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End of Transference, Complexity of Lattice Problems

Lecturers: D. Dadush, L. Ducas
Scribe: S. Huiberts

In this lecture, we conclude the section on transference with a final transference theorem and
a one-dimensional tail bound for the discrete Gaussian. After that, we discuss the complexity of
lattice problems.

Lemma 1 For any full-rank lattice L ⊂ Rn with λn−i+1(L∗) =
√

n and i ∈ [n], if linear independent
vectors v∗1 , . . . , v∗n−i ∈ L∗ achieve the successive minima (‖v∗j ‖ = λj(L∗) for all j ∈ [n − i]) and
W = span(v∗1 , . . . , v∗n−i)

⊥, then for all t ∈W, d(L, t) ≤
√

n.

Proof: We will use Corollary 13 from Lecture 7, which states that, for a full-rank lattice L ⊂ Rn

and t ∈ Rn, we have PrX∼DL+t [‖X‖ ≥
√

n] ≤ ρ(L)
ρ(L+t)4−n and ρ((L+ t)\

√
nBn,◦

2 ) ≤ 4−nρ(L).
The tail bound implies that, if we can show ρ(L) ≤ 2ρ(L+ t), then PrX∼DL+t [‖X‖ ≥

√
n] < 1.

If so, then by the probabilistic method, there must exist some x ∈ L+ t such that ‖x‖ ≤
√

n, so
x− t is a lattice vector at distance at most

√
n from the target t ∈W.

By the Poisson summation formula, we have

ρ(L+ t) =
1

det(L) ∑
y∈L∗

e2πi〈y,t〉e−π‖y‖2

=
1

det(L)

 ∑
y∈L∗∩W⊥

e2πi〈y,t〉e−π‖y‖2
+ ∑

y∈L∗\W⊥
e2πi〈y,t〉e−π‖y‖2

 .

As t ∈ W, we know for y ∈ W⊥ that e2πi〈y,t〉 = 1, hence ∑y∈L∗∩W⊥ e2πi〈y,t〉e−π‖y‖2
= ρ(L∗ ∩W⊥).

For y ∈ L∗\W⊥ we use the pessimistic bound e2πi〈y,t〉 ≥ −1 and get ∑y∈L∗\W⊥ e2πi〈y,t〉e−π‖y‖2 ≥
−ρ(L∗\W⊥). Hence we get

ρ(L+ t) =
1

det(L)

 ∑
y∈L∗∩W⊥

e2πi〈y,t〉e−π‖y‖2
+ ∑

y∈L∗\W⊥
e2πi〈y,t〉e−π‖y‖2


≥ 1

det(L) (ρ(L
∗ ∩W⊥)− ρ(L∗\W⊥))

=
1

det(L) (ρ(L
∗)− 2ρ(L∗\W⊥))

We assumed that λn−i+1(L∗) =
√

n, so we have the inclusion L∗\W⊥ ⊂ L∗\
√

nBn,◦
2 . This

inclusion tells us that ρ(L∗\W⊥) ≤ ρ(L∗\
√

nBn,◦
2 ). Combining with ρ(L\

√
nBn,◦

2 ) ≤ 4−nρ(L)
gets us

ρ(L+ t) ≥ 1
det(L) (ρ(L

∗)− 2ρ(L∗\
√

nBn,◦
2 ))

≥ 1
det(L) (ρ(L

∗)− 2 · 4−nρ(L∗))

= (1− 2 · 4−n)
ρ(L∗)
det(L)

= (1− 2 · 4−n)ρ(L)

as needed. 2
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Corollary 2 For i ∈ [n] and L ⊂ Rn a full-rank lattice with λn−i+1(L∗) =
√

n, there exist linearly
independent v1, . . . , vi ∈ L such that ‖vj‖ ≤ 2

√
n for all j ∈ [i].

Proof: The proof is similar to Claim 3 and Theorem 4 from Lecture 6. Let linearly independent
vectors v∗1 , . . . , v∗n−i achieve the successive minima of the dual lattice ‖v∗j ‖ = λj(L∗), j ∈ [n− i].
We write W = span(v∗1 , . . . , v∗n−i)

⊥ and we will construct the vectors one by one. Let V0 = {0}.
For j = 1, . . . , i, pick zj ∈ W orthogonal to the subspace Vj−1 with norm ‖zj‖ =

√
n. As long

as j− 1 = dim(Vj−1) < dim(W) = i, such a zj is guaranteed to exist. The set zj +
√

nBn
2 must

contain a lattice vector from L \ Vj−1, for otherwise there would exist some ε > 0 such that
d((1 + ε)zj,L) >

√
n, which contradicts Lemma 1 above. Letting vj ∈ L be such a vector, we set

Vj = span(v1, . . . , vj) and continue inductively.
The produced set of vectors v1, . . . , vi ∈ L is linearly independent, since vj /∈ Vj−1 =

span(v1, . . . , vj−1), ∀j ∈ [i], by construction. Lastly, for each j ∈ [i], by the triangle inequality
‖vj‖ ≤ ‖zj‖+

√
n = 2

√
n, as needed. 2

Theorem 3 For a full-rank lattice L ⊂ Rn and i ∈ [n], λi(L)λn−i+1(L∗) ≤ 2n.

