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Critical Conditions for Phytoplankton Blooms
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We motivate and analyse a reaction–advection–diffusion model for the dynamics
of a phytoplankton species. The reproductive rate of the phytoplankton is deter-
mined by the local light intensity. The light intensity decreases with depth due to
absorption by water and phytoplankton. Phytoplankton is transported by turbulent
diffusion in a water column of given depth. Furthermore, it might be sinking or
buoyant depending on its specific density. Dimensional analysis allows the reduc-
tion of the full problem to a problem with four dimensionless parameters that is
fully explored. We prove that the critical parameter regime for which a station-
ary phytoplankton bloom ceases to exist, can be analysed by a reduced linearized
equation with particular boundary conditions. This problem is mapped exactly to
a Bessel function problem, which is evaluated both numerically and by asymptotic
expansions. A final transformation from dimensionless parameters back to labo-
ratory parameters results in a complete set of predictions for the conditions that
allow phytoplankton bloom development. Our results show that the conditions for
phytoplankton bloom development can be captured by a critical depth, a compen-
sation depth, and zero, one or two critical values of the vertical turbulent diffusion
coefficient. These experimentally testable predictions take the form of similarity
laws: every plankton–water–light-system characterized by the same dimensionless
parameters will show the same dynamics.
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1. INTRODUCTION

Phytoplankton, the microscopically small plants that drift in the water column of
lakes and oceans, provide the basis of nearly all food webs in aquatic ecosystems.
Phytoplankton species depend on light for their metabolism. Hence, phytoplank-
ton populations need to stay close to the surface, since light availability decreases
with depth. On the other hand, many phytoplankton species are heavier than water.
They have a tendency to sink. Sinking phytoplankton populations play an impor-
tant role in climate regulation, as they can act as a carbon pump. By means of
their photosynthetic carbon fixation, phytoplankton extract carbon dioxide from
the atmosphere, and they can export a considerable part of this carbon by sink-
ing downwards into the ocean interior (Falkowskiet al., 1998; Arrigo et al., 1999;
DiTullio et al., 2000). Here we will consider light as the factor limiting the growth
rate of sinking phytoplankton populations. Thereby, we implicitly assume that all
other resources, like nitrogen, phosphorus, and iron, are in ample supply. The sink-
ing of phytoplankton can be compensated by turbulent mixing, or it can be stopped
at the bottom of the water column. Hence, the question arises whether in an aquatic
system with given depth, given rate of turbulent mixing, and given light intensity
at the surface, a particular phytoplankton population will survive. Even for a single
species, a full answer to this question is still missing.

If a phytoplankton population can survive in the long run, we will say that
there is phytoplankton ‘bloom development’. For well-mixed aquatic systems with
homogeneous phytoplankton density, conditions for phytoplankton bloom devel-
opment have been extensively investigated by means of integro-differential equa-
tion models (Sverdrup, 1953; Platt et al., 1991; Huisman and Weissing, 1994;
Weissing and Huisman, 1994). Here, theory predicts that phytoplankton blooms
can develop only if the depth of the well-mixed water column is less than a critical
threshold value, generally known as the ‘critical depth’ in oceanography. If the
depth of a mixed layer would exceed this critical depth, the average light intensity
is too low to sustain a phytoplankton population. This theory for well-mixed sys-
tems is supported by extensive laboratory experiments (Huisman, 1999; Huisman
et al., 1999a). Many, if not most, aquatic ecosystems are not well mixed, how-
ever. A few theoretical studies, using partial differential equation models, have
investigated phytoplankton bloom development under incomplete mixing (Riley
et al., 1949; Shigesada and Okubo, 1981; Totaro, 1989; Britton and Timm, 1993).
In particular, recent numerical work considering neutrally buoyant phytoplankton
led to the discovery of a critical threshold value for the vertical turbulent diffu-
sion coefficient (Huismanet al., 1999b,c). If turbulent diffusion remains below
this threshold value, populations of neutrally buoyant phytoplankton can outgrow
the vertical mixing rates, and maintain a position in the upper well-lit part of the
water column. Thus, the critical-depth theory applicable to well-mixed systems
no longer holds if turbulent diffusion is sufficiently low. This finding was based
on numerical simulations. A rigorous mathematical analysis of the conditions that
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allow phytoplankton bloom development under incomplete mixing is still lacking.
In the present paper, we close this gap. Moreover, we generalize the analysis by
including sinking or buoyancy of the phytoplankton. We analyse the long time
survival conditions of a single phytoplankton species in the complete regime of
possible physical parameters.

