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1. Introduction

Streamer discharges [1–3] are a generic stage of electric break-
down of nonconducting matter, dominated by strong space 
charge effects at the tips of growing discharge channels. They 
occur as precursors of sparks, arcs, and lightning leaders, both 
in nature and in high voltage and plasma technology. Streamers 
are directly visible as so-called sprites in the mesosphere [4], 
and they are used in applications such as surface processing 
[5], sterilization and disinfection [6] or wound healing [7], 
often in the form of atmospheric pressure plasma jets [8].

Streamers grow due to strong field enhancement at the tips 
of their elongated partially ionized channels. The high local 
fields support the local growth of ionization due to electron 
impact ionization. Simulating this process has proven to be 
challenging for a number of reasons:

 • Problems such as streamer branching or the interaction 
between streamers require a three-dimensional descrip-
tion, as illustrated in figure 1.

 • A fine grid spacing is required to accurately resolve the 
thin charge layers around streamer heads that create the 
local field enhancement, see figure 2. Due to the strongly 
non-linear growth of streamers, it is usually not possible 
to obtain an approximate solution on a coarse grid.

 • Time-dependent simulations are required. Due to the high 
electric field at streamer tips, where the mesh spacing is 
small, small time steps have to be used.

 • At each time step, Poisson’s equation has to be solved to 
obtain the electrostatic potential and field. The non-local 
nature of this equation complicates the parallelization of 
streamer models.

The physics of streamer discharges is mostly governed by 
electrons, because ions gain energy more slowly and lose 
it more easily in collisions. Both plasma fluid models and 
kinetic/particle-in-cell models have been used to simulate 
streamers. In fluid models particle densities (and sometimes 
also momentum or energy densities) evolve in time, using 
pre-calculated transport coefficients as input data. In kinetic 
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simulations, the electron distribution function f (⃗x, v⃗, t) 
evolves in time, using cross sections  as input data. Kinetic 
simulations typically require a large number of particles and 
smaller time steps than fluid simulations, so that their compu-
tational cost is considerably higher.

The history of streamer modeling goes back several dec-
ades; early work includes for example [1, 10]. Most models 
developed since have been of the plasma fluid type, and such 
models typically face (at least) two challenges: solving the 
fluid equations  with high accuracy but without introducing 
unphysical oscillations, and efficiently computing the elec-
tric field at each iteration. For discharges in air, an additional 
challenge has been computation of the photoionization source 
term, see for example [11, 12].

Different numerical methods have been used to solve the 
fluid equations, for example the Scharfetter–Gummel scheme 
in [12, 13], the flux-corrected transport method in [14, 15], 
the use of flux/slope limiters in [16–18] and the use of a 
WENO scheme in [19]. Finite volume methods have been 
popular because they can relatively easily be implemented on 
structured grids, because they are conservative by construc-
tion, and because efficient methods are available for advec-
tion problems. To adapt models to more complex discharge 
geometries the finite element method has also been used, for 
example in [20–22].

We now briefly review the development of three-dimen-
sional simulations. The first demonstration of a 3D fluid sim-
ulation was given in [23]. In [24], parallel fluid simulations 
with adaptive mesh refinement (AMR) were performed using 
Paramesh, but the main bottleneck was the Poisson solver. 
Later work includes a 2.5D fluid model with AMR, parallel-
ized over axial modes [25]. Kinetic [26, 27] and hybrid kinetic/
fluid [28] 3D models without AMR have also been employed, 
and more recently kinetic models with AMR have been used 
[29, 30]. Other work includes 3D simulations with a finite ele-
ment code [31] and a proof-of-concept of 3D simulations in 

transformer oil with OpenFoam [32]. A notable development 
was the 3D fluid model with AMR presented in [33], which is 
commercially available. The adaptation of parallel multigrid 
methods from the Gerris flow solver [34] made it possible to 
perform relatively large scale 3D simulations.

Here, we present Afivo4-streamer, an open-source fluid model 
for the simulation of streamer discharges. Both 2D, axisym-
metric and 3D simulations are supported, but the focus here is on 
3D, which is computationally most challenging. Afivo-streamer 
is based on the Afivo framework [35], which provides quadtree/
octree adaptive mesh refinement, a geometric multigrid solver, 
shared-memory parallelism, and routines for writing output. The 
first successful application of Afivo-streamer can be found in 
[36]. The main contribution of Afivo-streamer is that it provides 
efficient and open-source computational infrastructure for 2D, 
3D and axisymmetric streamer simulations.

The paper is organized in two parts. In the first part (sec-
tion 2), the numerical implementation of Afivo-streamer is 
described. In the second part (section 3), we demonstrate the 
code’s functionality with three 3D examples.

