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How Do Sinking Phytoplankton Species Manage to Persist?
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abstract: Phytoplankton require light for photosynthesis. Yet, most
phytoplankton species are heavier than water and therefore sink. How
can these sinking species persist? Somehow, the answer should lie in
the turbulent motion that redisperses sinking phytoplankton over
the vertical water column. Here, we show, using a reaction-advection-
diffusion equation of light-limited phytoplankton, that there is a
turbulence window sustaining sinking phytoplankton species in deep
waters. If turbulent diffusion is too high, phytoplankton are mixed
to great depths, and the depth-averaged light conditions are too low
to allow net positive population growth. Conversely, if turbulent
diffusion is too low, sinking phytoplankton populations end up at
the ocean floor and succumb in the dark. At intermediate levels of
turbulent diffusion, however, phytoplankton populations can out-
grow both mixing rates and sinking rates. In this way, the reproducing
population as a whole can maintain a position in the well-lit zone
near the top of the water column, even if all individuals within the
population have a tendency to sink. This theory unites earlier classic
results by Sverdrup and Riley as well as our own recent findings and
provides a new conceptual framework for the understanding of phy-
toplankton dynamics under the influence of mixing processes.
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Phytoplankton require light for living. Hence, in order to
proliferate, phytoplankton populations should stay in the
well-illuminated upper regions of the water column, the
so-called euphotic zone. However, many, if not most, phy-
toplankton species have a higher density than water. They
sink (Hutchinson 1967; Smayda 1970; Reynolds 1984). Yet,
sinking phytoplankton species have formed a successful
part of the phytoplankton community in lakes and oceans
for millions of years. How do populations of sinking pho-
totrophic organisms manage to persist? Which environ-
mental factors allow survival of sinking phytoplankton?

Previous studies provided partial answers to these ques-
tions. In a classic article, Riley et al. (1949) derived a
relation between sinking velocity and water-column tur-
bulence that would just allow the persistence of a sinking
phytoplankton population. Although Riley et al. (1949)
focused on the interplay between sinking velocity and tur-
bulent diffusion, their mathematical analysis neglected the
light dependence of phytoplankton growth. Later, Shige-
sada and Okubo (1981) reproduced the result of Riley et
al. in a model in which they incorporated light-dependent
growth rates but neglected light absorption by the water
column. In another classic article, Sverdrup (1953) derived
the existence of a “critical depth” of the mixed layer be-
yond which phytoplankton growth would be impossible.
Sverdrup’s critical-depth theory gained much impetus in
modern oceanography and aquatic ecology (e.g., Platt et
al. 1991; Kirk 1994; Mann and Lazier 1996; Lucas et al.
1998; Huisman 1999). However, though Sverdrup consid-
ered light-dependent growth rates as well as light absorp-
tion by the water column, he assumed a uniform phyto-
plankton depth profile, thereby neglecting implications of
both turbulent diffusion and sinking. Recently, Huisman
et al. (1999b, 1999c) derived the existence of a “critical
turbulence” that just allows phytoplankton bloom devel-
opment. Huisman et al. focused on the interplay between
turbulent diffusion and light-dependent growth rates but
treated sinking phytoplankton only superficially. How do
these different concepts fit together? Is there any consis-
tency or overlap between these theories? It feels as if we
have different pieces of a complicated puzzle at hand, while
the coherent picture is still lacking.

The issue is not without relevance. Sinking phytoplank-
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ton play a key role in several biogeochemical cycles because
they withdraw nutrients from the upper water column and
deposit these nutrients at the bottom sediment or in deep
water layers. In particular, sinking phytoplankton have a
major impact on the global carbon cycle by exporting
photosynthetic carbon from the surface into the deep
ocean interior (Falkowski et al. 1998; Arrigo et al. 1999;
DiTullio et al. 2000). A better understanding of the pop-
ulation dynamics of sinking phytoplankton species may
thus contribute to a better understanding of the biogeo-
chemical cycling of elements in aquatic ecosystems.