The paper is organized as follows: in Section2, we introduce and motivate our
model for one phytoplankton species. In Section3, we perform a dimensional
analysis that reduces the nine physical parameters of the problem to four dimen-
sionless parameters calledA, B, C and the dimensionless water-column depthL.
In Section4, we prove that the phase boundaries that determine phytoplankton
bloom development can be derived from a reduced linearized equation with homo-
geneous boundary conditions. This is the key for a simple numerical procedure,
developed and used in Section5, that characterizes the critical conditions for phy-
toplankton blooms in terms of a maximal dimensionless water-column depthL∗

=

L∗(A, B,C). In Section6, we present our analytical results in terms of the dimen-
sionless parameters. A key ingredient is the mapping of the linearized equation
derived in Section4 onto a Bessel function problem with particular boundary con-
ditions. This allows for the identification of several limit cases and for asymptotic
expansions about them. In Section7, we return from the dimensionless variablesA,
B andC to physical variables like the diffusion constantD or the light intensityI in

at the surface, and we discuss under which conditions a (bounded) maximal water
depthH = H(D, I in) for a given phytoplankton species exists and how it can be
derived from the previous analysis. Section8 contains summary and conclusion.

2. THE M ODEL

We here introduce our model for a single phytoplankton species. The phyto-
plankton population density is taken as a continuous quantity, and variations in the
directions parallel to the water surface are neglected. Lets denote the depth below
the water surface, wheres runs from 0 at the surface to someH > 0 at the bottom,
and letω(s, t) denote the phytoplankton population density at depths and time
t . The changes in population density then take, in general, the form of a partial
differential equation

∂

∂t
ω(s, t)+

∂

∂s
jω(s, t) = S(ω(s, t)). (1)

This is the continuity equation for plankton, relating the local plankton densityω

to the local plankton flux densityjω and to the source termS
(
ω(s, t)

)
accounting

for reproduction and death of the plankton. Plankton does not cross the air–water-
and the water–ground-interface, therefore the boundary conditions ats = 0 and
s = H are

jω(0, t) = 0 and jω(H, t) = 0. (2)
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For the plankton flux density, we use the simple approximation

jω(s, t) = −D ∂sω(s, t)+ v ω(s, t). (3)

It is composed of an undirected diffusive motion−D∂sω that is driven by the
plankton density gradient, and a directed motionvω. The diffusion can be just
Brownian molecular diffusion if the water is macroscopically at rest, or it can
mimic turbulent mixing of water. For planktonic cells the second effect is consid-
ered dominant, andD is called the turbulent diffusion coefficient (Okubo, 1980).
The approximation (3) is valid for relatively low plankton densities, since effects
of collective transport or the interaction of hydrodynamic flow fields when several
cells are sinking or rising together in the same area, are neglected. Many phy-
toplankton species lack flagella or cilia, so they cannot swim actively and their
motion is passive. This is the case to be considered here. Hence, the directed mo-
tion vω is due to a specific plankton density different from water. In the absence
of diffusion, the drift velocityv can be approximated by Stokes’ law (Landau and
Lifshitz, 1966; Reynolds, 1984; Denny, 1993)

v = φ
d2

18

(ρp − ρw) g

η
, (4)

whereg is the earth’s gravitational acceleration,ρp is the specific density of the
phytoplankton species concerned,ρw is the density of water,η is the viscosity of
water, andd is the diameter of a plankton cell. The parameterφ is a numerical form
factor which takes the particular shape of the object into account. For a spherical
cell, we haveφ = 1. For a species heavier than water, the velocityv is posi-
tive, and the motion is downwards. If diffusion is nonvanishing, the laminar flow
approximation of equation (4) loses its validity, but dimensional analysis for the
mean velocity due to the gravitational force∝ (ρp − ρw) g still yields a parameter
dependence as in (4), but with a different numerical factorφ.