2. Model description

The implementation of the different components of Afivo-
streamer is described below. The source code is available 
online through [37] under an open source (GPLv3) license.

2.1. Afivo AMR framework

Adaptive mesh refinement is essential for 3D streamer simula-
tions. Without AMR, the fine grid spacing that is required near 
the streamer head severely restricts the size of the computa-
tional domain. Here, the open-source Afivo framework [35] is 
used to provide AMR and parallelization for streamer simu-
lations. The functionality of Afivo is summarized below; for 
more details we refer to [35].

2.1.1. Adaptive quadtree/octree grids. Afivo supports 
quadtree (2D) and octree (3D) grids. A quadtree/octree grid 
consists of blocks of ND cells, where N is an even number 
(here we use N = 8) and D is the problem dimension. One 
or more of these blocks defines the coarse grid. A coarse grid 
block can be refined by covering it with 2D child blocks, which 
each have half the grid spacing. This process can be repeated 
recursively, leading to an adaptively refined mesh that still has 
a quite regular structure, as illustrated in figure 3.

Afivo provides routines for adapting the mesh, but does 
not come with built-in refinement criteria. The criteria used 
here are discussed in section  2.5. Afivo does ensure proper 
nesting, which means that neighboring boxes differ by at most 
one refinement level. Different methods for interpolating 
from coarse to fine grids are included. For restriction (going 
from fine to coarse grids) simple averaging is implemented, in 
which a coarse cell gets the average value of the four (2D) or 
eight (3D) fine cells that cover it.

Figure 1. Experimental picture of positive streamers, showing why 
3D simulations are often required: streamers branch and interact, 
and single streamers often show fluctuations which cannot be 
captured with axisymmetric models. Reproduced from [9]. © IOP 
Publishing Ltd. All rights reserved (air at 293 K and 0.4 bar, 16 kV 
applied to a 4 cm gap).

4 Afivo stands for ‘adaptive finite volume octree’.
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Afivo provides storage for cell-centered and face-centered 
variables. For the cell-centered variables, each grid block con-
tains storage for one layer of so-called ghost cells. How these 
ghost cells are filled depends on whether there is a physical 
boundary, a refinement boundary or a ‘normal’ boundary 
between blocks of the same refinement level. The use of ghost 
cells simplifies the implementation of numerical schemes, and 
also helps in performing parallel computations.

2.1.2. Geometric multigrid solver. One of the key computa-
tional challenges in streamer simulations is quickly solving 
Poisson’s equation

∇ · (ε∇φ) = −ρ, (1)

to obtain the electrostatic potential φ from the charge density 
ρ, where ε is the dielectric permittivity. The electrostatic field 
can then be determined as E⃗ = −∇φ. Poisson’s equation has 
to be solved at every time step and with high spatial resolution 
within the ionization fronts, and its non-local nature prevents 
a straightforward parallel solution. Therefore, the Poisson 
solver is often the most time-consuming part of streamer sim-
ulations. Afivo implements geometric multigrid routines [38, 
39], which are among the fastest methods for solving elliptic 
equations such as (1).

Multigrid methods are iterative solvers which cycle over 
a hierarchy of grids. Short-wavelength errors are efficiently 
reduced on fine grids, and long-wavelength errors on coarse 

grids, by using an appropriate smoothing procedure. There 
are many varieties of multigrid, which differ in for example 
their multigrid cycle, smoothing procedure, grid hierarchy 
or interpolation method. For a detailed description of mul-
tigrid methods, which we cannot give here, we refer to e.g. 
[38–40].

Afivo supports a V-cycle and an FMG (full multigrid) cycle, 
both using a cell-centered discretization for the solution φ and 
the right-hand side ρ. An FMG cycle is more expensive than 
a V-cycle, but it typically gives a solution within the discre-
tization error in one or two iterations. Both cycles are imple-
mented using the full approximation scheme, which means 
that the computed solution is available at all grid levels (in 
some multigrid methods, only the correction to the solution is 
computed on coarse grids). Afivo includes Gauss–Seidel red-
black smoothers that can be used for constant ε problems, and 
to some extent also for problems where ε varies, see [35]. It is 
currently not possible to include internal boundary conditions, 
for example to define a curved electrode, although work in 
that direction is ongoing.

Afivo’s multigrid can handle adaptively refined quadtree/
octrees. Near refinement boundaries, fine-grid ghost cells 
are filled in a ‘conservative’ way, to obtain a consistent solu-
tion on all grid levels. The procedure can be illustrated using 
figure  4, which shows a refinement boundary in a quadtree 
mesh. If we solve equation (1) (with constant ε) on this grid, 
then we should have

Figure 2. Cross section through a streamer head, showing the charge density (left) and electric field strength (right). The numerical mesh 
was generated according to the criteria described in section 2.5, using equation (9) with c0 = 1.0 and c1 = 1.2.