Proof: Since for s > 0, λi(sL) = sλi(L) and λn−i+1((sL)∗) = λn−i+1(L∗)/s, the equality is
independent of scaling. Without loss of generality, we can scale such that λn−i+1(L∗) =

√
n. The

result follows from the corollary above: λi(L)λn−i+1(L∗) =
√

nλi(L) ≤ 2n. 2

The next lemma will set us up to prove a tail bound on 〈X, v〉 for fixed v and X discrete
Gaussian.

Lemma 4 For any full-rank lattice L ⊂ Rn and v ∈ Rn with ‖v‖ = 1, EX∼DL [e
λπ〈v,x〉] ≤ eπλ2/4.

Proof: The definition of DL is such that

E
X∼DL

[eλπ〈v,x〉] =
1

ρ(L) ∑
x∈L

eπλ〈v,x〉e−π‖x‖2
.

If we multiply by 1 = eπλ2/4e−π‖ λ
2 v‖2

, we can complete the square and find

E
X∼DL

[eλπ〈v,x〉] = eπλ2/4 ∑x∈L e−π‖x‖2−π‖ λ
2 v‖2−2π〈x, λ

2 v〉

ρ(L)

= eπλ2/4 ∑x∈L e−π‖x− λ
2 v‖2

ρ(L)

= eπλ2/4 ρ(L− λv
2 )

ρ(L)
≤ eπλ2/4,

as needed. 2

We use the above lemma to prove the following tail bound similarly to the proof of Theorem
12 from Lecture 7.

Theorem 5 For L ⊂ Rn a full-rank lattice and any unit vector v ∈ Rn, ‖v‖ = 1, t > 0, we have
PrX∼DL [〈X, v〉 ≥ t] ≤ e−πt2

.
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Proof: By monotonicity, Markov’s inequality, and Lemma 4, we have, for any λ > 0,

Pr
X∼DL,s

[〈X, v〉 ≥ t] = Pr
X∼DL

[eλπ〈X,v〉 ≥ eλπt] ≤ E[eλπ〈X,v〉]

eλπt ≤ eπλ2/4−λπt.

The result follows by setting λ = 2t. 2

Complexity of lattice problems

Many lattice problems are hard to calculate, or even to approximate. We prove NP-hardness
of CVP and the fact that CVP is at least as hard as SVP, after which we discuss hardness of
approximation.

Theorem 6 CVP is NP-hard.

Proof: We reduce solving Ax = b, x ∈ {0, 1}n, where A ∈ Zm×n, b ∈ Zm, to solving CVP: if you
can solve CVP, you can solve systems Ax = b, x ∈ {0, 1}n, which is at as hard as the NP-hard
Subset Sum problem (given a finite set S ⊂ Z of integers, find a non-empty T ⊆ S such that
∑x∈T x = 0 or declare no such subset exists).

Given A ∈ Zm×n, b ∈ Zm, 0 ≤ k ≤ n, we claim we can solve Ax = b, 1Tx = k, x ∈ {0, 1}n

using a CVP oracle. Because for any solution to Ax = b, x ∈ {0, 1}n we have 0 ≤ 1Tx ≤ n, we
can solve Ax = b, x ∈ {0, 1}n by trying every possible integer value 0 ≤ k ≤ n.

Fix some k ∈ Z, 0 ≤ k ≤ n. We construct the following basis and target:

Bk =

 2nA
2n1T

n
In

 tk =

2nb
2kn

0

 .

We claim that, for every x ∈ Zn, ‖Bkx− tk‖ ≤
√

k if and only if Ax = b, 1Tx = k, x ∈ {0, 1}n.
Hence solving CVP on the lattice L(Bk) with target tk gives us a solution (if it exists) to Ax =

b, 1Tx = k, x ∈ {0, 1}n, and hence trying every k ∈ {0, 1, . . . , n} solves Ax = b, x ∈ {0, 1}n.
Since the if direction is trivial, we restrict to proving the only if direction. Fix k and set

B = Bk, t = tk. Suppose x ∈ Zn gives a closest vector Bx ∈ L(B) to t satisfying

‖Bx− t‖ = ‖

 2n(Ax− b)
2n(∑n

i=1 xi − k)
x

‖ ≤ √k.

