
Mastermath, Spring 2018
Intro to Lattice Algs & Crypto Lecture 6

Introduction to transference

Lecturers: D. Dadush, L. Ducas
Scribe: S. Huiberts

1 Introduction

In this lecture, we study transference theorems. These are theorems relating properties of a lattice
L and its dual lattice L∗. In the first half of this lecture we will prove transference theorems using
basis reduction techniques achieving (suboptimal) polynomial bounds, which are much better
than the guarantees from LLL reduced bases. In the second half, we will introduce important
concepts in Fourier analysis, which will be used in the following two lectures to prove optimal
transference results.

2 Transference

The first elementary transference principle we have already seen in earlier lectures.

Proposition 1 For a lattice L ⊆ Rn of rank at least 1, we have

det(L) = 1
det(L∗) .

In this lecture we will see bounds relating the successive minima and the covering radius of
a lattice and its dual lattice.

Theorem 2 For a full-rank lattice L ⊂ Rn we have λi(L) · λn−i+1(L∗) ≥ 1.

Proof: Let v1, . . . , vn−i+1 ∈ L∗ be linearly independent vectors achieving the successive min-
ima, i.e., ‖v1‖ = λ1(L∗), . . . , ‖vn−i+1‖ = λn−i+1(L∗), and let y1, . . . , yi ∈ L be such that ‖y1‖ =
λ1(L), . . . , ‖yi‖ = λi(L). By dimension counting the sets span(v1, . . . , vn−i+1) and span(y1, . . . , yi)

have a non-trivial intersection, hence there exist indices j1, j2 such that |〈vj1 , yj2〉| > 0. As the in-
ner product must be integer, this means |〈vj1 , yj2〉| ≥ 1. From the Cauchy-Schwarz inequality
we know ‖vj1‖ · ‖yj2‖ ≥ 1. From our choice of vj1 and yj2 we get λj1(L∗) · λj2(L) ≥ 1. Since
λj1(L∗) ≤ λn−i+1(L∗) and λj2(L) ≤ λi(L), the result follows. 2

In lecture 2, we saw that µ(L) ≤ 1
2 ∑i=1 λi(L). The next theorem will be a reverse inequality.

First we need to prove a claim.

Claim 3 For a linear subspace W ( Rn and full-rank lattice L ⊂ Rn, there exists v /∈ W, v ∈ L such
that ‖v‖ ≤ 2µ(L).

Proof: Pick z ∈ Rn orthogonal to W such that ‖z‖ = µ(L). If z + µ(L)Bn
2 contains a non-zero

lattice point, we are done. The triangle inequality implies that such a point has norm at most
2µ(L), and 0 is the unique closest point to z in W at distance µ(L), meaning that our point is
not in W. Now suppose that (z + µ(L)Bn

2 ) ∩ L = {0}, then there exists some ε > 0 such that
(1+ ε)z + µ(L)Bn

2 contains no lattice points. But that means that (1+ ε)z has distance more than
µ(L) to the lattice L, contradicting the definition of µ(L). Hence the claim is true. 2

Theorem 4 For a full-rank lattice L ⊂ Rn, µ(L) ≥ λn(L)/2.
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Proof: We will use Claim 3 to inductively build a chain of subspaces W1 ⊂ · · · ⊂ Wn, such
that Wi is the span of i linearly independent vectors v1, . . . , vi ∈ L of length at most 2µ(L).
Let W0 = {0}. For each i ∈ [n], let vi ∈ L be such that vi /∈ Wi−1 and ‖vi‖ ≤ 2µ(L), which
exists by claim 3, and let Wi = span(v1, . . . , vi). The linear subspace Wn is full-dimensional and
v1, . . . , vn ∈ L, so λn(L) ≤ maxi≤n‖vi‖ ≤ 2µ(L). 2

Theorem 5 For a lattice L ⊂ Rn of rank at least 1, µ(L) · λ1(L∗) ≥ 1/2.

Proof: Pick y ∈ L∗ with ‖y‖ = λ1(L∗). All vectors in L have integer inner product with y
because y ∈ L∗, so L ⊂ ⋃

i∈Z{x ∈ Rn : 〈y, x〉 = i}. For z = y
2‖y‖2 , we have

d(L, z) ≥ minx∈L|〈z− x, y〉|
‖y‖ = min

z∈Z

| 12 − z|
‖y‖ =

1
2‖y‖ =

1
2λ1(L∗)

.