Figure 3. Left: example of a quadtree grid consisting of two blocks of 4 × 4 cells. The middle and right figure show how the mesh can be 
refined by recursively adding new blocks, each having half the grid spacing of their parent.

J. Phys. D: Appl. Phys. 50 (2017) 474001
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(U3,1 − U2,1)/H =
1
2
[(u5,1 − g4,1)/h + (u5,2 − g4,2)/h] .

 (2)
The left-hand side of this equation corresponds to the coarse 
flux ∂xU  over the bottom half of the refinement boundary, and 
the right-hand side to the average fine flux. To see why these 
fluxes should match, it can be helpful to think of equation (1) 
as a steady-state diffusion problem. With Afivo’s standard 
restriction method U3,1 = (u5,1 + u5,2 + u6,1 + u6,2)/4, sev-
eral conservative ghost cells schemes can be constructed, for 
example:

g4,1 =
1
2

U2,1 + u5,1 −
1
4
(u5,2 + u6,1) ,

g4,2 =
1
2

U2,1 + u5,2 −
1
4
(u5,1 + u6,2) .

More details on the ghost cell procedure and the extension to 
the 3D case can be found in [35].

In the Afivo-streamer code, an FMG cycle is used to com-
pute the electric potential at the start of a simulation. For each 
subsequent update of the potential a number of V-cycles is 
used (here two), which take the previous solution as an initial 
guess. This exploits the fact that there are only small changes 
in the potential between time steps.

In streamer simulations with AMR, the fine grid ideally 
covers a relatively small region. As discharges propagate, the 
mesh has to follow their features, meaning it changes frequently 
in time. A key advantage of geometric multigrid methods is 
that they require almost no extra computation when the mesh 
changes, in contrast to matrix-based (direct) methods.

2.1.3. Parallelization. Afivo incorporates shared-memory 
parallelization using OpenMP, which means that it can use 

one up to e.g. 32 cores, depending on the available hardware. 
Since the quadtree/octree grid is naturally divided into blocks, 
the parallelization is performed over these blocks. This is 
implemented with OpenMP constructs around all the relevant 
loops in the framework. Afivo also provides parallel loop 
methods, which given a routine for a single block will apply 
that routine on all blocks in parallel. In cases were more flex-
ibility is required, users can also write their own parallel loops 
over the quadtree/octree blocks.

The scaling of codes based on Afivo is typically lim-
ited by the memory bandwidth of the computer: when 
relatively ‘cheap’ algorithms are used, transferring data 
from memory to each CPU core and back takes most of the 
time. For the multigrid methods, a further challenge is that 
coarse grid levels contain few data points, hampering their 
parallel efficiency, see e.g. [39]. An example of the scaling 
behavior is given in section  3.2, which shows a maximal 
speedup of about a factor 7 using 28 CPUs. However, since 
we have not yet tried to optim ize the parallel efficiency of 
Afivo-streamer, better scaling is probably possible in the  
future.

2.1.4. Writing output. When doing 3D simulations with 
AMR, writing and visualizing output can be challenging. 
Afivo comes with support for writing VTK unstructured files 
and Silo files, which can be visualized with e.g. Visit [41]. For 
3D simulations, the Silo format is more efficient, as it groups 
grid blocks into larger rectangular regions. The Silo files also 
include ghost cell information, which helps to ensure smooth 
visualizations near refinement boundaries. For a 3D streamer 
simulation output can get pretty large: using for example 
five variables and 2 × 107 grid cells, a single file is about a 
gigabyte.

Figure 4. Figure to help explain how equations are discretized near a refinement boundary in a quadtree. The dots indicate cell centers, 
with coarse grid values are indicated by Ui,j, fine grid values by ui,j and ghost cells by gi,j. Not all ghost cells are indicated. A coarse cell 
with index (i, j) is covered by fine cells with indices (2i − 1, 2j − 1) up to (2i, 2j).

J. Phys. D: Appl. Phys. 50 (2017) 474001
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2.2. Fluid model equations

The fluid model used here is of the drift-diffusion-reaction 
type with the local field approximation [42]. It keeps track of 
the electron density ne and the positive ion density ni:

∂tne = ∇ · (µeneE⃗ + De∇ne) + ᾱµeEne, (3)

∂tni = ᾱµeEne. (4)

Here, ᾱ is the effective ionization coefficient, µe the electron 
mobility, De the electron diffusion coefficient and E⃗  the elec-
tric field. With the local field approximation µe, De and ᾱ are 
functions of the local electric field strength. These coefficients 
can be computed with a Boltzmann solver [43, 44] or particle 
swarms [45], or they can be measured experimentally. The 
fluid equations are coupled to the electrostatic field, which is 
computed as

E⃗ = −∇φ, (5)

∇2φ = −e(ni − ne)/ε0 (6)

where φ is the electric potential, ε0 the permittivity of vacuum 
and e the elementary charge. The electric potential is com-
puted with the multigrid routines from Afivo, described in 
section 2.1.

