, . . . , bn) ∩ L = {0}.
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Figure 2: Tiling span(L(B)) with P(B)

Proof: Assume first that b1, . . . , bn form a basis of L. Then, by definition, L is the set of all
their integer combinations. Since P(b1, . . . , bn) is defined as the set of linear combinations of
b1, . . . , bn with coefficients in [0, 1), the intersection of the two sets is {0}.

For the other direction, assume that P(b1, b2, . . . , bn) ∩ L = {0}. Since L is a rank n lattice
and b1, . . . , bn are linearly independent, we can write any lattice vector x ∈ L as ∑ yibi for some
yi ∈ R. Since by definition a lattice is closed under addition, the vector x′ = ∑(yi−byic)bi is also
in L. By our assumption, x′ = 0. This implies that all yi are integers and hence x is an integer
combination of b1, . . . , bn. �

Given that a lattice L lives in an ambient space, one interesting question to ask is how can
we measure the “density” of L within its ambient space? In particular, the length of the shortest-
vector λ1(L), certainly gives one such measure, i.e. the smaller λ1, the denser the lattice. How-
ever, this provides only a one dimensional notion of density. Another measure, which plays a
crucial role in the theory of lattices, is given by the following quantity.

Definition 3 (Determinant) Let L = L(B) ⊆ Rn for some basis B ∈ Rn×k. Define the determinant
of L to be det(L) =

√
det(BTB).

For the above definition, we first note that det(L) is invariant under the choice of basis. To
see this, note that any other basis of L has the form BU for some unimodular matrix U ∈ Zk×k.
Therefore √

det((BU)TBU) =
√

det(UTBTBU) =
√

det(BTB)det(U)2 =
√

det(BTB),

as needed. In the special case where k = n, note that det(L) = |det(B)|.
We now show that the determinant corresponds to inverse density of lattice within its ambient

space. In particular, we show that for a lattice L(B), the fundamental parallelepiped P(B)
tiles space with respect to L and has volume exactly det(L). Hence every lattice point can
be associated with det(L) distinct units of volume in the ambient space, which justifies the
interpretation of inverse density.

Lemma 4 Let B = (b1, . . . , bk) denote a basis for a lattice L. Then for P(B), the following holds:

1. volk(P(B)) = det(L).

2. ∀x ∈ span(L), there is a unique y ∈ L such that x ∈ y + P(B). In particular, span(L) =

L+ P(B), i.e. P(B) tiles space with respect to L.

Proof:
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Proof of 1. Let O ∈ Rn×k be a matrix whose columns form an orthonormal basis of span(L).
Clearly, the linear transformation OT is an isometry (preserves distances) when restricted to
span(L), and hence preserves volumes. Therefore volk(OTP(B)) = volk(P(B)). Since OTP(B) =
OTB[0, 1)k, where OTB is a k× k matrix, we have that volk(OTB[0, 1)k) = |det(OTB)|volk([0, 1)k) =

|det(OTB)|. Since for any x ∈ span(L) we have OOTx = x, we see that

det(OTB)2 = det(BTO)det(OTB) = det(BTOOTB) = det(BTB) = det(L)2.

Therefore volk(P(B)) = |det(OTB)| = det(L).

Proof of 2. Take x ∈ span(L). Let b1, . . . , bk be the columns of B. Since they form a basis of
span(L), there is a unique way to express x = ∑k

i=1 aibi for a1, . . . , ak ∈ R. Let y = ∑k
i=1baicbi ∈

L. Since ai − baic ∈ [0, 1), we have that x− y ∈ P(B) ⇒ x ∈ P(B) + y. Since this holds for any
vector span(L), and P(B) ⊆ span(L), we get that span(L) = L+ P(B).

It remains to show that y is the unique lattice vector such that x ∈ P(B)+ y with this property.
In particular for x ∈ L distinct from y, we wish to show that (P(B) + y) ∩ (P(B) + x) = ∅.
Assume not, then by rearranging we must have that x− y ∈ P(B)−P(B) = B([0, 1)n− [0, 1)n) =

B(−1, 1)n. Since x − y ∈ L, we must be able to write x − y = ∑n
i=1 zibi for z1, . . . , zn ∈ Z.