In this article, we develop a population-dynamic theory
of sinking phytoplankton. The theory is based on a re-
action-advection-diffusion equation that considers the bal-
ance between light-dependent growth rates, mortality
rates, sinking rates, and turbulent-diffusion rates. This re-
action-advection-diffusion equation lies at the heart of a
wide variety of detailed simulation models in oceanog-
raphy and ecosystems research (e.g., Jamart et al. 1977;
Slagstad and Støle-Hansen 1991; Koseff et al. 1993; Shar-
ples and Tett 1994; Donaghay and Osborn 1997; Lucas et
al. 1998). Our results will show that the earlier theoretical
concepts developed by Riley et al. (1949), Sverdrup (1953),
and Huisman et al. (1999b) can be integrated into a single
unifying theory.

The Model

Light Gradient

We consider a water column with a cross section of one
unit area. Let z denote the depth coordinate within the
water column, where z runs from 0 at the top to a max-
imum depth, zm, at the bottom. Let denote the lightI(z, t)
intensity at depth z and time t, and let denote theq(z, t)
phytoplankton population density (cells per unit volume)
at depth z and time t. Photons are absorbed by water, clay
particles, phytoplankton, and many other light-absorbing
substances. We assume that the light gradient follows
Lambert-Beer’s law, which states that the light intensity at
depth z and time t is

z

I(z, t) p I exp � kq(j, t)dj � K z . (1)in � bg[ ]
0

Here, Iin is the incident light intensity, k is the specific light
attenuation coefficient of the phytoplankton, j is an in-
tegration variable, and Kbg is the total background atten-
uation due to all nonphytoplankton components. We note
that this formulation includes light absorption by phy-
toplankton. Thus, the light gradient changes with a change
in the phytoplankton population density distribution.

Population Dynamics

The changes in phytoplankton population density can be
described by a partial differential equation:

2�q �q � q
p g(I)q � v � D . (2)

2�t �z �z

Here, g(I) is the specific growth rate of phytoplankton as
a function of the local light intensity I, is the sinkingv
velocity of the phytoplankton, and D is the turbulent-
diffusion coefficient.

The specific growth rate in equation (2) depends on the
balance between production and losses:

g(I) p p(I) � �, (3)

where p(I) is the specific production rate as an increasing
function of light intensity, with , and � is thep(0) p 0
specific loss rate. In all our simulations, we used the fol-
lowing p(I) function (Monod 1950; Huisman 1999):

p Imaxp(I) p , (4)
H � I

where pmax is the maximal specific production rate and H
is a half-saturation constant. We emphasize, however, that
the results presented in this article rely on the qualitative
behavior of the p(I) relation (i.e., andp(0) p 0 dp/dI 1

) rather than on its specific form.0
Substituting equations (1) and (3) into equation (2)

yields our key equation:

2
z�q �q � q

� ∫ kq(j, t)dj�K z0 bgp p I e q � �q � v � D . (5)in 2( )�t �z �z

The first term on the right-hand side indicates that the
specific production rate at a certain depth depends on the
light intensity at this depth, which in turn depends (via
Lambert-Beer’s Law) on all population densities above this
depth. Owing to this integral term, equation (5) can be
classified as an integro-partial differential equation.

We assume zero-flux boundary conditions:

�q
vq(z, t) � D (z, t) p 0, at z p 0 and z p z . (6)m

�z

That is, there is no influx or efflux of phytoplankton,
neither at the top nor at the bottom of the water column.

It is useful to keep track not only of the local population
densities but also of the total phytoplankton population
in the entire water column. This can be expressed as the
total population size per unit surface area, W, defined by
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Table 1: Parameters used in the simulations

Symbol Meaning Value Units

Variables:
I Light intensity … mmol photons m�2 s�1

q Population density … cells m�3

W Population size per unit surface area … cells m�2

Parameters:
D Turbulent diffusion 1 cm2 s�1

H Half-saturation constant of light-
limited growth

30 mmol photons m�2 s�1

Iin Incident light intensity 350 mmol photons m�2 s�1

Kbg Background turbidity .2 m�1

k Specific light attenuation of
phytoplankton

15 # 10�12 m2 cell�1

� Specific loss rate .01 h�1

pmax Maximal specific production rate .04 h�1

v Vertical velocity .04 m h�1

zm Water-column depth 20 m

zm

W(t) p q(z, t)dz. (7)�
0

Using equation (2) and the boundary conditions, the
population size per unit surface area changes with time
according to

zm

dW
p g(I(z, t))q(z, t)dz, (8)�dt

0

where the flux terms canceled because the boundaries are
closed.