2

Proposition 6 For a rank k lattice L ⊂ Rn, k ≥ 1, we have λ1(L) · λ1(L∗) ≤ k.

Proof: By Minkowski’s first theorem we have

λ1(L) ≤
√

kdet(L)1/k

and
λ1(L∗) ≤

√
kdet(L∗)1/k.

Recall that det(L) = 1
det(L∗) . We multiply the two inequalities to find the desired result. 2

For the next two results, we use the existence of bases satisfying certain nice properties. The
bounds we will achieve in this lecture are sub-optimal, and in later lectures we will prove better
bounds using Fourier-analytic techniques.

Definition 7 A basis B = (b1, . . . , bn) of a full-rank lattice L ⊂ Rn is
Hermite-Korkine-Zolotareff-reduced (HKZ) if

• B is size-reduced, and

• for all i ∈ [n], ‖b̃i‖ = λ1(πi(L)), where πi is the orthogonal projection onto span(b1, . . . , bi−1).

We can size-reduce a basis B while preserving the second property, and we can produce a
basis satisfying the second property by setting L1 = L and iteratively picking bi as a shortest
vector of Li and setting Li+1 = πb⊥i

(Li). In particular, this means that every lattice has an
HKZ-reduced basis.

Fact 8 For any lattice L ⊂ Rn and linearly independent vectors b1, . . . , bk ∈ L,

πspan(b1,...,bk)⊥
(L)∗ = L∗ ∩ span(b1, . . . , bk)

⊥.

Theorem 9 For a full-rank lattice L ⊂ Rn, we have that 1
2 ≤ µ(L) · λ1(L∗) ≤ 1

2 n3/2.
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Proof: Let B be an HKZ-reduced basis of L. For i ∈ [n], let Wi := span(b1, . . . , bi−1)
⊥. The

correctness of Babai’s algorithm tells us that

µ(L)2 ≤ 1
4

n

∑
i=1
‖b̃i‖2 (Babai)

=
1
4

n

∑
i=1

λ1(πWi(L))
2 (HKZ-reducedness)

≤ 1
4

n

∑
i=1

n2

λ1(L∗ ∩Wi)2 (Proposition 6 + Fact 8)

≤ 1
4

n

∑
i=1

n2

λ1(L∗)2 (By inclusion)

=
1
4

n3

λ1(L∗)2 .

2

Theorem 10 For a full-rank lattice L ⊂ Rn, we have 1 ≤ λi(L)λn−i+1(L∗) ≤ n2.

Proof: Let b1, . . . , bn be an HKZ-reduced basis, and for i ∈ [n], let Wi = span(b1, . . . , bi−1)
⊥.

From here, we have that

λi(L)2 ≤ max
j≤i
‖bj‖2

≤ max
j≤i

j

∑
k=1
‖b̃k‖2 ( By size-reduction of the basis )

≤
i

∑
k=1
‖b̃k‖2

=
i

∑
k=1

λi(πk(L))2 ( By HKZ property) .

(1)

Since πk(L) is an n− k + 1 ≥ n− i + 1 dimensional lattice and πk(L)∗ = L∗ ∩Wk, we have

λi(πk(L))2λn−i+1(L∗ ∩Wk)
2 ≤︸︷︷︸

Theorem 4

4λi(πk(L))2µ(L∗ ∩Wk)
2 ≤︸︷︷︸

Theorem 9

n3.

From the above, we may continue (1) as follows,

i

∑
k=1

λi(πk(L))2 ≤
i

∑
k=1

n3

λn−i+1(L∗ ∩Wk)2

≤
i

∑
k=1

n3

λn−i+1(L∗)2 ( By inclusion )

=
n4

λn−i+1(L∗)2 .

(2)

The statement now follows by combining (1), (2). 2
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3 Fourier analysis

For the last two theorems we will be able to prove a stronger bound of O(n) using Fourier-
analytic techniques. The rest of this lecture, plus the next two lectures, are devoted to developing
the tools to prove this. In this part of the lecture we talked about a few basic notions in Fourier
analysis, which will give us a more principled way of proving transference results.

Definition 11 For f , g : Rn/L → C, we define their inner product by

〈 f , g〉 = 1
det(L)

∫
D

f (x + L)g(x + L)dx,

where g(x + L) is the complex conjugate of g(x + L) and D is any fundamental domain of L. We note
that the inner product is well-defined: one can check that it is independent of the choice of fundamental
domain.