Since B is non-singular, from the inclusion x − y ∈ B(−1, 1)n, we must have that z1, . . . , zn ∈
(−1, 1) ∩Z = {0}. Therefore z1 = · · · = zn = 0, and hence x = y, a clear contradiction. �

Given the above, we can define the following operation which will be important in the segway:

Definition 5 (Parallelepiped Mod) Let L ⊆ Rn be a lattice with basis B = (b1, . . . , bk) ∈ Rn×k.
For a vector x ∈ span(L), where x = ∑k

i=1 aibi, we define x (mod P(B)) to the vector ∑k
i=1(ai −

baic)bi ∈ P(B).

We note that the above operation is well-defined from Lemma 4. Furthermore, it is easy to
check that for x, y ∈ span(L(B)), that x− y ∈ L(B) iff x (mod P(B)) = y (mod P(B)).

2 Packing, Covering and Tiling

In the previous section, we saw how any fundamental parallelepiped of a lattice L tiles space
with respect to L. We shall now examine generalizations of the tiling concept, and show how
they imply some very useful integral and volume inequalities.

Let L ⊆ Rn be a lattice and let F ⊆ span(L) be a measurable set (with respect to Lesbegue
measure on span(L)). We define F to be

1. L-packing if ∀x, y ∈ L, x 6= y, (x + F) ∩ (y + F) = ∅

2. L-covering if L+ F = span(L).

3. L-tiling (or a fundamental domain of L) if F is both L-packing and L-covering.

Remark 6 From the above definitions, by Lemma 4 we see that for a lattice L and any basis B of
L that P(B) is a fundamental domain of L.

We derive the following simple equivalence.
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Lemma 7 F ⊆ span(L) is L-(packing, covering, tiling) if and only if

∀x ∈ span(L), |(L+ x) ∩ F| (≤,≥,=) 1. (1)

Furthermore F ⊆ span(L) is non-empty and L-packing⇔ (F− F) ∩ L = {0}.

Proof: Assume F is L-packing. Take x ∈ span(L). If |(L + x) ∩ F| ≥ 2, then we can pick
distinct w, z ∈ F such that w, z ∈ L+ x. Now note that w ∈ F = F + 0 and w = z + (w− z) ∈
F + (w − z). Therefore (F + 0) ∩ (F + w − z) 6= ∅. But 0 and w − z are distinct points in L,
a contradiction to our assumption on F. Hence |(L + x) ∩ F| ≤ 1 as needed. Assume F is L-
covering. Take x ∈ span(L). Since L+ F = Rn, there exists y ∈ L such that x ∈ y + F. Therefore
x− y ∈ F, and since −y ∈ L we get that |(L+ x) ∩ F| ≥ 1 as needed. The claim for F an L-tiling
follows directly from the previous assertions.

We prove the furthermore. We first note that ∃x ∈ span(L) such that |(L+ x) ∩ F| ≥ 2 ⇔
∃x1, x2 ∈ F, such that x1− x2 ∈ L \ {0} ⇔ ((F− F)∩L) \ {0} 6= ∅. Therefore F is not L-packing
if and only if ((F− F) ∩ L) \ {0} 6= ∅, as needed. �

The following theorem, gives us some fundamental properties of packing, covering and tiling
sets. In particular, it shows that every fundamental domain of a lattice has the same volume
(which we currently only knew for fundamental parallelipipeds).

Theorem 8 Let L ⊆ Rn be a k ≥ 1 dimensional lattice and let W = span(L). Let F ⊆W be measurable
set and g : span(L)→ R+ be a measurable function with respect to the k-dimensional Lesbesgue measure
on W. If F is a L-(packing, covering, tiling) we have that∫

F
∑

y∈L
g(y + x)dvolk(x) (≤,≥,=)

∫
W

g(x)dvolk(x),

where volk denotes the k-dimensional Lebesgue measure on W. Furthermore, if F is a L-(packing, covering,
tiling) we have that

volk(F) (≤,≥,=) det(L).