Numerical Simulations

The model predictions are analyzed using a combination
of analytical and numerical techniques. Numerical simu-
lation of integro-partial differential equations is quite chal-
lenging. Our simulations were based on a finite volume
method, with spatial discretization of the spatial differ-
ential operators as well as the integral term. The diffusion
term was discretized symmetrically, whereas a third-order
upwind method was used for the advection term (e.g.,
Hirsch 1988). The resulting system of stiff ordinary dif-
ferential equations (ODEs) was integrated over time using
the implicit integration techniques of Brown et al. (1989).
Our simulation techniques are explained in more detail
in Huisman et al. (2001).

Parameter Values

We have attempted to parameterize the simulations as re-
alistically as possible (table 1). Phytoplankton growth pa-
rameters were chosen within the typical ranges measured
for freshwater phytoplankton species in the culture col-
lection of the Laboratory of Aquatic Microbiology, Uni-
versity of Amsterdam, The Netherlands (e.g., Visser et al.
1996, 1997; De Nobel et al. 1998; Huisman 1999; Huisman
et al. 1999a). Phytoplankton sinking velocities generally
range from close to zero for small species like Chlorella to
about m h�1 for large phytoplankton species likev p 0.1
Stephanodiscus (Smayda 1970; Reynolds 1984; Sommer
1984). The vertical turbulent-diffusion coefficient of lakes
and oceans may vary over several orders of magnitude,
from cm2 s�1 during quiescent periods toD ! 0.1 D 1

cm2 s�1 during periods of intense mixing (Denman100
and Gargett 1983; MacIntyre 1993). We used a background
turbidity of m�1, which is typical for clear lakesK p 0.2bg

and clear coastal waters (Kirk 1994).

Conditions for Bloom Development

Phytoplankton Depth Profiles

According to our numerical simulations, the phytoplank-
ton depth profile develops toward a stationary distribution.
We shall indicate the stationary distribution by a super-
script asterisk. What do the stationary depth profiles for
sinking phytoplankton species look like?

One trivial solution for the stationary depth profile is,
of course, that there are no phytoplankton at any depth
at all. More precisely, for all z is, indeed, a∗q (z) p 0
stationary solution of equation (5). If the phytoplankton
population develops toward this trivial solution, bloom
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Figure 2: Combinations of water-column depth, zm, and turbulent-
diffusion coefficient, D, that allow a phytoplankton bloom and combi-
nations that prevent a phytoplankton bloom. A, Phytoplankton species
with a moderate sinking velocity of m h�1. B, Phytoplanktonv p 0.04
species with a high sinking velocity of m h�1. The graphs arev p 0.40
each based on a grid of simulations. Parameter values30 # 60 p 1,800
as in table 1.

Figure 1: Stationary depth profiles of sinking phytoplankton for four
different turbulence levels. Parameter values as in table 1, except (A)

cm2 s�1, (B) cm2 s�1, (C) cm2 s�1, and (D)D p 10 D p 1 D p 0.5
cm2 s�1.D p 0.1

development is impossible. Hence, we say that there is “no
bloom.”

Alternatively, under suitable light conditions, the phy-
toplankton population may develop toward a positive sta-
tionary density distribution (i.e., ). In this case, we∗W 1 0
say that there is “bloom development.” Figure 1 shows a
variety of stationary depth profiles obtained by numerical
simulation, in which we gradually decreased the turbulent-
diffusion coefficient. This illustrates that the stationary
depth profile can have a local population-density maxi-
mum below the surface. Such a local population-density
maximum develops if phytoplankton growth rates exceed
both sinking rates and mixing rates. Interestingly, if tur-
bulent diffusion is further decreased, below 0.1 cm2 s�1,
the entire phytoplankton population sinks to the bottom
of the water column and vanishes in the dark.