Different types of plasma fluid models can be implemented 
in Afivo-streamer. More advanced models could for example 
include an equation for the momentum and/or energy density, 
and let the transport coefficients depend on the mean electron 
energy, see e.g. [46, 47]. The mean energy is then given by 
Q/ne, where Q is the energy density. Such models capture 
more of the physics, as demonstrated in e.g. [48]. However, 
the ratio is Q/ne hard to define when ne → 0, making such 
models less robust than the one used here. Furthermore, a 
hyperbolic system with multiple coupled equations is gener-
ally harder to solve than a scalar one.

For electric discharges in air, photoionization is often an 
important process [49]. Excited nitrogen molecules can emit 
UV photons which are able to ionize oxygen molecules. Such 
a non-local source of free electrons is particularly important 
for positive streamers, which require free electrons ahead of 
them to grow. Afivo-streamer contains a Monte Carlo pro-
cedure for photoionization, which can take into account sto-
chastic fluctuations due the finite number of photons. The 
procedure is described in chapter 11 of [50], and in a forth-
coming paper we will investigate the effect of stochastic pho-
toionization on streamer branching. In the present paper, we 
focus on discharges in pure nitrogen without photoionization, 
using a background density of electrons and positive ions.

2.3. Spatial discretization

We use an explicit finite volume approach, in which the fol-
lowing quantities are defined at cell centers: the electron/ion 
density, the electric potential, and the electric field strength. 
The electron fluxes and the electric field components are 
defined at cell faces. The spatial discretizations used in Afivo-
streamer are generally second order accurate. However, near 

extrema and shocks the flux-limited scheme reduces to first 
order, and the same happens near refinement boundaries due 
to the use of linear interpolation.

Afivo’s multigrid routines compute the electric potential 
from the charge density, as discussed in section 2.1.2. From 
the cell-centered electric potential φ, the electric field at cell 
faces is computed by central differencing, so that the x-comp-
onent is computed as

Ei+1/2,j,k
x = (φi,j,k − φi+1,j,k)/∆x.

The electric field strength at cell centers is then computed as 

Ei,j,k =
√

E2
x + E2

y + E2
z  where Ex = (Ei−1/2,j,k

x + Ei+1/2,j,k
x )/2 

is the average x-component at the cell center, Ey = 
(Ei,j−1/2,k

y + Ei,j+1/2,k
y )/2, and similarly for Ez.

We follow the approach from [16] for the discretization of 
the fluid equations. The advective part of the flux is computed 
using the Koren limiter [51]. The electron velocity at a cell 
face is then computed as

vi+1/2,j,k
x = −µ(E∗)Ei+1/2,j,k

x ,

where E∗ = (Ei,j,k + Ei+1,j,k)/2 is the electric field strength 
|E⃗| at the cell face. For brevity, we now omit the extra indices 
j, k. If vi+1/2

x < 0, the advective flux between cell i and i + 1 
is given by

f i+1/2
x = vi+1/2

x

(
ni+1

e − ψ

(
ni+2

e − ni+1
e

ni+1
e − ni

e

)
(ni+1

e − ni
e)

)
,

 (7)

and if vi+1/2
x ! 0, it is given by

f i+1/2
x = vi+1/2

x

(
ni

e + ψ

(
ni

e − ni−1
e

ni+1
e − ni

e

)
(ni+1

e − ni
e)

)
, (8)

where ψ(x) is the Koren limiter, given by

ψ(x) = max (0,min(1, (2 + x)/6, x)) .

The y and z components are computed similarly. Note that the 
above equations, if directly implemented, could cause divi-
sion by zero. Our numerical implementation avoids this; it is 
described in appendix B of [50]. The diffusive flux between 
cells i and i + 1 is computed using central differences, and is 
given by

f i+1/2
x = De(E∗)(ni

e − ni+1
e )/∆x,

with E∗ defined as above.
To implement the above discretization near the boundary 

of a block, we use ghost cells. Two ghost cells are required5, 
because the flux f i+1/2

x  from equation (7) depends on ni+1
e  and 

ni+2
e . These ghost cells are filled by linear interpolation. For 

a quadtree (in 2D), we use the following scheme for the first 
ghost cell, with indexes referring to those of figure 4:

g4,2 = min [(3U2,1 + U2,2 + 2u5,2)/6, 2U2,1] .