Proof: By choosing an orthormal basis for W and applying a change of coordinates, we may as-
sume that W = Rn and that k = n. Since g ≥ 0 and measurable, we have that m(A) =

∫
A g(x)dx,

for A ⊆ Rn measurable, defines a measure on Rn. Let 1y+F, y ∈ L, denote the indicator function
of y + F. Since y + F is measurable, we get that 1F+y is non-negative measurable function. Since
L is countable, by the monotone convergence theorem we have that

∑
y∈L

m(y + F) = ∑
y∈L

∫
Rn

1y+F(x)g(x)dx = ∑
y∈L

∫
Rn

1F(x)g(x + y)dx

=
∫

Rn
∑

y∈L
1F(x)g(x + y)dx =

∫
F

∑
y∈L

g(x + y)dx

If F is L-packing, then collections of sets y + F ⊆ Rn, for y ∈ L, are all disjoint. Therefore we
have that ∫

Rn
g(x)dx = m(Rn) ≥ m(L+ F) = ∑

y∈L
m(y + F) =

∫
F

∑
y∈L

g(x + y)dx
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as needed. If F is L-covering, we have that Rn ⊆ L+ F, and hence

m(Rn) = m(L+ F) ≤ ∑
y∈L

m(y + F) =
∫

F
∑

y∈L
g(x + y)dx

as needed. If F is L-tiling, we get the desired equality by combining the above two inequalities.
We now prove the furthermore. Let B ∈ Rn×n denote a basis for L. From Lemma 4, we know

that B[0, 1)n is L-tiling and satisfies voln(B[0, 1)n) = det(L). From the first part of the lemma, we
have that

voln(F) =
∫

Rn
1F(x)dx =

∫
B[0,1)n

∑
y∈L

1F(x + y)dx =
∫

B[0,1)n
|(L+ x) ∩ F|dx

If F is L-(packing, covering, tiling) we have that ∀x ∈ Rn, |(L+ x)∩ F| (≤,≥,=) 1. Therefore
if F is L-(packing, covering, tiling) we have that

voln(F) =
∫

B[0,1)n
|(L+ x) ∩ F|dx (≤,≥,=)

∫
B[0,1)n

1dx = voln(B[0, 1)n) = det(L)

as needed. �

3 Sublattices and Quotient Groups

For a lattice L ⊆ Rn of rank k, we define the quotient group span(L)/L = {x + L : x ∈ span(L)}.
It is easy to check that span(L)/L forms a group under addition, where (x + L) + (y + L) =

(x + y) + L. Note that x + L = y + L ⇔ x− y ∈ L. For convenience of notation, we will write
x ≡ y (mod L) if x− y ∈ L. Note that while span(L)/L is infinite, the “correct” notion of size
is from the volumetric standpoint where it makes sense to interpret det(L) as the “size” of the
group. Here we justify this by the fact that any fundamental domain F of L contains a unique
representative from every element of span(L)/L and volk(F) = det(L). The geometry of the
group span(L)/L will play an important role in many of the lattice structure results. It is easy
to see (we prove it in Lemma 9) that the span(L)/L is isomorphic (algebraically speaking) to the
torus Rk/Zk, i.e. the group of real vectors under addition modulo 1.

For a lattice L ⊆ Rn, a lattice L′ ⊆ L is a called a sublattice of L′. For example, the lattice L′ =
{(x, y) ∈ Z2 : x + y ≡ 0 (mod 2)} is a sublattice of Z2. Analogous to the above construction, we
define the quotient group L/L′ = {x + L′ : x ∈ L}. As opposed to the previous setting, |L/L′|
is generally finite (as long as span(L′) = span(L)). Perhaps the simplest class of sublattices of L
that will occur frequently throughout this course are of the form mL for m ∈N.

Here we describe the simple algebraic structure of the quotient group for two of the cases
mentioned above.