Bloom Development

What are the conditions favorable for bloom development
of sinking phytoplankton species? In figure 2A, we plotted

the regions of bloom development and regions of no
blooms for a wide range of different water-column depths
and turbulent diffusivities. Note the log scales of the axes:
the graphs span the entire spectrum from shallow, qui-
escent lakes to deep, turbulent oceans. The left part of
figure 2A considers shallow waters. In shallow waters, there
is sufficient light for bloom development, irrespective of
the phytoplankton distribution over depth. Hence, blooms
can develop. The upper-right corner of figure 2A considers
deep waters with a high turbulent mixing rate. Here, the
phytoplankton population is mixed uniformly over great
depths, and the average light conditions over the entire
water column are insufficient for a net positive growth
rate. Hence, blooms do not develop. The lower-right cor-
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Figure 3: Population size per unit surface area, W, as a function of water-
column depth and turbulent-diffusion coefficient. The graph is based on
a grid of simulations. Parameter values as in table 1.30 # 60 p 1,800

ner of figure 2A considers deep waters with a low turbulent
mixing rate. Here, sinking rates exceed growth rates and
mixing rates, and the phytoplankton population sinks
downward to great depths. Consequently, blooms do not
develop either. Most surprisingly, blooms of sinking spe-
cies can develop in deep systems with intermediate mixing
rates (middle right of fig. 2A). In this parameter region,
growth rates exceed mixing rates so that uniform mixing
over the entire depth of the water column is prevented.
Moreover, turbulent mixing rates exceed sinking rates so
that large downward fluxes of phytoplankton are avoided.
As a consequence, sinking species can maintain a popu-
lation in the euphotic zone at intermediate mixing rates.

Interestingly, the no-bloom areas in figure 2A are bound
by nearly horizontal and vertical lines. This implies that
the effects of water-column depth and turbulent diffusion
on phytoplankton-bloom development are essentially in-
dependent of one another. Hence, we can recognize a “crit-
ical depth,” a “compensation depth,” a “maximal turbu-
lence,” and a “minimal turbulence” (fig. 2A). We call the
region between the maximal and minimal turbulence the
“turbulence window” for sinking phytoplankton.

Figure 3 plots the total population size per unit surface
area, W, as a function of water-column depth and tur-
bulent diffusion. The two no-bloom regions at low and
high turbulence are clearly visible (cf. fig. 3 with fig. 2A).
If the water column is shallow ( m), populationz ! 10m

size per unit surface area is a decreasing function of water-
column depth, whereas it is independent of turbulence.
Conversely, if the water column is deep ( m), pop-z 1 50m

ulation size per unit surface area is a unimodal function
of turbulence, whereas it is independent of water-column
depth. The two patterns are perpendicular to each other.
This provides another illustration of the phase transition
documented in this article; water-column depth deter-
mines the population size of phytoplankton in shallow
systems, whereas turbulence determines the population
size of phytoplankton in deep systems.

Explicit Expressions

It would be convenient, for both practical applications and
a better general understanding, to have a fast method avail-
able to calculate the four critical parameters of figure 2A.
We developed two procedures. First, we derived a fast and
accurate algorithm, described in the appendix. Second, we
derived analytical expressions for the four critical param-
eters, which are discussed below.

Critical Depth

The critical depth in figure 2 is equivalent to Sverdrup’s
(1953) concept of a critical depth. Intuitively, the idea is

that, in turbulent waters, phytoplankton are uniformly
mixed throughout the water column (as in fig. 1A). As a
result, the phytoplankton population has high production
rates in the upper part of the water column but suffers
losses throughout the water column. Hence, depth-inte-
grated production rates will be less than depth-integrated
loss rates if the water column becomes too deep. That is,
bloom development in turbulent waters is impossible if
water-column depth exceeds a critical depth.

Theory and experiments show that Sverdrup’s critical
depth can be reinterpreted in terms of a critical light in-
tensity (Huisman and Weissing 1994; Huisman 1999;
Huisman et al. 1999b). Accordingly, the critical depth, zcr,
can be written as

∗ln (I ) � ln (I )in outz p , (9)cr Kbg

where is the critical light intensity sensu Huisman and∗Iout

Weissing (1994).