This can for example be seen as first linearly interpolating 
between U2,1 and U2,2 to get g4−1/2,2, and then linearly 

5 Since blocks contain storage for only one layer of ghost cells, a temporary 
array is used to include a second layer of ghost cells.
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interpolating between g4−1/2,2 and u5,2 to get g4,2. We limit 
g4,2 to at most 2U1,1 to ensure that U1,1 stays positive when the 
electron flux goes from coarse to fine. The second ghost cell is 
filled using linear interpolation, using

g3,2 = (2U2,1 + U1,1 + U2,2)/4.

In 3D, the same interpolation approach is used, but the 
schemes then depend on three neighboring values. Because 
we use linear interpolation, the accuracy of our discretiza-
tion drops to first order near refinement boundaries. If instead 
higher order interpolation was used that could lead to other 
problems, such as the generation of new extrema or negative 
values. Finally, we remark that at refinement boundaries the 
coarse fluxes are replaced by the average fine flux, to ensure 
mass conservation.

To efficiently look up transport coefficients we convert 
them to a lookup table. This table stores the coefficients at reg-
ularly spaced electric field strengths, linearly interpolating the 
input data, e.g. from BOLSIG+  [43]. To look up values for 
a given field strength, the corresponding index in the table is 
computed, after which linear interpolation is employed. By 
default, the table  is constructed up to Emax = 35 MV m−1 
using 1000 steps.

2.4. Temporal discretization

Time stepping is performed as in [16], using the second order 
accurate explicit trapezoidal rule. This method is strong sta-
bility preserving (SSP) and has favorable properties when 
combined with the Koren limiter [52]. Our implementation 
advances over ∆t  as follows:

 (i) Store the original electron and ion densities.
 (ii) Compute fluxes and source terms, then perform a forward 

Euler step over ∆t  and compute a new electric field.
 (iii) Compute fluxes and source terms, then perform another 

forward Euler step over ∆t .
 (iv) Average the new electron and ion densities (advanced 

over 2∆t) with the stored initial ones. Then compute 
a new electric field at t  +  ∆t from the resulting charge 
density.

All the grids are advanced using the same global time step. 
We limit ∆t  according to several criteria. The first is a CFL 
condition

∆t
∑

|vi|/∆x < 0.5,

where vi are the velocity components and ∆x the grid spacing, 
which is equal in all directions. This condition is more strict 
than necessary for stability, but we found that a CFL number 
of 0.5 gives a good balance between accuracy and computa-
tional cost. To ensure stability for the combined advective and 
diffusive fluxes, we require

∆t
∑

|vi|/∆x +∆t (2DDe)/∆x2 < 1.0,

where D is the problem dimension and De the electron dif-
fusion constant. Finally, the time step is also limited by the 
dielectric relaxation time

∆t < ε0/(eµene).

These requirements for ∆t  are evaluated at stage (iii) of 
our time stepping scheme, where the required quantities are 
already available. The next time step is then obtained by mul-
tiplying with a safety factor (default 0.9).

2.5. Refinement criterion

The growth of positive streamers is dominated by electron 
impact ionization. Therefore, our refinement criterion is based 
on 1/α(E), which is the average distance between ionization 
events for an electron. Ignoring advection, it is an estimate 
for the distance over which the electron density increases by 
a factor of e ≈ 2.72. For the simulations presented here, the 
following criterion was used

∆x < c0c1/α(c1E), (9)

with c0 = 1 and c1 = 1.2. The constant c1 was introduced to 
balance the refinement ahead and on the sides of the streamer. 
Without this constant (or when it is one), we sometimes 
observed oscillations in a streamer’s radius. Setting c1 > 1 
increases the refinement for intermediate electric fields, as 
illustrated in figure 5. This helps to have more refinement on 
the sides of streamers, without significantly increasing the 
refinement at their tips. A benefit of an electric-field dependent 
criterion is that the electric field profile is generally smoother 
than that of e.g. the electron density or the space charge den-
sity. A smoother refinement criterion can help to reduce the 
number of refinement boundaries, at which the accuracy of the 
numerical schemes drops.

The criterion of equation (9) is evaluated for each grid cell. 
If at least one cell of a grid block requires refinement, the 
whole block is refined. Afivo implements a refinement buffer, 
so that blocks are also refined when nearby cells in neighboring 
blocks require refinement. For the simulations presented here, 
we used a buffer distance of three cells. Furthermore, the code 
places refinement around the initial conditions, to ensure they 
are accurately captured.