If Ax− b 6= 0, then there must be some row ai of A such that aTi x− bi 6= 0. As ai, x ∈ Zn,
bi ∈ Z, this would imply that ‖Bx − t‖ ≥

√
2n >

√
k, contradicting our assumption that

‖Bx− t‖ ≤
√

k. Hence Ax = b.
If ∑n

i=1 xi − k 6= 0, then ‖Bx − t‖ ≥
√

2n, since ∑n
i=1 xi − k takes integer values. Again this

contradicts our assumption, so x must satisfy ∑n
i=1 xi = k.

Now, we show that x ∈ {0, 1}n. By the above we know that ‖Bx− t‖ = ‖x‖, so ∑n
i=1 x2

i ≤ k.
Because x ∈ Zn, this means we have k ≥ ∑n

i=1 x2
i ≥ ∑n

i=1 xi = k. The inequalities must be tight.
As x2

i ≥ xi and all x2
i ≥ 0, the inequalities must be tight component-wise, and x2

i = xi forces
xi ∈ {0, 1}.

2
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Theorem 7 α-CVP is at least as hard as α-SVP for all α ≥ 1.

Proof: Given L = L(B), B = (b1, . . . , bn), we will solve α-SVP using an α-CVP oracle. For
each i ∈ [n], write Bi = (b1, . . . , bi−1, 2bi, bi+1, . . . , bn), and use the α-CVP oracle to find a vector
yi ∈ L(Bi) such that ‖yi − bi‖ ≤ αd(L(Bi), bi). We return the shortest of y1 − b1, . . . , yn − bn,
and claim that that vector has norm at most αλ1(L).

Let yi − bi = ∑n
i=1 zibi, z ∈ Zn be the returned vector. By the guarantee of the oracle, we

know that ‖yi − bi‖ ≤ αd(L(Bi), bi).
Let v = ∑n

i=1 zibi, z ∈ Zn be the shortest vector in L. There exists i ∈ [n] such that zi is odd,
for otherwise v/2 ∈ L would be a shorter vector. This implies that v + bi ∈ L(Bi). If there were
another vector p ∈ L(Bi) ⊂ L(B) with ‖p− bi‖ < ‖(v + bi)− bi‖, that would contradict our
assumption that v is the shortest vector in L, because p− bi ∈ L would be shorter. From this it
follows that v + bi is the closest vector in L(Bi) to bi, hence d(L(Bi), bi) = λ1(L).

The result follows: if d(yi, bi) ≤ αd(L(Bi), bi) then ‖yi − bi‖ ≤ αλ1(L). 2

We showed that solving CVP exactly is NP-hard. Solving SVP exactly is NP-hard as well,
though we do not prove that in these notes. We might ask, how hard is it to approximately solve
these problems? Let us first define the decision problems we look at, which are the decision
variants of α-SVP and α-CVP that were defined in Lecture 4.

Definition 8 γ-GapSVP has input B ∈ Rm×n, r ≥ 0 and output

• YES when λ1(L(B)) ≤ r,

• NO when λ1(L(B)) > γr.

Definition 9 γ-GapCVP has input B ∈ Rm×n, t ∈ Rn, r ≥ 0 and output

• YES when d(L(B), t) ≤ r,

• NO when d(L(B), t) > γr.

Theorem 10 2n-GapSVP is in NP∩ coNP.

Proof: The problem is in NP precisely if, when the answer must be YES, we can produce a
certificate (of polynomial size) that can be used to verify (in polynomial time) that YES is an
allowed answer. This is easy: we can certify λ1(L) ≤ r by showing a vector x ∈ L satisfying
‖x‖ ≤ r.