The densityρp of phytoplankton cells is a species-specific parameter. Species
with gas vesicles, like some cyanobacteria, and species with a high oil content,
like the green algaeBotryococcus, have a lower density than water. They will
float upwards (v < 0) and will be called buoyant. Because most cell components
have a slightly higher density than water, most species that lack gas vesicles have
a tendency to sink downwards slowly (v > 0). According to the area factord2

in (4), larger cells will move faster than smaller ones. The smallest species, like
Chlorella, Synechococcus, andProchlorococcus, have almost no vertical velocity
(v ≈ 0).

The source term for the reproduction and death rate in (1) is approximated as

S(ω(s, t)) = g(I (s, t)) ω(s, t), (5)

whereg(I (s, t)) is the specific growth rate of phytoplankton as a function of light
intensity I (s, t). This form implies that all nutrients are sufficiently available so
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that the light intensity limits the growth rate. The simplest approximation for such
behaviour is

g(I (s, t)) = a I (s, t)− `, (6)

with a reproduction rateaI proportional to the local light intensity and a constant
death ratè . (Here` stands for loss, in agreement with the earlier literature.) This
is a good approximation at low light intensities. However, owing to physiological
limits of the maximal reproduction rates of organisms, the reproduction rate gen-
erally saturates for high light intensities. Such behaviour can be modelled by a
function of the form (Monod, 1950)

g(I (s, t)) =
a I

1 + cI
− `, (7)

or alternatively by (Webbet al., 1974; Plattet al., 1980)

g(I (s, t)) = a
1 − e−cI

c
− `. (8)

For cI � 1, these functions reduce to the approximation of equation (6). We here
work with another general expression

g(I (s, t)) = a I α(s, t)− `, (9)

that with an appropriate choice for the exponent 0< α ≤ 1 can give a good
approximation to (7) or (8). Equation (9) is used because it allows for explicit
analytical solutions in terms of Bessel functions. The structure of these solutions
turns out to be completely independent of the value of the exponentα as long
asα > 0 and, hence, as long asg(I ) is an increasing function ofI . Besides
the numerical evidence, this strongly suggests that our findings do not rely on the
particular form of (7), (8), or (9).

As the simplest possible approximation and since typical life and reproduction
times are of the order of a day or longer, we assume the light intensity at the surface
to take the constant value

I (0, t) = I in. (10)

Light intensity is decreasing with depths due to light absorption

∂

∂s
I (s, t) = −(Kbg + k ω(s, t)) I (s, t), (11)

wherek is the specific light absorption coefficient of the phytoplankton andKbg is
the total background absorption due to nonphytoplankton components. The explicit
solution of equations (10) and (11) for a given integrated phytoplankton density∫ s

0 ω(s
′, t) ds′ is

I (s, t) = I in e−Kbgs e−k
∫ s

0 ω(s
′,t) ds′ . (12)
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Equations (1), (2), (3), (5), (9), (10) and (11) determine the mathematical prob-
lem, together with initial conditions and with the constraint that densities and
intensities have to be nonnegative, so

ω(s, t) ≥ 0 and I (s, t) ≥ 0 for all 0 ≤ s ≤ H andt ≥ 0. (13)