Figure 5. The refinement criterion of equation (9) for c1 = 1.0 and 
c1 = 1.2, with c0 = 1.0 for both cases. With a larger value of c1, 
there is more refinement at low to intermediate electric fields. Data 
for nitrogen at 1 bar was used for α(E), as described in section 3.1.

J. Phys. D: Appl. Phys. 50 (2017) 474001
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Grid blocks can be derefined when for all cells equation (9) 
holds for a small value of c0 and when ∆x < ∆xderef . Here, 
we have used c0 = 1/8 and ∆xderef = 30µm, where ∆xderef  
controls the mesh resolution of the discharge in regions where 
it no longer grows. An example of the resulting mesh around 
a streamer head is shown in figure 2. This streamer was gener-
ated in nitrogen at 1 bar , using the same transport coefficients 
as for the examples presented in section 3.

The above criterion is an empirical criterion for positive 
streamers, which often works quite well, but not always. For 
example, when simulating negative streamers propagating 
into a zero-density region (ne = 0), the criterion will trigger 
refinement where there are no electrons and no space charge. 
We have experimented with a different criterion, based on the 
space charge density ρ: ∆x <

√
c3ε0/|ρ|, with c3 for example 

25 V. Such a criterion captures the space charge layers quite 
well, but not the strong density gradients ahead of those charge 
layers, which play an important role in streamer propagation. 
In the future, we hope to find a more generic criterion, based 
on the discretization error in the model itself.

We would like to point out that the coarse mesh can make 
a significant difference in the computational cost of simula-
tions. For example, if the finest mesh spacing required in a 
simulation is 2 µm , and the computational domain measures 
(10 mm)3, then the actual finest mesh will have a spacing of 
about 1.22 µm = 10/213 mm. By using a larger or smaller 
computational domain, the fine-grid spacing can be made to 
agree better with its desired value. This would allow for larger 
time steps, often using a smaller total number of grid cells.

2.6. Interpolation and restriction

When grid blocks are refined, the electron and ion density are 
interpolated to the fine-grid blocks. We currently use standard 
bilinear and trilinear interpolation, which has the drawback 
that it is non-conservative near the boundary of the refined 
block. In the future we will consider a conservative approach 
with slope limiters, as in [53]. The idea is to determine the 
(limited) density gradient in a coarse grid cell, and then use 
this slope to fill fine grid values.

When grid blocks are coarsened, the electron and ion den-
sity of the fine grid cells are averaged to obtain coarse values. 
For the case shown in figure 4, the coarse density U3,1 would 
for example be given by U3,1 = (u5,1 + u5,2 + u6,1 + u6,2)/4, 
which is conservative.

2.7. Inclusion of electrodes and dielectrics

When developing a numerical code, there is often a trade-off 
between flexibility and computational efficiency. In the devel-
opment of Afivo-streamer our focus has been on efficiency, to 
enable computationally costly 3D simulations. We therefore 
make use of a structured quadtree/octree grid, in which the 
inclusion of curved electrodes or curved dielectrics is not (yet) 
supported. It is however possible to include flat dielectrics that 
are aligned with the mesh, which are for example relevant for 
the simulation of discharges near liquids.

Support for curved geometries in Afivo-streamer could 
be implemented in different ways. It would for example be 
possible to modify the finite volume discretization to support 
body-fitted meshes, but this leads to problems with sharp fea-
tures and the coordinate transformation can be complex in 3D. 
Alternatively, a cut-cell approach [54] could be implemented. 
Our strategy will be to first support curved geometries in the 
field solver, as was for example already done in [55]. Later, 
we will focus on the adaptation of the fluid model. It can for 
example be important to avoid the appearance of tiny grid 
cells near an object, because they would reduce the allowed 
time step.

3. 3D simulations

We now demonstrate the functionality of Afivo-streamer with 
three examples, all in 3D. The simulations were performed 
on a single node containing two Xeon E5-2680v4 processors 
(2 × 14 cores, at 2.4 GHz). The simulations ran for up to 24 
hours, using up to 108 grid cells. Figure 6 illustrates the par-
allel scaling of the code. Individual output files with the 3D 
data were up to 5 gigabytes in size.