Lemma 9 Let L ⊆ Rn be a k ≥ 1 dimensional lattice. The following holds:

1. span(L)/L ∼= Rk/Zk.

2. For m ∈N, L/mL ∼= Zk
m and |L/mL| = mk. Furthermore det(mL) = mkdet(L).

Proof:
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Proof of 1: Let b1, . . . , bk denote any basis for L. For x ∈ span(L), let T : span(L) → Rk

be the coordinate map which sends x = ∑k
i=1 aibi ∈ span(L) to (a1, . . . , ak). Given that T is

linear and bijective, and since T(span(L)) = Rk and T(L) = Zn, we have that span(L)/L ∼=
T(span(L)/T(L) = Rk/Zk as needed.

Proof of 2: Let b1, . . . , bk denote any basis for L. Clearly L(mb1, . . . , mbk) = mL(b1, . . . , bk) =

mL, and hence mb1, . . . , mbk is a basis for mL. Let B = (b1, . . . , bk) denote the associated basis
matrix. Then by definition

det(mL) =
√

det((mB)T(mB)) = mk
√

det(BTB) = mdet(L).

Let τ : L → Zk
m denote the map which sends x = ∑k

i=1 aibi ∈ L to (a1 (mod m), . . . , ak
(mod m)). Clearly this map is well defined since b1, . . . , bk are a basis of L. Furthermore, by the
properties of addition mod m we clearly have that τ(x + y) = τ(x) + τ(y) for any x, y ∈ L, and
hence τ is a homomorphism from L to Zk

m. Next, we note that the τ is surjective onto Zk
m since

τ(B{0, 1, . . . , m− 1}k) = Zk
m. Lastly, for x = ∑k

i=1 aibi, we see that τ(x) ≡ 0 (mod Zk
m) ⇔ ai ≡ 0

(mod m) ∀i ∈ [k]⇔ x ∈ mL. Hence the kernel of τ is mL, and therefore L/mL ∼= Zk
m as needed.

�

In the above Lemma, we saw that |L/mL| = det(mL)/det(L). In the following theorem, we
show that this is also the case for general sublattices.

Lemma 10 Let L ⊆ Rn be a k ≥ 1 dimensional lattice, and let L′ be a sublattice of L. The following
holds:

1. |L/L′| < ∞ if and only if span(L) = span(L′).

2. Assume |L/L′| < ∞. Then |L/L′| = |L ∩ P(B′)| = det(L′)/det(L), for any basis B′ of L′.

Proof:

Proof of 1. We prove the first assertion. First, assume that |L/L′| < ∞. Take x ∈ L. Since L/L′
is a finite group, we must that kx ≡ 0 (mod L′) for some k ∈N. Hence kx ∈ L′ ⇒ x ∈ span(L′).
Assume that span(L) = span(L′). Let B′ denote a basis of L′. Note that for any x ∈ L,
since x ∈ span(L′), by Lemma 4 we have that the map x → x (mod P(B′)) (see Definition
5) sends x to the unique representative of x + L′ in P(B′). From this reasoning, we see that
|L/L′| = |P(B′) ∩ L|. Since P(B′) is a bounded region and since L is a lattice, we have that
|P(B′) ∩ L| < ∞ as needed.

Proof of 2. Assume that |L/L′| < ∞. Let B and B′ denote a basis for L and L′ respec-
tively. From here, we have that P(B) and P(B′) are fundamental domains of L and L′ re-
spectively. That |P(B′) ∩ L| = |L/L′| follows directly from the proof of 1, so it remains to
show that |L/L′| = det(L′)/det(L). Letting W = span(L), from the first part, we know that
W = span(L′). Therefore by Theorem 8, and since P(B) is a fundamental domain of L, we have
that

det(L′) = volk(P(B′)) =
∫

W
1P(B′)(x)dvolk(x) =

∫
P(B)

∑
y∈L

1P(B′)(y + x)dvolk(x)