Compensation Depth

The compensation depth, zC, in figure 2 is the depth at
which the compensation light intensity would be reached
in the absence of phytoplankton. That is,

ln (I ) � ln (I )in Cz p . (10)C Kbg
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Here, IC is the compensation light intensity, defined as the
light intensity at which specific production rate equals spe-
cific loss rate. That is, the compensation light intensity is
defined by . Intuitively, the idea is that, in sys-g(I ) p 0C

tems with a low turbulence, the total phytoplankton pop-
ulation sinks to the bottom of the water column and
growth conditions thus depend only on the light condi-
tions at the bottom. A phytoplankton population located
at the bottom of the water column cannot develop if light
conditions at the bottom are less than the compensation
light intensity. Thus, bloom development in quiet waters
is impossible if water-column depth exceeds the compen-
sation depth. We note that the critical depth is always
deeper than the compensation depth (i.e., the critical light
intensity is lower than the compensation light intensity;
Huisman and Weissing 1994).

Maximal Turbulence

The maximal turbulence in figure 2A is equivalent to the
critical turbulence described by Huisman et al. (1999b).
The idea that underlies the concept of a maximal turbu-
lence is that, if turbulent diffusion is less than a certain
threshold value, phytoplankton populations may outgrow
the turbulent mixing rate and may thus maintain a bloom
in the upper well-lit part of the water column. Generally
speaking, there is no simple analytical equation for the
maximal turbulence. In the special case that the specific
production rate is of the form , withap(I) p aI 0 ! a ≤

, we were able to derive an approximation for the max-1
imal turbulence based on so-called Bessel functions ap-
proached by asymptotic expansion techniques. The deri-
vation is involved and will be given elsewhere (Ebert et
al. 2001). We remark that the linear case is in-p(I) p aI
cluded in the above derivation. For nonlinear p(I) func-
tions with saturating properties, such as equation (4), we
recommend calculating the maximal turbulence by the
algorithm outlined in the appendix.

Minimal Turbulence

The idea of a minimal turbulence is that, if turbulent
diffusion becomes too low, there is no force that prevents
sinking of the entire phytoplankton population. Hence, if
turbulence is too low and the water column is deep, the
entire phytoplankton population vanishes in the dark. Ri-
ley et al. (1949) showed that an exact equation for the
minimal turbulence can be derived under the following
simplifying assumptions: first, the vertical nature of the
light gradient is neglected (i.e., throughoutg(I) p g(I )in

the water column), but, second, the phytoplankton pop-
ulation vanishes at the bottom of the water column. These
simplifications reduce equation (5) to a linear homoge-

neous partial differential equation with constant
coefficients

2�q �q � q
p g(I )q � v � D , (11)in 2�t �z �z

and boundary conditions

�q
vq(0, t) � D (0, t) p 0 and q(z , t) p 0. (12)m

�z

Under these simplifying assumptions, one can derive that
the minimal turbulence required for population persist-
ence in deep systems is (Riley et al. 1949)

2v
D p . (13)min 4g(I )in

A derivation of the same equation was recently presented
by Speirs and Gurney (2001) in the context of species
inhabiting rivers subjected to downstream drift. Shigesada
and Okubo (1981) showed that equation (13) still holds
if self-shading of the phytoplankton population is included
but the background turbidity of the water column is
neglected.

Since the derivation of equation (13) neglects the ver-
tical light gradient generated by the background turbidity
of the water column, this equation is at best an approx-
imation of the minimal turbulence predicted by our full
model. More precisely, numerical simulations indicate that
equation (13) is an accurate approximation of the minimal
turbulence in waters with a low background turbidity,
whereas minimal turbulence is somewhat higher than pre-
dicted by equation (13) in waters with a high background
turbidity (fig. 4). We thus recommend equation (13) to
calculate the minimal turbulence in oceanic waters and
clear lakes, whereas the algorithm outlined in the appendix
is recommended for more turbid ecosystems.

