
Mastermath, Spring 2018
Intro to Lattice Algs & Crypto Lecture 3

20/02/18

Lecturers: D. Dadush, L. Ducas
Scribe: K. de Boer

1 Introduction

In this part of the lecture notes, three topics are treated. First we will look at a concrete application
of Minkowski’s convex body theorem: the two-squares theorem. Second, we treat projected
lattices and the related Gram-Schmidt orthogonalization procedure. We will also consider the
so-called Babai fundamental domain. The third and last subject we will cover is the Lagrange
reduction algorithm, which finds a short basis for a given two-dimensional lattice. We will
consider the running time and correctness of this algorithm rigorously.

2 The two-squares theorem

The two-squares theorem is a number-theoretic result which can be proven fairly elegant by
means of lattice theory.

Theorem 1 Any prime p ≡ 1 modulo 4 can be written as the sum of two squares. That is, p = x2 + y2

for some x, y ∈ Z.

Proof: The group of units (Z/pZ)∗ of the integers mod p has order p− 1. We have 4 | p− 1,
and therefore there must exist a primitive fourth root of unity i ∈ Z/pZ, i.e., an element i such
that i4 ≡ 1 mod p and i2 ≡ −1 mod p.

Now, construct the following lattice Λ = {(x, y) ∈ Z2 | x + iy ≡ 0 mod p}. As it is a additive
subgroup of Z2, it is indeed a lattice.

• Note that the determinant equals p, which follows from the following observation. The
lattice Λ equals ker(φ), where φ : Z2 → Z/pZ sends (x, y) 7→ x + iy mod p surjectively.
Applying an exercise of last week, yields

det(Λ) = det(kerφ) =
det(kerφ)

det(Z2)
= [Z2 : kerφ] = |Z2/kerφ| = |im(φ)| = p.

• For all v ∈ Λ we have p | ‖v‖2. This follows from ‖v‖2 = x2 + y2 ≡ (x + iy)(x − iy) ≡ 0
mod p, where v = (x, y) ∈ Λ. This holds because x + iy ≡ 0 mod p in Λ.

• From Minkowski’s convex body theorem one can conclude that λ1(Λ) <
√

2p, because
Vol(

√
2p · B2

2) = 2πp > 4p = 22det(Λ).

Summarizing, there exists a non-zero vector v ∈ Λ with ‖v‖2 < 2p and p | ‖v‖2. This necessarily
implies that this vector has square norm p, i.e., there exists a non-zero vector v ∈ Λ with x2 + y2 =

‖v‖2 = p. 2
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3 Projected lattices

3.1 Projections and orthogonal complements

Let V be a finite dimensional vector space and W ⊆ V a linear subspace. Then we can define a
projection map πW : V →W ⊆ V, as follows. As any basis (w1, . . . , wk) of W can be extended to
a basis (w1, . . . , wk, v1, . . . , vn) of V we can let the map πW act like this:

πW

(
k

∑
i=1

λiwi +
n

∑
i=1

νivi

)
=

k

∑
i=1

λiwi

For any W ⊆ V a linear subspace of V, we can define the orthogonal complement W⊥ of W:

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈W}

When a basis (w1, . . . , wk) of W is given, the space W⊥ is sometimes written as (w1, . . . , wk)
⊥.

3.2 Gram-Schmidt orthogonalization

For the remainder of this section, we fix a basis B = (b1, . . . , bn) of the lattice Λ. We define
the Gram-Schmidt orthogonalization B̃ = (b̃1, . . . , b̃n) of B as follows: b̃i = πi(bi), where πi =

π(b1,...,bi−1)⊥
. In other words, the projection map πi projects to the orthogonal complement of

the space generated by (b1, . . . , bi−1). In a more informal way, this means that πi(bi) is bi
‘orthogonalized against’ b1, . . . , bi−1.

A different way of defining the Gram-Schmidt orthogonalization is by means of matrix de-
composition; B is decomposed as a matrix product B̃ · µ, where B̃ is orthogonal and µ is upper
triangular with ones on the diagonal. One can compute µ and B̃ inductively by the following
formulae:

µij =
〈b̃i, bj〉
〈b̃i, b̃i〉

b̃i = bi −
i−1

∑
j=1

µijb̃j

Lemma 2 |det B| = |det B̃| = ∏n
i=1‖b̃i‖

Proof: Since the determinant is a multiplicative map, we have |det(B)| = |det(B̃µ)| = |det(B̃)det(µ)| =
|det(B̃)|, by the fact that µ is upper triangular and has ones on the diagonal. The second equality
follows from the fact that |det(B̃)| is known to be volume of the parallelepiped ‘generated’ by
the columns of B̃. In the case of B̃, the columns are orthogonal, and therefore the parallelepiped
generated by B̃ is a parallelepiped with sides of length ‖b̃i‖. 2

Using the maps πi, we can define the projected lattices Λi of Λ. We define:

Λi = πi(Λ) ⊆ (b1, . . . , bi−1)
⊥

Exercise 1 Let Λ be a full-rank lattice in V with basis B. Prove that Λi = πi(Λ) is indeed a
lattice. More specifically, show that it is a full dimensional lattice in (b1, . . . , bi−1)

⊥ with basis
(πi(bi), . . . , πi(bn)).
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Exercise 2 Show that, for an arbitrary subspace W ⊆ V, πW(Λ) doesn’t need to be a lattice [Hint:
Examples can be as small as dimension 2].