3.1. Simulation conditions

The simulations presented here were performed in nitrogen at 
one bar and 300 Kelvin. Electron transport coefficients (e.g. 
α, µe) were computed with Bolsig+  [43] from Phelps’ cross 
sections [56]. A computational domain of (40 mm)3 was used, 
constructed from octree blocks of 83 cells. The maximum grid 
spacing was set to 625 µm; the minimum grid spacing in the 
simulations was about 2.4 µm. A background electric field of 
E0 = 2.0 MV m−1 was applied in the −ẑ direction, which is 
below the ‘breakdown’ threshold for nitrogen. For a discus-
sion of the difference between discharges in overvolted and 
undervolted conditions we refer to [57]. The background field 
is imposed by grounding the bottom boundary of the domain 
and applying 80 kV at the top. On the other sides of the 
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Figure 6. Parallel efficiency and relative simulation time versus the 
number of cores used, relative to a single core computation. The 
results were obtained for nodes with 28 Intel Xeon E5-2680 cores, 
on which we simulated case 1 of section 3.2 (a seed evolving in a 
homogeneous background density) up to 2.5 ns.
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domain, Neumann zero boundary conditions were used for the 
potential. Neumann zero boundary conditions were also used 
for the electron density on all sides, but this had little effect 
on the results because the simulated streamers did not connect 
to boundaries.

The propagation of positive streamers requires free elec-
trons ahead of them. In air, such electrons are often provided 
by photoionization. Since we here perform simulations in 
nitrogen, where photoionization is absent, a background 
density of 1014 m−3 electrons and positive ions is included 
instead. Such a density could for example be present due to 
previous discharges in a repetitively pulsed system [58].

To start a discharge, the background field has to be 
locally enhanced. We do this by placing an ionized seed of 
about 1.8 mm long with a radius of about 0.15 mm. The 
electron and positive ion density are 1020 m−3 at the center, 
and they decay at distances above d = 0.1 mm with a so-
called smoothstep profile: 1 − 3x2 + 2x3 up to x  =  1, where 
x = (d − 0.1 mm)/0.1 mm. When the electrons from a seed 
drift upwards, the electric field at the bottom of the seed is 
enhanced so that a positive streamer can form.

3.2. Stochastic background density

In this example, we investigate how a stochastic distribution 
of background ionization affects streamer propagation. A 
single ionized seed is placed as shown in figure 7. We then let 
a discharge evolve using three different background ionization 
distributions, for which the electron and positive ion density 
per cell are given by:

 • Case 1: A constant value of 1014 m−3

 • Case 2: A stochastic value (0.5 + U)× 1014 m−3, where 
U is a uniformly distributed random number between 
zero and one.

 • Case 3: A stochastic density 2U × 1014 m−3, using the 
same random numbers as for case 2.

The background is created at the grid level with spacing 
625µm and then linearly interpolated to finer grids, so that 
the noise has a correlation length of 625 µm. Note that all 
three cases have the same average density of 1014 m−3. An 
example of the third case is shown in figure 7. We remark that 
the above distributions do not contain physically realistic fluc-
tuations, in which case the number of electrons per cell would 
be Poisson-distributed.

Figure 8 shows how a positive streamer propagates for 
the different cases. Remarkably, the streamer velocity is 
nearly identical. This is consistent with previous studies 
[29, 59, 60], in which it was found that the streamer 
velocity only weakly depends on the background ioniz-
ation level. The background density has a stronger effect on 
the morphology of the streamer. After 23 ns, case 3 shows 
streamer branching, while case 1 and 2 do not. The evo-
lution of cases 2 and 3 seems closer to the exper imentally 
observed streamers of figure  1. Our results agree with a 
previous study [61], in which it was found that positive 
streamer branching is accelerated by stochastic electron 
density fluctuations.

3.3. Interaction with preionization

This example is related to two previous studies [36, 62], in 
which the guiding of positive streamers by preionization from 
a laser was investigated. Here, we simulate a positive streamer 
passing through three preionized cylinders. The cylinders are 
aligned perpendicular to the direction of propagation, as indi-
cated on the left of figure 9. They contain a density of 1016, 
1017 and 1018 m−3 electrons and positive ions. A background 
density of 1014 m−3 was present in the whole domain.

Figure 9 shows how the electron density and electric field 
evolve in time, and figure  10 shows the final state rotated 
around the vertical z-axis. Since the fluid model employed here 
is deterministic, the mirror symmetry in x and y of the  initial 
conditions is preserved. Upon reaching the first preionized 
region, the streamer’s maximum electric field is reduced, and 
it becomes slightly wider. Figure 10 shows that the streamer 
actually branches, and that the branches grow around the ion-
ized patch. A similar effect was observed in [63], in which 
positive streamers grew around the preionization generated by 
a negative discharge.

The second patch has a similar effect to the first one. 
Inside the third patch, the electron density of the discharge 
is significantly lower. Due to the high preionization density 
(1018 m−3) in this region, the streamer loses most of its elec-
tric field enhancement. A similar phenomenon was observed 
for sprite discharges, to explain the formation of so-called 
‘beads’ [64]. At around 25 ns the streamer continues, and 
it branches at the boundary of the 1017 m−3 and 1018 m−3 
preionized regions, see figure  10. As the positive streamers 
grows downwards, electrons drift out towards the top. These 
electrons could eventually form a negative streamer, as can be 
seen in the electric field profiles at later times.