3. DIMENSIONAL ANALYSIS AND SIMILARITY L AWS

As it stands now, the model has nine parameters with physical dimensions: the
water-column depthH , the diffusion constantD, the sinking/buoyancy velocity
v, the parametersa andα in the reproduction rate and the death rate`, the light
intensity I in at the surface, and the absorption ratesKbg andk. However, phys-
ical phenomena are invariant under the choice of physical units like centimetres
or metres. We use this invariance to reduce the number of parameters by means
of dimensional analysis. A most convenient choice is to measure length and time
scales, plankton density and light intensity as

x = αKbg s, τ = D α2K 2
bg t, (14)

ρ(x, τ )=
k

Kbg
ω(s, t), j (x, τ ) =

I α(s, t)

I αin
. (15)

In terms of these rescaled dimensionless variables, the problem depends only on
the following four dimensionless parameters

A =
aI αin

D α2K 2
bg

, B =
`

aI αin
, C =

v

D αKbg
and L = αKbg H.

(16)
A can be understood as the ratio between the growth rate at the surface and the
scales of absorption and diffusion,B is the ratio between death and growth at the
surface,C < 0 measures the buoyancy andC > 0 the sinking, andL is the
dimensionless depth of the water column.

By definition,A, B andL are positive quantities, while the sign ofC is not fixed.
Additionally, the problem has no nontrivial solution forB > 1 when the death rate
is larger than the growth rate even at the surfacex = 0, as will be proven formally
in equation (28). The parameter regime to be explored is, therefore,

0< A < ∞, 0< B < 1, −∞ < C < ∞, 0< L < ∞. (17)

In terms of these variables and parameters, the equation for the phytoplankton
density defined by (1), (3), (5) and (9), reads

∂τρ = ∂2
xρ − C ∂xρ + A ( j − B) ρ, (18)
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with the boundary conditions (2), (3)

[∂xρ − Cρ]x=0 = 0, [∂xρ − Cρ]x=L = 0. (19)

The equation for the light intensity (11) becomes

∂x ln j = −1 − ρ, (20)

with the boundary condition (10)

j (0, τ ) = 1. (21)

The constraint (13) on the nonnegativity of the plankton density now reads

ρ(x, τ ) ≥ 0 for all 0 ≤ x ≤ L and τ ≥ 0. (22)

From equations (20) to (22), it follows immediately, thatj is positive and monoton-
ically decreasing towards 0 asx → ∞, so the constraint (13) on j is automatically
obeyed.

The virtue of this dimensional analysis is threefold: (i) it simplifies the equations;
(ii) it reveals the similarity laws of different systems: if two systems are character-
ized by the same four dimensionless variablesA, B, C, andL, they exhibit the same
behaviour; (iii) since parameter space is four-dimensional, it can be fully explored
and we will pay special attention to the three-dimensional(A, B,C)-parameter
subspace defined by the limit of infinite water-column depthL.

4. STATIONARY SOLUTIONS AND THE PHASE TRANSITION

From here on, we will investigate whether a given set of parameters(A, B,C, L)
allows for stationary phytoplankton blooms, i.e., whether there are stationary
solutions∂τρ = 0 with nonvanishing phytoplankton density. In particular, we will
study the critical conditions, where phytoplankton blooms start to exist. Hence we
study the stationary solutions of the problem defined by (18)–(22). To simplify
the notation, we drop the variableτ from ρ, so we now writeρ = ρ(x). The
partial derivatives∂x then become ordinary derivatives dx. Equations (18)–(21)
now constitute a system of one second-order and one first-order nonlinear ordinary
differential equation with three boundary conditions. Integration of (20) with (21)
leads to a reformulation as one second-order integro-differential equation

d2
xρ − Cdxρ + A(e−x−

∫ x
0 dy ρ(y)

− B)ρ = 0, (23)

[dxρ − Cρ]x=0,L = 0, ρ(x) ≥ 0 for all 0 ≤ x ≤ L . (24)
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A transformation to the variableR(x) =
∫ x

0 dy ρ(y), ρ = dx R would lead to a
third-order ordinary differential equation with additional boundary valueR(0) = 0,
but will not be considered further.