=
∫
P(B)
|(L+ x) ∩ P(B′)|dvolk(x).
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Let A = P(B′) ∩ L. From the first part of the lemma, we know that |A| = |L/L′|, and in
particular that L′ + A = L. Since each coset L′ + a, a ∈ A, is disjoint and since P(B′) is a
fundamental domain of L′ we have that for any x ∈ Rn, |(L + x) ∩ P(B′)| = |(L′ + A + x) ∩
P(B′)| = |A| = |L/L′|. Therefore

det(L′) =
∫
P(B)
|(L+ x) ∩ P(B′)|dvolk(x) = |L/L′|

∫
P(B)

dvolk(x) = |L/L′|det(L),

as needed. �

The following exercise gives a simple bound on how “far” a sublattice is from the full lattice.

Exercise 1 Let L ⊆ Rn be a lattice, and let L′ ⊆ L be a full-rank sublattice of L. Letting
m = |L/L′|, show that mL ⊆ L′.

4 Lattice Geometry

4.1 The Successive Minima and the Covering Radius

In terms of measurable lattice parameters, we have so far seen the shortest non-zero vector and
the determinant. Here we give some other geometric lattice parameters that encode much useful
information about a lattice. We begin with generalizations of the λ1 parameter known as the
successive minima. These parameters help us attain a finer understanding of the geometry of the
lattice.

Definition 11 (Successive Minima) Let L ⊆ Rn be a rank k ≥ 1 lattice. For 1 ≤ i ≤ k, we define
the ith minima of L with as

λi(L) = inf{s ≥ 0 : dim(L ∩ sBn
2 ) ≥ i}.

Remark 12 We first note that for i = 1, the above definition of λ1 = inf{s ≥ 0 : dim(sBn
2 ∩ L) ≥ 1}

seems somewhat different from the original definition λ1(L) = infy∈L\{0}‖y‖. To see that the def-
initions are equivalent, note that dim(sBn

2 ∩ L) ≥ 1⇔ ∃y ∈ L \ {0} s.t. ‖y‖ ≤ s. From this, it is
direct to see that both definitions yield exactly the same value.

By definition, it is clear that λ1(L) ≤ λ2(L) ≤ · · · ≤ λk(L). We now show that successive
minima are in fact well-defined, and that there are lattice vectors that attain them.

Lemma 13 Let L ⊆ Rn be a k ≥ 1 dimensional lattice. Then there exists linearly independent vectors
y1, . . . , yk ∈ L such that ‖yi‖ = λi(L). In particular, λi(L) < ∞ for all i ∈ [k].

Proof: Let b1, . . . , bk denote a basis for L. Let R = max1≤i≤k‖bi‖. Clearly dim(RBn
2 ∩ L) =

dim(L) = k. Therefore, λi(L) ≤ R for all i ∈ [k]. Hence, if there exists y ∈ L such that
‖y‖ = λi(L), for any i ∈ [k], we must have that y ∈ RBn

2 .
We recursively choose y1, . . . , yk ∈ L \ {0} as follows. Let V0 = {0}, and let y1 be a shortest

vector in (L ∩ RBn
2 ) \ V0. For i, 2 ≤ i ≤ k, let yi be the shortest vector in L ∩ RBn

2 \ Vi−1 where
Vi−1 = span(y1, . . . , yi−1). We note that y1, . . . , yk exist since L ∩ RBn

2 is finite (by discreteness of
L) and since dim(L ∩ RBn

2 ) = k.
I claim that y1, . . . , yk are linearly independent and that ‖yi‖ = λi(L), i ∈ [k]. Since each

vector is chosen outside the span of the previous vectors, we have that y1, . . . , yk are linearly
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independent. Therefore dim(Vi) = span(y1, . . . , yi) = i for i ∈ {0, . . . , k}. Furthermore, by
construction, it is clear that ‖y1‖ ≤ ‖y2‖ ≤ · · · ≤ ‖yk‖. For i ∈ [k], let ri = ‖yi‖. From here see
that dim(riBn

2 ∩ L) ≥ dim(Vi) = i. Hence ri = ‖yi‖ ≥ λi(L) by definition. We now show that
ri ≤ λi(L). For i ∈ [k], and 0 < ε ≤ ri, take y ∈ L ∩ (ri − ε)Bn

2 . We claim that y ∈ Vi−1. If not,
then by our choice of yi, we must have that ‖yi‖ = ri ≤ ‖y‖ ≤ ri − ε < ri, a clear contradiction.
Therefore dim(L ∩ (ri − ε)Bn

2 ) ≤ dim(Vi−1)) = i− 1, and hence ri ≤ λi(L) as needed. �

The following parameter gives us another important way to measure the sparsity of a lattice.