3.3 Babai’s fundamental domain

Given a basis B of the lattice Λ, and let B̃ be its Gram-Schmidt orthogonalization. Then we define
Babai’s fundamental domain as the parallelepiped P(B̃) = B̃[0, 1)n. We didn’t yet prove that this
is indeed a fundamental domain, for which we need the following lemma.

Lemma 3 Let Λ = L(b1, . . . , bn) a lattice, and let Λ2 = π2(Λ) = πb⊥1
(Λ). Then:

F2 is a fundamental domain for Λ2

=⇒ F2 + [0, 1)b1 is a fundamental domain for Λ

Proof: As we leave it to the reader to prove that F is packing, we will only prove here that
F = F2 + [0, 1)b1 is covering. Take an arbitrary v ∈ V = span(Λ). Our aim is to show that
v− ` ∈ F2 + [0, 1)b1 for some ` ∈ Λ.

Compute v2 = π2(v) ∈ Λ2, the projected lattice. As F2 is a fundamental domain for Λ2, we
can find `2 ∈ Λ2 and f2 ∈ F2 such that v2 = `2 + f2. Since `2 ∈ Λ2 = π2(Λ), we can find an
` ∈ Λ such that π2(`) = `2. Note that both `2 − ` =: `b1 and v− v2 =: vb1 are in Span(b1).

Rewriting the terms:

v = v2 + (v− v2) = v2 + vb1 = f2 + `2 + vb1 = f2 + `+ (`2 − `) + vb1

= f2 + `+ `b1 + vb1︸ ︷︷ ︸
∈ Span(b1)

= f2 + `+ xb1 + kb1 = f2 + xb1︸ ︷︷ ︸
∈F2+[0,1)b1

+ `+ kb1︸ ︷︷ ︸
∈Λ

2

Exercise 3 Prove that, in the context of the above lemma, F2 + [0, 1)b1 is packing.

Lemma 4 Babai’s fundamental domain P(B̃) is indeed a fundamental domain for Λ = L(B).

Proof: This is a proof by induction on dimension. Note that for dimension 1, B̃ = B, which
means P(B̃) = P(B).

For dimension n bigger than one, we can proceed as follows. Given a lattice Λ with basis
B = (b1, . . . , bn). Take C = (π2(b2), . . . , π2(bn)), which is a basis for Λ2 = π2(Λ). Since Λ2 has
lower dimension, we can apply the induction hypothesis, i.e., P(C̃) is a fundamental domain for
Λ2. By the previous lemma, [0, 1)b1 + P(C̃) is a fundamental domain for Λ.

But, one can show that B̃ = (b1|C̃), that is, b̃i = c̃i for i > 1. Therefore [0, 1)b1 + P(C̃) =

P(B̃), which proves the claim. 2
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b1 = (1, 0)

b2 = (α, β)
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Figure 1: A picture of the wristwatch lemma. The lattice is scaled and rotated such that b1 =

(1, 0) is of unit length and lies on the x-axis. The second basis vector b2 must then be in the gray
area.

4 Lagrange Reduction Algorithm

In this section, we will explain an algorithm that finds a basis of a two-dimensional lattice con-
sisting of vectors that attain the respective successive minima. Thus, the Lagrange reduction
algorithm finds a shortest basis of a two-dimensional lattice.

Theorem 5 (Wristwatch lemma) Let Λ be a 2-dimensional lattice. Then there exists a basis B =

(b1, b2) such that

• b1 is a shortest vector of Λ.

• |〈b1, b2〉| ≤ 1
2‖b1‖2.

Algorithm 1: Lagrange reduction algorithm
Input : A basis (b1, b2) of a lattice Λ.
Output: A basis (b1, b2) as in the Wristwatch lemma.

repeat
swap b1 ↔ b2

k← d 〈b1,b2〉
‖b1‖2 c

b2 ← b2 − kb1

until ‖b1‖ ≤ ‖b2‖

The proof of this theorem is ‘by algorithm’, which means that we give an algorithm that, given
any basis, computes such shortest basis as in the Wristwatch lemma. The proof then consists of
showing that the algorithm terminates, and after termination indeed gives the required basis.
Proof:[Proof (of Wristwatch lemma)] We will now show that the output of Algorithm 1 indeed
is as in Theorem 5.
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• Algorithm 1 terminates. This can be seen by the fact that ‖b1‖ diminishes every itera-
tion in the repeat-loop. As Λ has a minimum non-zero length, and b1 and b2 are linear
independent, this necessarily means that the algorithm should terminate.