Definition 12 For y ∈ L∗, we define χy : Rn/L → C∗, where C∗ = {z ∈ Z : |z| = 1} is the complex
unit circle, by χy(t) = e2πi〈y,t〉 for t ∈ Rn/L. Note that this function is well-defined, since for any
a, b ∈ t + L, we have that

a− b ∈ L ⇒ 〈y, a− b〉 ∈ Z⇒ e2πi〈y,a−b〉 = 1⇒ χy(a) = χy(b).

χy is in fact a character of the group Rn/L, that is, it is a homomorphism from Rn/L to the complex unit
circle, i.e. χy(a + b) = χy(a)χy(b), ∀a, b ∈ Rn/L.

It is an interesting exercise to check that the functions {χy : y ∈ L∗} correspond exactly to set
of continuous homomorphisms from Rn/L to C∗. We now show that they form an orthonormal
set of functions under the inner product defined above.

Proposition 13 The characters are orthonormal: for x, y ∈ L∗, x 6= y we have 〈χx, χx〉 = 1 and
〈χx, χy〉 = 0.

Proof:

〈χx, χx〉 =
1

det(L)

∫
D

e2πi〈x,t〉e2πi〈x,t〉dt

=
1

det(L)

∫
D

1 dt

= 1.

Let b∗1 = x− y and extend this to a basis B∗ of L∗. Now let B be the dual basis to B∗. Choose
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D = B[0, 1)n as fundamental domain of L.

〈χx, χy〉 =
1

det(L)

∫
B[0,1)n

e2πi〈x−y,t〉dt

=
1

det(L)

∫
B[0,1)n

e2πi〈b∗1 ,t〉dt

=
|det(B)|
det(L)

∫
[0,1)n

e2πi〈Be1,t〉dt

=
|det(B)|
det(L)

∫
[0,1)

e2πi·sds

= 0.

2

For a complex valued function f on Rn/L and a character χy of Rn/L, we define the Fourier
coefficients of f with respect to y as f̂ (y) := 〈 f , χy〉. Given the above orthonormality, it is natural
to hope that as long as f is reasonable then it can be expressed as a (possibly infinite) linear
combinations of the characters {χy : y ∈ L∗}, known as the Fourier basis. In particular, one
would likely expect that

f = ∑
y∈L∗
〈 f , χy〉χy := ∑

y∈L∗
f̂ (y)χy .

While the above type equality holds without restriction on f when the domain is a finite abelian
group, for a continuous group the situation is somewhat more delicate. In particular, it is not
even clear when the series on the right hand side is well-defined. The following useful theorem
in Fourier analysis, which we state without proof, will give sufficient conditions for this equality
to hold.

Theorem 14 For continuous f : Rn/L → C satisfying ∑y∈L∗ | f̂ (y)| < ∞, we have that

f (t) = ∑
y∈L∗

f̂ (y)e2πi〈y,t〉.

We note that the second condition in the above theorem in essence addresses the concern that
series ∑y∈L∗ f̂ (y)e2πi〈y,x〉 is well-defined, since the above makes the series absolutely convergent.
Furthermore, given the continuity of the terms, it is not hard to check that any such series must
indeed yield a continuous function, and hence the continuity condition on f is necessary for
achieving equality. Interestingly, the range of situations where convergence can be understood is
much wider than the above theorem suggests. However, in the non-absolutely convergent setting
one must carefully specify the order in which we sum the terms of the series. Fortunately, we
will not require such delicate considerations here.

Periodizing Functions on Rn. As can be seen above, Fourier analysis allows us to make an
explicit link between the geometry of the torus, via the behavior of functions on it, and the dual
lattice, via Fourier series. One may for example, attempt to study the behavior of the function
d(L, t) for t ∈ Rn/L, i.e. the distance from t + L to L, where the maximum is µ(L). Then, to
prove transference, one might hope to extract an upper bound on µ(L) as a function of λ1(L∗),
by examining the Fourier series for d(L, t). While this is a natural approach, it is unclear how
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one could actually compute the Fourier coefficients of such a complex function, and thus derive
the appropriate relations with λ1(L∗) (we suspect such a proof can be made to work however
and we encourage the reader to try).