Figure 7. Cross section through the 3D computational domain for 
case 3, showing a stochastic background density 2U × 1014 m−3 
with a correlation length of 625 µm, where U is a uniform 
random number between zero and one. The location of the ionized 
seed from which the discharge starts is also visible, its density 
(1020 m−3) exceeds the color scheme.
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3.4. Interacting streamers

In this example, the interaction between two streamers is inves-
tigated; previous numerical and experimental investigations 
can be found in [25, 65]. The two interacting streamers are 
created by placing two field-enhancing seeds in the domain, 
instead of the single one used in the previous examples. We 
consider two cases, in which the vertical offset between the 
seeds is 4 mm or 8 mm; their horizontal offset is 4 mm.

Figure 11 shows the time evolution of the electron den-
sity and the electric field for both cases, with equipotential 
lines indicated at steps of 4 kV. With the smaller vertical 
offset, the streamers repel, whereas they attract with the larger 
offset. This can be explained by looking at the equipotential 
lines. For the case with the smaller vertical offset, the lower 
streamer bends equipotential lines downwards. This reduces 
the electric field in which the upper streamer propagates. The 

Figure 8. Evolution of a positive streamer in a 3D simulation, performed in N2 at 1 bar with a background electric field of 2 MV/m. 
Three background densities are considered 1: uniform, 2: half-stochastic, 3: fully stochastic, see text. The average background density is 
ne = ni = 1014 m−3 for each case. Shown is a 3D volume rendering of the electron density; the opacity is indicated in the legend.

Figure 9. Evolution of a positive streamer in a 3D simulation as it propagates through preionized regions with 1016, 1017 and 1018 m−3 
electrons and positive ions. At each indicated time a 3D volume rendering of the electron density together with a cross section of the 
electric field is shown.
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Figure 10. Rotated views of the electron density at 30 ns for a positive streamer that has propagated through preionized patches, as in the 
last stage of figure 9. The views are rotated around the vertical z-axis, in steps of 18°. Note how the streamer branches and grows around the 
preionized regions while preserving mirror symmetry in x and y.

Figure 11. Evolution of two interacting positive streamers in 3D. The streamers have a vertical offset of 4 mm (top row) or 8 mm (bottom 
row) and a horizontal offset of 4 mm. At each indicated time, a 3D volume rendering of the electron density together with a cross section of 
the electric field are shown. The white equipotential lines are spaced by 4 kV.
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reduction is smaller farther away from the lower streamer, 
which causes the upper streamer to bend outwards.

For the case with the larger vertical offset, another 
effect becomes important. Both streamers are in total elec-
trically neutral (as well as the seeds they originate from). 
Their bottom/positive end therefore bends equipotential 
lines downwards, whereas their upper/negative end bends 
them upwards. With sufficient vertical offset between the 
streamers, the equipotential lines between them are there-
fore compressed. This means there is an increased electric 
field between them, so that they attract. In summary, posi-
tively charged streamer heads repel, whereas a positive 
streamer head is attracted to a negatively charged streamer 
tail. Finally, notice how in both cases the bottom streamer 
propagates almost straight down, whereas path of the upper 
streamer is bent.

4. Conclusions and outlook

We have presented Afivo-streamer, an open-source plasma 
fluid model for 2D, cylindrical and 3D simulations of streamer 
discharges. The model makes use of the Afivo framework [35] 
to provide adaptive mesh refinement, a geometric multigrid 
Poisson solver and OpenMP parallelization. For robustness, the 
fluid model is of the drift-diffusion-reaction type in combina-
tion with the local field approximation. We have described the 
numerical implementation of Afivo-streamer, discussing also 
the refinement criterion. The model’s capabilities have been 
demonstrated with 3D examples of positive streamers in under-
volted gaps in pre-ionized nitrogen at 1 bar . In the first example 
the effect of stochastic background ionization on streamer prop-
agation and branching was investigated. The second example 
demonstrated how a streamer interacts with preionized patches, 
in which it slows down and loses much of its field enhancement. 
Streamer branching was also observed. The third example 
investigated how streamers can attract or repel, depending on 
their relative position. These simulations used up to 108 grid 
cells, and all ran within a day. A uniform grid with the same 
resolution would have required 4 · 1012 grid cells.

Future work will focus on the effects of photoionization, 
which was not included here, but is important for discharges 
in air. Support for the inclusion of curved electrodes or 
di electrics, which are relevant for many physical applications, 
is planned for a future version of Afivo-streamer.
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