For membership of coNP, we need to be able to certify that NO is an allowed answer, when-
ever we are required to answer NO. We use Theorem 3: 1 ≤ λ1(L)λn(L∗) ≤ 2n. If λ1(L) > nr,
then λn(L∗) < 1/r. By showing linearly independent vectors v1, . . . , vn ∈ L∗ with ‖vi‖ < 1/r
for all i ∈ [n], we certify that λn(L∗) < 1/r. Such a certificate proves that λ1(L) > r, and can be
produced whenever λ1(L) ≥ nr, i.e., when the correct output is NO, we can certify that we are
allowed to output NO. 2

In 1998, Banaszczyk proved that O(n)-GapCVP is in NP∩ coNP, which later got improved by
Aharonov and Regev to O(

√
n)-GapCVP being in NP∩ coNP. We give Banaszczyk’s result, from

which 80n-GapCVP ∈ NP∩ coNP follows the same way as in the proof of Theorem 10.
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Figure 1: Hardness of approximating CVP and SVP

Theorem 11 (Middle of band theorem, Banaszczyk 1993) For any full-rank lattice L ⊂ Rn and
t ∈ Rn, there exists y ∈ L∗\{0} such that

d(L, t) ≥ |b〈y, t〉e − 〈y, t〉|
‖y‖ ≥ d(L, t)

80n
.

Proof: The first inequality holds for every y ∈ L∗\{0}: for every x ∈ L we have 〈y, x〉 ∈ Z and
d(x, t) ≥ d(πspan(y)(x), πspan(y)(t)) =

|〈y,x−t〉|
‖y‖ . This implies

d(L, t) ≥ min
y∈L∗

|〈y, x〉 − 〈y, t〉|
‖y‖ = min

z∈Z

|z− 〈y, t〉|
‖y‖ =

|b〈y, t〉e − 〈y, t〉|
‖y‖ .

We now prove the second inequality for suitable y ∈ L∗\{0}. For t ∈ L, all values in the
theorem statement are 0 and the inequality holds, so we can assume that t /∈ L. Without loss
of generality, rescale such that d(L, t) =

√
n. As in Lemma 1, we will use Corollary 13 from

Lecture 7: for L ⊂ Rn a full-rank lattice and t ∈ Rn, PrX∼DL+t [‖X‖ ≥
√

n] ≤ ρ(L)
ρ(L+t)4−n and

ρ((L+ t)\
√

nBn,◦
2 ) ≤ 4−nρ(L).

By our current assumption that d(L, t) =
√

n, we have (L+ t) ∩
√

nBn,◦
2 = ∅. This implies

ρ(L+ t)
ρ(L) ≤ 4−n. (1)

We rewrite the fraction as an expectation using the Poisson summation formula and L = −L:

ρ(L+ t)
ρ(L) =

1
det(L) ∑y∈L∗ e−π‖y‖2

e2πi〈y,t〉

1
det(L) ∑y∈L∗ e−π‖y‖2

=
∑y∈L∗ e−π‖y‖2 1

2 (e
2πi〈y,t〉 + e−2πi〈y,t〉)

∑y∈L∗ e−π‖y‖2

= E
Y∼DL∗

[cos(2π〈Y, t〉)].

(2)
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Now that we have introduced the random variable Y ∼ DL∗ , we can split the expectation into
two conditional expectations,

E[cos(2π〈Y, t〉)] = E[cos(2π〈Y, t〉) | ‖Y‖ <
√

n]Pr[‖Y‖ <
√

n]

+ E[cos(2π〈Y, t〉) | ‖Y‖ ≥
√

n]Pr[‖Y‖ ≥
√

n]

≥ E[cos(2π〈Y, t〉)|‖Y‖ <
√

n]Pr[‖Y‖ <
√

n]− Pr[‖Y‖ ≥
√

n],

(3)

where we used that cos(θ) ≥ −1. We recall the tail bound Pr[‖Y‖ ≥
√

n] ≤ 4−n and combine (1),
(2) and (3):

4−n ≥ E[cos(2π〈Y, t〉)|‖Y‖ <
√

n]Pr[‖Y‖ <
√

n]− Pr[‖Y‖ ≥
√

n]

≥ E[cos(2π〈Y, t〉)|‖Y‖ <
√

n]Pr[‖Y‖ <
√

n]− 4−n

≥ E[cos(2π〈Y, t〉)|‖Y‖ <
√

n](1− 4−n)− 4−n

(4)

We rearrange and deduce

E[cos(2π〈Y, t〉)|‖Y‖ <
√

n] ≤ 2 · 4−n

1− 4−n ≤
2
3

.

Hence there exists some y ∈ L∗ such that ‖y‖ <
√

n and cos(2π〈y, t〉) ≤ 2/3. Now recall the
shape of the cosine function: if cos(2π〈y, t〉) ≤ 2/3, then the argument 2π〈y, t〉 must be far from
any integer multiple of 2π: |b〈y, t〉e − 〈y, t〉| ≥ 1/80. We have hence proven that

|b〈y, t〉e − 〈y, t〉|
‖y‖ >

1
80
√

n
=

d(L, t)
80n

,

by assumption on d(L, t). 2
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