Definition 14 (Covering Radius) Let L ⊆ Rn be a k-dimensional lattice. We define the covering
radius of L to be

µ(L) = inf{s ≥ 0 : span(L) ⊆ sBn
2 + L}

For x ∈ Rn, define d(L, x) = infy∈L‖x − y‖ to be the distance from x to L. Expressed equivalently,
µ(L) = sup{d(L, x) : x ∈ span(L)}.

Remark 15 To see the equivalence above, note that d(L, x) ≤ s ⇔ x ∈ L + sBn
2 . Therefore

span(L) ⊆ L+ sBn
2 ⇔ s ≥ sup{d(L, x) : x ∈ span(L)}. Since µ(L) corresponds to the smallest

such s, we get that µ(L) = sup{d(L, x) : x ∈ span(L)}, as needed.

Lemma 16 For a full rank lattice L ⊆ Rn, µ(L) ≤ ∑n
i=1

1
2 λi(L).

Proof: To upper bound µ(L), it suffices to show that for any x ∈ Rn there exists y ∈ L such
that ‖x − y‖ ≤ ∑n

i=1
1
2 λi(L). Take x ∈ Rn, and let y1, . . . , yn ∈ L denote vectors attaining the

successive minima of L. Since y1, . . . , yn are linearly indepedent, we may express x = ∑n
i=1 aiyi

for a1, . . . , an ∈ R. Let y = ∑n
i=1baieyi ∈ L. Then note that

‖x− y‖ = ‖
n

∑
i=1

(ai − baie)yi‖ ≤
n

∑
i=1

1
2
‖yi‖ =

n

∑
i=1

1
2

λi(L)

as needed.
�

4.2 Minkowski’s First and Second Theorem

Theorem 17 (Blichfeldt’s Theorem) Let L ⊆ Rn be a full dimensional lattice. Then for any measur-
able set A ⊆ Rn such that voln(A) > det(L) there exists distinct w, z ∈ A such that w− z ∈ L.

Proof: Let B be a basis for L. Since P(B) is a fundamental domain of L by Theorem 8 we have
that

voln(A) =
∫

Rn
1A(x)dx =

∫
P(B)

∑
y∈L

1A(y + x)dx =
∫
P(B)
|(L+ x) ∩ A|dx

Assume that for all x ∈ F, |(L+ x) ∩ A| ≤ 1. Then note that

voln(A) =
∫
P(B)
|(L+ x) ∩ A|dx ≤

∫
P(B)

dx = voln(P(B)) = det(L),

a clear contradiction to the assumption that voln(A) > det(L). Therefore we may pick x ∈ F such
that |(L+ x) ∩ A| ≥ 2 (since this number is an integer). Hence we may pick distinct elements
w, z ∈ (L+ x) ∩ A, where we note that x− z ∈ L as needed. �

We will need the following simple lemma about convex sets.

8



Lemma 18 Let K ⊆ Rn be a non-empty convex set. Then for any s, t ≥ 0, sK + tK = (s + t)K.
Furthermore, if K is symmetric, then for any s, t ∈ R, sK + tK = (|s|+ |t|)K.

Proof: If s = t = 0, then since K is non-empty, we clearly have that (s + t)K = 0(K) = {0} and
sK + tK = {0}+ {0} = {0}, as needed. Therefore, we may assume that s + t > 0.

Any element in (s + t)K can be written as (s + t)x for x ∈ K. Given that (s + t)x = sx + tx ∈
sK + tK, we get that (s + t)K ⊆ sK + tK as needed.