Equation (23) together with (24) for the boundary conditions atx = 0 andx = L
and with the positivity constraint forρ(x) define a boundary value problem for the
phytoplankton densityρ(x). However, it is much more convenient, in particular
for the numerics, to consider the problem rather as an initial value problem, where
the two initial conditions atx = 0

ρ(0) = ρ0, [dxρ − Cρ]x=0 = 0 (25)

fix L = L[ρ0] as a function ofρ0, A, B,C. From here on, we will considerA, B
andC fixed, and only write the dependency ofL onρ0 explicitly.

If L[ρ0] exists, then it is unique, as can be seen from the following argument:
integrate (23) over 0< x < X and use the boundary condition (24) at x = 0. The
result is

[dxρ − Cρ]x=X = −A
∫ X

0
dx [e−xSρ(x)− B] ρ(x), (26)

Sρ(x) = e−
∫ x

0 dy ρ(y), (27)

whereρ(x) depends parametrically onρ0, A, B,C. Hereρ(x) is positive on the
interval according to (24), whilee−xSρ(x) is monotonically decreasing for growing
x. A necessary condition for anX = L[ρ0] to exist is that the function[e−xSρ(x)−
B] changes sign between 0 andL[ρ0]. Hence

0 ≤ e−L[ρ0]Sρ(L[ρ0]) ≤ B ≤ Sρ(0) = 1. (28)

An immediate consequence is that if anL[ρ0] exists, then the expression[dxρ −

Cρ]x=X is negative forX < L[ρ0] and positive forX > L[ρ0]. Hence a second
solutionL[ρ0] cannot exist andL[ρ0] is unique.

We are now interested in the phase transition† from bloom to no bloom, in par-
ticular in the maximal water depthL∗, where for givenA, B,C phytoplankton
can still exist. It is intuitively clear, that a higher plankton density leads to more
light absorption, so that the deeper water layers are less favourable for the phyto-
plankton. One therefore expects that the maximal water depth can be realized for
infinitesimal plankton density. This is indeed the case, as we will prove now. More
precisely, we will show for the solutions of problem (23)–(25):

†This phase transition is of second order, hence continuous. Equivalently, in p.d.e. terms, it also
can be classified as a supercritical bifurcation. We prefer the notion of a phase transition since we
analyse a mean field description of an extended system. Inclusion of fluctuations at a second order
phase transition generically leads to slow, but nonhysteretic, relaxation which also is to be expected
in the present system.
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(1) For a large phytoplankton densityρ0 � 1 at the surface, the water-column
depthL[ρ0] is always finite and unique. In fact, in the limit of 1/ρ0 → 0, it is
given explicitly by the positive solutionL1 = L1(B) of the equation

B L1 + e−L1 = 1, whereL[ρ0] =
L1(B)

ρ0
+ O

(
1

ρ2
0

)
. (29)

(2) L[ρ0] is a monotonically decreasing function ofρ0:

L[ρ0,1] > L[ρ0,2], if ρ0,1 < ρ0,2. (30)

Therefore the smaller the phytoplankton densityρ0 at the surface, the larger the
water-column depthL[ρ0]. As a consequence, for givenA, B andC, there are
two possibilities: either the water-column depthL[ρ0] becomes infinite already for
some nonvanishing value ofρ0 or it stays finite up toρ0 → 0. We then define

L∗
:= L[0] := lim

ρ0→0
L[ρ0], (31)

which is unique and given by

L∗
= sup

ρ0>0
L[ρ0]. (32)

In the remainder of the section, these statements are proven.
(1) The result (29) is derived as follows: analyse (23), (24) in the limit of ρ0 →