Effects of Sinking Velocity

We note, from equations (9) and (10), that the critical
depth and compensation depth are both independent of
the sinking velocity of the phytoplankton. In contrast, ac-
cording to equation (13), the minimal turbulence increases
with the square of phytoplankton sinking velocity. More-
over, numerical simulations indicate that the maximal tur-
bulence decreases with sinking velocity. Therefore, if the
phytoplankton sinking velocity is too high, the minimal
turbulence and maximal turbulence merge and disappear.
Thus, while phytoplankton species with a moderate sink-
ing speed can persist in deep waters (fig. 2A), phytoplank-
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Figure 4: Minimal turbulence as a function of background turbidity,
predicted by the full model (dots) and predicted by equation (13) (solid
line). Phytoplankton blooms cannot be sustained if background turbidity
exceeds the vertical dashed line. Parameter values as in table 1.

ton species with a high sinking speed cannot persist in
deep waters (fig. 2B).

Discussion

It is not difficult to understand how sinking phytoplankton
species can maintain populations in optically shallow wa-
ters. In such waters, phytoplankton populations may sink
to the bottom sediment, but light conditions near the bot-
tom sediment may still be sufficient to sustain these pop-
ulations (fig. 2). Obviously, our model simplification that
phytoplankton cannot leave the system at the bottom sed-
iment may not hold for all aquatic ecosystems. For in-
stance, the model might be extended by introducing
boundary conditions that mimic burial of phytoplankton
in the sediment or grazing on phytoplankton by benthic
filter feeders (e.g., Koseff et al. 1993). Such additional
losses at the bottom sediment will make it harder for sink-
ing phytoplankton to persist. Apart from these additional
complications, however, light conditions themselves are
generally sufficient for the persistence of sinking phyto-
plankton populations in optically shallow waters.

The question here is how sinking phytoplankton species
can persist in optically deep waters, like the oceans, as
well. The key finding in this article is the existence of a
“turbulence window” that allows persistence of sinking
phytoplankton populations in deep waters (figs. 2A, 3). If
turbulence levels are less than a minimal turbulence, sink-
ing rates dominate over growth rates and mixing rates. In
this case, the phytoplankton population sinks downward
and is lost from the euphotic zone. If turbulence levels
exceed a maximal turbulence, vertical mixing rates dom-
inate over growth and sinking. In this case, the phyto-

plankton population is uniformly mixed and receives in-
sufficient light in the deeper parts of the water column to
persist. At intermediate turbulence levels, however, growth
rates in the euphotic zone may exceed both sinking losses
and mixing rates. Under these circumstances, a population
of sinking phytoplankton may develop in the upper part
of the water column. Thus, at intermediate turbulence
levels, sinking phytoplankton species are capable of main-
taining a population within the euphotic zone.

Our results indicate that arguments of previous authors
(e.g., Hutchinson 1967), that there must be a strong se-
lection pressure against sinking phytoplankton species,
need not hold. At least, these arguments need not hold
for deep waters whose characteristics fall within the tur-
bulence window since deep waters located within the tur-
bulence window can sustain sinking phytoplankton. The
turbulence window will disappear, however, if the phy-
toplankton sinking velocity is pushed beyond a certain
threshold value (fig. 2B). Thus, in line with intuitive rea-
soning, sinking phytoplankton cannot persist in deep wa-
ters if their sinking speed is too high; only phytoplankton
with low to moderate sinking velocities can be sustained.

Does the theory match reality? We have attempted to
choose our parameter values to be as realistic as possible.
This revealed that the turbulence window should disappear
at a phytoplankton sinking velocity of about m h�1v ≈ 0.4
(fig. 2B). It is intriguing that the highest sinking velocities
of living phytoplankton cells, of large oceanic diatoms of
the Coscinodiscus genus and the giant Ethmodiscus rex, are
indeed approximately 0.3–0.6 m h�1 (Smayda 1970). Also,
the theory predicts that phytoplankton species with such
high sinking speeds should be restricted to waters with a
narrow window of vertical turbulent diffusivities, some-
where in the range of 1–10 cm2 s�1. This range is not
unrealistic at all (Denman and Gargett 1983). Hence, even
quantitatively, there is a good correspondence between the
model predictions and reality.