Take z ∈ sK + tK. Here z = sx+ ty for some x, y ∈ K. By convexity and the fact that s+ t > 0,
we have that s

s+t x + t
s+t y ∈ K. Therefore z = (s + t)

( s
s+t x + t

s+t y
)
∈ (s + t)K as needed.

The furthermore follows directly from the first part after noting that sK = |s|K if K is sym-
metric. �

Theorem 19 (Minkowski’s Convex Body Theorem) Let L ⊆ Rn be a full dimensional lattice. Let
K ⊆ Rn be a symmetric convex set with voln(K) > 2ndet(L). Then K contains a non-zero lattice vectors.

Proof: We give two different proofs. One using Blichfeldt’s Theorem and the second using lattice
packing.

Proof 1. By Lemma 9, we know that det(2L) = 2ndet(L). Since voln(K) > det(2L), by Blich-
feldt’s Theorem there exists distinct w, z ∈ K such that w− z ∈ L. Let y = 1

2 (w− z). Note that
since w− z ∈ 2L \ {0}, we have that y = 1

2 (w− z) ∈ L \ {0}. Furthermore, since K is symmetric,
note that z ∈ K ⇒ −z ∈ K. Next, by convexity of K we have that y = 1

2 (w− z) ∈ K. Hence K
contains a non-zero lattice point as claimed.

Proof 2. We prove the converse, that is the K ∩ L = {0} ⇒ voln(K) ≤ 2ndet(L). Assume that
K ∩ L = {0}. By Lemma 7, we know that 1

2 K is L-packing if and only if ( 1
2 K − 1

2 K) ∩ L = {0}.
By Lemma 18, since K is symmetric 1

2 K − 1
2 K = K. Since by assumption K ∩ L = {0}, we

therefore have that 1
2 K is L-packing. By Theorem 8, since 1

2 K is L-packing, voln(
1
2 K) ≤ det(L)⇔

voln(K) ≤ 2ndet(L) as needed. �

Theorem 20 (Minkowski’s First Theorem) For any full-rank lattice L of rank n,

λ1(L) ≤ 2
det(L) 1

n

voln(Bn
2 )

1
n
≤
√

ndet(L) 1
n .

Proof: Let s = 2 det(L) 1
n

voln(Bn
2 )

1
n

. Notice that for any ε > 0, that voln(s(1+ ε)Bn
2 ) = (1+ ε)nsnvoln(Bn

2 ) =

(1+ ε)n2ndet(L) > 2ndet(L). Since s(1+ ε)Bn
2 is a symmetric convex body, by Theorem 19, there

exists y ∈ s(1 + ε)Bn
2 ∩ L, y 6= 0. Since ‖y‖ ≤ s(1 + ε), we clearly have that λ1(L) ≤ ‖y‖ ≤

s(1+ ε). Since this holds for all ε > 0, we have that λ1(L) ≤ s, as needed. Since [− 1√
n , 1√

n ]
n ⊆ Bn

2 ,
we have that

voln(Bn
2 )

1
n ≥ voln([−

1√
n

,
1√
n
]n)

1
n =

2√
n

.

The claim follows by plugging in the lower bound on voln(Bn
2 ). �

The term det(L)1/n might seem strange at first, but is in fact very natural: it makes sure that
the expression scales properly. Indeed, consider the lattice cL obtained by scaling L by a factor
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of c. Then clearly λ1(cL) = cλ1(L). On the other hand, we have det(cL) = cndet(L), so the right
hand side also scales by a factor of c, as we expect. So we could equivalently state Minkowski’s
first theorem as saying that any rank-n lattice with determinant 1 contains a nonzero vector of
length at most

√
n.