• The resulting b1, b2 indeed form a basis of the lattice Λ. This can be seen by the fact that
every operation in the loop (swap, row-addition) is a unimodular transformation on the
basis, i.e., multiplication by a matrix in GL2(Z). The resulting pair of vectors must then be
a basis, too.

• We indeed have 〈b1, b2〉 ≤ 1
2‖b1‖2. To prove this, we assume, without loss of generality

(after scaling and rotating) that b1 = (0, 1). Write b2 = (α, β). Then in the last iteration of
the algorithm (omitting the swap), we essentially forced that |β| ≤ 1/2. As 〈b1, b2〉 = β, this
proves our claim.

• b1 is the shortest (non-zero) lattice vector of Λ. As any vector in Λ can be written as
` = mb1 + nb2 with m, n ∈ Z, our aim is to prove that ‖`‖ = ‖mb1 + nb2‖ ≥ ‖b1‖. Again,
we write b1 = (0, 1) and b2 = (α, β).

For n = 0, this is clearly true, as then then ` = mb1 is a multiple of b1, which is always at
least as long as b1 itself. The same holds for m = 0. For n, m 6= 0, we have

‖`‖ = ‖(nα, m + nβ)‖ = n2α2 + (m + nβ)2 = n2(α2 + β2) + m2 + 2mnβ

≥ n2 + m2 − |mn| ≥ min(n2, m2) ≥ 1

Where the first inequality comes from the fact that α2 + β2 = ‖b2‖2 ≥ 1 and |β| ≤ 1/2.

2

Lemma 6 The Lagrange reduction algorithm terminates after O
(

log ‖b1‖√
detΛ

)
iterations.

Proof: Without loss of generality, we may assume that the determinant of the lattice is 1, by
scaling. Note that this also means that ‖b̃1‖‖b̃2‖ = 1. We divide the algorithm into two phases,
namely the phase where ‖b1‖2 ≥ 2, and the phase where ‖b1‖2 < 2.

• (Phase 1) As b1 = b̃1, and ‖b1‖2 ≥ 2, we must have that ‖b̃2‖2 ≤ 1/2 ≤ 1/4‖b1‖2. Denote
c1 as being the ‘next iteration’ b1. Note that the c1 = b2 − kb1 satisfies |〈c1, b1〉| ≤ 1/2‖b1‖2

and 〈c1, b̃2〉 = 〈b2, b̃2〉 = ‖b̃2‖2. It follows that

‖c1‖2 ≤ 1
4
‖b1‖2 + ‖b̃2‖2 ≤ 1

2
‖b1‖2

This means that the square length of b1 reduces by a factor a half every iteration. Therefore,
the number of iterations in phase 1 is at most log2(‖b1‖).

• (Phase 2) In this phase, ‖b1‖2 < 2. We distinguish the cases λ2(Λ)2 ≥ 2 and λ2(Λ)2 < 2.
In the first case the algorithm is done, because ‖b1‖2 < 2 ≤ λ2(Λ)2. Namely, this means
that b1 is a multiple of a shortest vector in Λ. But, as (b1, b2) is a basis of Λ, b1 must be a
shortest vector itself.

In the second case we know that for a basis (c1, c2) attaining the successive minima, we
have ‖c∗2‖2 ≤ ‖c2‖2 < 2, and therefore λ1(Λ)2 = ‖c1‖2 > 1/2. So, we have λ1(Λ) > 1/

√
2.
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In a circle of radius
√

2(1 + 1
4 ) surely fit at most 25 circles of radius 1

2
√

2
, so, the reduction

needs to perform at most 25 iterations in this phase in order to terminate (recall that ‖b1‖
is strictly decreasing).

2

Definition 7 Given a full rank lattice Λ of dimension n. Then we define γ(Λ) of this lattice as

γ(Λ) :=
λ1(Λ)2

det(Λ)2/n

Exercise 4 Show that the invariant γ(Λ) of a lattice Λ is scaling-invariant. That is: γ(cΛ) = γ(Λ)

for any c ∈ R.

Definition 8 (Hermite constant) The hermite constant γn is the supremum of γ over n-dimensional
full rank lattices:

γn := sup
Λ

γ(Λ)

Lemma 9 The densest sphere packing in dimension 2 is attained by the hexagonal lattice H, which achieves
γ(H) =

√
4/3.

Proof: Let H = L((0, 1), (
√

3/4, 1/2)). Verify that this indeed has the required Hermite constant.
We now have to show that any 2-dimensional lattice has a Hermite constant at least γ(H). Let Λ
be any lattice and let (b1, b2) be a basis as in the Wristwatch lemma. Without loss of generality
we may assume b1 = (0, 1) and b2 = (α, β). Then λ1(Λ) = 1, and det(Λ) = det(B) = α. As
|β| ≤ 1/2 we must have 1 ≤ α2 + β2 ≤ α2 + 1

4 . This directly implies α ≥
√

3/4, which proves the
claim. 2
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