In conclusion, it is interesting to compare our findings
with the earlier theoretical concepts developed by Riley et
al. (1949), Sverdrup (1953), and Huisman et al. (1999b).
This article shows that these concepts are neither over-
lapping nor mutually exclusive. Instead, these earlier con-
cepts form different elements in one coherent theory. The
critical depth in our figures is equivalent to Sverdrup’s
critical depth (Sverdrup 1953; Platt et al. 1991). The min-
imal turbulence in our figures corresponds to the classic
relation, in equation (13), derived by Riley et al. (1949)
and Shigesada and Okubo (1981). The maximal turbulence
in our figures is equivalent to the critical turbulence found
by Huisman et al. (1999b, 1999c). We have thus shown
that the different concepts developed by these earlier au-
thors can be integrated into a single unifying theory.
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APPENDIX

A Fast Algorithm

To estimate the critical depths and critical turbulences,
one could run the integro-partial differential equation
(integro-PDE) until steady state for a couple of thousand
times in a fine grid of zm values and D values. However,
this is a time-consuming procedure that requires quite a
number of programming skills. As an alternative, this ap-
pendix develops a simple algorithm to calculate the critical
depths and critical turbulences. The algorithm is fast, ac-
curate, and very easy to apply. The trick is twofold: first,
on the boundary lines between the bloom and the no-
bloom region (fig. 2), the integro-PDE can be reduced to
a system of two ordinary differential equations (ODEs),
and second, the boundary-value problem of this ODE sys-
tem can be translated into an initial-value problem.

Development of the Method

We consider the transition from the bloom to the no-
bloom region. At this transition, the phytoplankton pop-
ulation density is negligibly small. More precisely, at this
transition and also in the no-bloom area itself, we have

z

∗kq (j)dj K K z.� bg

0

Hence, the light intensity I can be approximated by
. This implies that the equation defining theI exp (�K z)in bg

stationary population density distribution reduces to a
second-order ODE without an integro-term:

∗ 2 ∗dq d q
�K z ∗bgg(I e )q � v � D p 0. (A1)in 2dz dz

This equation can be rewritten as a system of two coupled
first-order ODEs:

∗dq ∗p w ,
dz

∗dw 1 v
�K z ∗ ∗bgp � g(I e )q � w , (A2)indz D D

with boundary conditions, from equation (6),

∗ ∗ ∗ ∗vq (0) � Dw (0) p 0 and vq (z ) � Dw (z ) p 0.m m

(A3)

Equations (A2) and (A3) are linear and homogeneous in
and . Hence, if there exists a solution , then∗ ∗ ∗q w q (z)

there also exists a solution for any arbitrary c. The∗cq (z)
free initial condition is therefore arbitrary, and we∗q (0)
may just as well work with . Therefore, using∗q (0) p 1
the first boundary condition in equations (A3), the initial
values for the two ODEs in equations (A2) can be defined
as

v∗ ∗q (0) p 1 and w (0) p . (A4)
D

The boundary-value problem has thus been transformed
into an initial-value problem. Accordingly, we obtain the
following numerical recipe.

Numerical Recipe

Choose a value for the turbulent-diffusion coefficient D.
Starting from the initial conditions given in equations
(A4), the two coupled ODEs in equations (A2) can be
integrated forward in z until the solution hits on either

or .∗ ∗ ∗vq (z) � Dw (z) p 0 q (z) p 0
If we find at some depth z, then∗ ∗vq (z) � Dw (z) p 0

the second boundary condition in equations (A3) is sat-
isfied. Hence, this depth z is either the critical depth or
the compensation depth.

Alternatively, if we find at some depth z, then∗q (z) p 0
the second boundary condition in equations (A3) cannot
be satisfied with positive . In this case, the critical∗q (z)
depth and compensation depth do not exist. That is, we
have used a value of D somewhere in the parameter region
between the minimal turbulence and maximal turbulence.

Repeat this procedure for various values of D, and plot
the critical depth or compensation depth whenever they
exist. This yields the graphs in figure 2.

As a check, we compared the predictions of this algo-
rithm against the stationary results obtained by numerical
simulation of the full integro-PDE. Both methods always
yielded the same critical depths, the same compensation
depths, and the same critical turbulences, but the algo-
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rithm is several orders of magnitude faster than numerical
simulation of the full integro-PDE.

We emphasize that if one is interested in the time de-
velopment of the population density distribution as well,
then one should resort to simulation of the full model.
The fast algorithm outlined in this appendix calculates only
the values of the critical depths and critical turbulences
(fig. 2).
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