How tight is this bound? It is easy to see that there are cases in which it is very far from being
tight. Consider for example the lattice generated by (ε, 0)T and (0, 1/ε)T for some small ε > 0.
Its determinant is 1 yet its shortest nonzero vector is of length ε. On the other hand, consider
the lattice Zn. Its determinant is 1 whereas λ1(Z

n) = 1, so the bound is closer to being tight,
but still not tight. In fact, it is known that for any n there exists a rank n lattice of determinant 1
whose shortest nonzero vector is of length at least c

√
n for some constant c. So up to a constant,

Minkowski’s bound is tight. In fact, by a slightly more careful analysis, one can improve the
√

n
bound to c

√
n for some constant c < 1.

Finally, we mention that in the discussion above we considered the `2 norm. It is easy to
extend Minkowski’s theorem to other norms. All that is required is to compute the volume of a
ball under the given norm.

Minkowski’s first theorem considers the shortest nonzero vector, i.e., the first successive min-
imum λ1. A strengthening of the bound is given by what is known as Minkowski’s second theo-
rem. Instead of considering just λ1, this bound considers the geometric mean of all λi (which is
clearly at least λ1).

Theorem 21 (Minkowski’s second theorem) For any full-rank lattice L of rank n,( n

∏
i=1

λi(L)
)1/n

≤ 2
det(L) 1

n

voln(Bn
2 )

1
n
≤
√

ndet(L)1/n.

Proof: For i ∈ [n], let λi = λi(L). Let x1, . . . , xn ∈ L be linearly independent vectors achieving
the successive minima, i.e. ‖xi‖ = λi for i ∈ [n]. Let x̃1, . . . , x̃n be their Gram-Schmidt orthogo-
nalization. Consider the open ellipsoid with axes x̃1, . . . , x̃n and lengths λ1, . . . , λn,

E =
{

y ∈ Rn
∣∣∣ n

∑
i=1

(
〈y, x̃i〉
‖x̃i‖ · λi

)2

< 1
}

.

See Figure 3. We compute the volume of E. Let Q = ( x̃1
‖x̃1‖ , . . . , x̃n

‖x̃n‖ )
T ∈ Rn×n, the ma-

trix with rows corresponding to the normalized Gram-Schmidt vectors of x1, . . . , xn, and D =

( 1
λ1

e1, . . . , 1
λn

en) ∈ Rn×n, the diagonal matrix with diagonal 1
λ1

, . . . , 1
λn

. From here, we see that

E = {x ∈ Rn : ‖DQx‖2 < 1} = (DQ)−1{x ∈ Rn : ‖x‖2 < 1} = QT(λ1e1, . . . λnen)int(Bn
2 ),

since Q is an orthogonal matrix and D is diagonal. Therefore

voln(E) = |det(QT(λ1e1, . . . λnen))|voln(int(Bn
2 )) = (

n

∏
i=1

λi)voln(Bn
2 )

We claim that E does not contain any non-zero lattice points. Indeed, take any nonzero
y ∈ L and let 1 ≤ k ≤ n be the largest index such that ‖y‖ ≥ λk(Λ). It must be that y ∈
span(x̃1, . . . , x̃k) = span(x1, . . . , xk), since otherwise x1, . . . , xk, y are k + 1 linearly independent
lattice vectors of length less than λk+1(L). Now,

n

∑
i=1

( 〈y, x̃i〉
‖x̃i‖ · λi

)2
=

k

∑
i=1

( 〈y, x̃i〉
‖x̃i‖ · λi

)2
≥ 1

λ2
k

k

∑
i=1

( 〈y, x̃i〉
‖x̃i‖

)2
=
‖y‖2

λ2
k
≥ 1
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0 x1

x2

x̃2

Figure 3: The ellipsoid E. The vector x1 is on the boundary of E, and x2 is strictly outside.

and therefore, y /∈ E.
By Minkowski’s convex body theorem, vol(E) ≤ 2ndet(L). But on the other hand,

voln(E) =
( n

∏
i=1

λi

)
voln(Bn

2 ) ≥
( n

∏
i=1

λi

)( 2√
n

)n
.

Combining the two bounds, we obtain that

( n

∏
i=1

λi

)1/n
≤ 2

det(L) 1
n

voln(Bn
2 )

1
n
≤
√

ndet(L)1/n.

�
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