Our approach will in fact be somewhat different. Instead of picking a very taylored or difficult
to compute function of the torus, we will instead start with a class of “easy to compute with”
functions on Rn that we will be able to analyze on any torus via periodization. More specifically,
given any function f : Rn → C and full-rank lattice L ⊂ Rn, we may examine the periodic
function

f (L+ t) := ∑
x∈L

f (x + t).

For the moment, it is unclear why such a periodization should be useful, in the sense that its
corresponding Fourier coefficients on Rn/L may still be very difficult to compute. Fortunately,
it will turn out that if we know Fourier transform of f on Rn, then we directly know the Fourier
coefficients of a periodization of f on with respect to any lattice.

For a function f : Rn → C, we define the n-dimensional Fourier transform f̂ : Rn → C by

f̂ (y) =
∫

Rn
f (x)e−2πi〈y,x〉dx, for y ∈ Rn . (3)

As before, we can view evaluations of the Fourier transform as the inner product with char-
acters.

Definition 15 For f , g : Rn → C, we define their inner product by 〈 f , g〉 :=
∫

Rn f (x)g(x)dx. For
y ∈ Rn we define χy(x) := e2πi〈y,x〉 to be the corresponding character. With these definitions, we note the
identity f̂ (y) = 〈 f , χy〉.

The crucial relation for us in this setting, is that the Fourier coefficients of a perodization of
f w.r.t. L and the Fourier transform of f restricted to L∗, in fact coincide up to scaling. This is
proven in the following lemma, under appropriate decay conditions on f .

Lemma 16 Let f : Rn → C be a measurable function satisfying | f (x)| ≤ C
(1+‖x‖)n+δ , x ∈ Rn, for some

C, δ > 0. Let L ⊂ Rn be a full-rank lattice and define g(t) := f (L+ t) : Rn/L → C. Then for y ∈ L∗,
we have that

ĝ(y) =
1

det(L) f̂ (y) .

Proof: To begin, we leave as an exercise to show that the decay conditions on f imply that the
sums ∑x∈L | f (x + t)| are uniformly bounded ∀t ∈ Rn. This will allow us to arbitrarily rearrange
such series as well as swap integrals and sums by applying the dominated convergence theorem.

6



From here, the statement is derived from the following computation:

ĝ(y) =
1

det(L)

∫
D

g(t)e−2πi〈y,t〉dt

=
1

det(L)

∫
D

∑
x∈L

f (x + t)e−2πi〈y,x+t〉dt

=
1

det(L) ∑
x∈L

∫
D

f (x + t)e−2πi〈y,x+t〉dt ( by dominated convergence)

=
1

det(L) ∑
x∈L

∫
x+D

f (t)e−2πi〈y,t〉dt

=
1

det(L)

∫
Rn

f (t)e−2πi〈y,t〉dt ( by dominated convergence)

=
1

det(L) f̂ (y).

2

Now we are ready to prove the Poisson summation formula, which will be one of our main
Fourier-analytic tools for studying lattices.

Theorem 17 Let f : Rn → C be a continuous function satisfying for some C, δ > 0, max(| f̂ (x)|, | f (x)|) ≤
C

(1+‖x‖)n+δ , ∀x ∈ Rn. Then, for a full-rank lattice L ⊂ Rn, we have

f (L+ t) =
1

det(L) ∑
y∈L∗

f̂ (y)e2πi〈y,t〉.

In particular,

f (L) = 1
det(L) f̂ (L∗).

Proof: To begin, we leave it as an exercise to show that the continuity and decay assumptions
on f imply that the periodization g(t) := f (L + t), t ∈ Rn/L, is continuous. As a second
exercise, one can show that the decay conditions on f̂ imply that ∑y∈L∗ | f̂ (y)| < ∞. Note that by
Lemma 16, we have that ĝ(y) = 1

det(L) f̂ (y), ∀y ∈ L∗, and hence ∑y∈L∗ |ĝ(y)| < ∞ also clearly
holds. Since g now satisfies the conditions of Theorem 14, we get that

f (L+ t) = g(t)

= ∑
y∈L∗

ĝ(y)e2πi〈y,t〉

=
1

det(L) ∑
y∈L∗

f̂ (y)e2πi〈y,t〉,

as needed. 2

In the next class, we will use the Poisson summation formula on Gaussian density functions
to recover optimal transference bounds.
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