∞. Rescaleρ(x) = ρ0 r (x) and use the new initial conditionr (0) = 1 and
dxr |0 = C instead of (25). The analysis of the exponent in (23) reveals that 1/ρ0

introduces a new small length scale into the problem, while on the other hand,r (x)
= 1 + Cx + · · · changes only on the larger scale 1/C. Inserting these expressions
into (26), L[ρ0] solves[dxr − Cr ]x=L[ρ0] = 0 and, therefore,

0 =

∫ L[ρ0]

0
dx [e−x−ρ0

∫ x
0 dy r(y)

− B] r (x)

⇒ 0 =

∫ L

0
d X [e−

X
ρ0

−
∫ X

0 dY r
(

Y
ρ0

)
− B] r

(
X

ρ0

)
, r

(
X

ρ0

)
= 1 + O

(
L
ρ0

)

=

∫ L

0
d X [e−X

− B] + O

(
L
ρ0

)
, where L = ρ0 L[ρ0]. (33)

The evaluation of the last line for 1/ρ0 → 0 and forL = L1(B) + O(1/ρ0),
L1(B) = O(ρ0

0) immediately yields (29).
(2) The proof of the statements (30) and (32) proceeds along the following steps:

first eliminate the first derivative from the equation of motion (23) by the transfor-
mation

ρ(x) = ρ0 eCx/2 ψ(x), (34)
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x
C/2

h2(x)

h1(x), h2(x)

h1(x)

L[ρ0,2] L[ρ0,1]

Figure 1. Qualitative behaviour ofh1(x) andh2(x) with ρ0,1 < ρ0,2, together with the
resultingL[ρ0,1] > L[ρ0,2].

which leads to the transformed equation

d2
xψ + A

(
e−xSψ(x)ρ0 −

ν2

4A

)
ψ = 0, ν =

√
4AB + C2, (35)

with the function

Sψ(x) = Sρ(x)1/ρ0 = exp

[
−

∫ x

0
dy eCy/2 ψ(y)

]
, (36)

and the initial conditions, constraint and definition ofL[ρ0]

ψ(0) = 1, eCx/2
[
dxψ −

C

2
ψ

]
0,L[ρ0]

= 0, ψ(x) ≥ 0 for 0 ≤ x ≤ L[ρ0].

(37)
Theψ-form of the equations will also be the starting point in Section6.
For the proof of (30) and (32) it is convenient to perform still another transfor-

mation to

ψ(x) = e
∫ x

0 h(y) dy
H⇒ h(x) =

dxψ(x)

ψ(x)
. (38)

The transformed equation reads

dxh + h2
+ A e−xS(h, x)ρ0 −

ν2

4
= 0, (39)

with ν from (35) and

S(h, x) = exp

[
−

∫ x

0
dy exp

[
Cy/2 +

∫ y

0
dz h(z)

]]
. (40)

The initial conditions, constraint and definition ofL[ρ0] now take the form

h(0) =
C

2
= h(L[ρ0]), |h(x)| < ∞ for 0 ≤ x ≤ L[ρ0]. (41)
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For smallx, the equation forh can be expanded as

h(x) =
C

2
− A(1 − B)x + A(1 + C(1 − B)+ ρ0)

x2

2
+ O(x3). (42)

So h(x) initially for small positivex decreases belowC/2 and eventually has to
reachC/2 again from below atL[ρ0] to obey the conditionh(L[ρ0]) = C/2.

Compare now two solutionsh1(x) andh2(x) of the problem (39)–(41) whereρ0

is replaced byρ0,1 andρ0,2, respectively. Assume thatρ0,1 is smaller thanρ0,2:

ρ0,1 < ρ0,2. (43)

The functionsh1(x) andh2(x) are shown schematically in Fig.1. For smallx, h2

lies aboveh1, since (42) implies that

h2(x)− h1(x) = A (ρ0,2 − ρ0,1)
x2

2
+ O(x3) > 0 for 0< x � 1. (44)

We will now prove thath2 − h1 stays positive. The equation forh2 − h1 is

dx(h2 − h1) = h2
1 − h2

2 + A e−x
[ S(h1, x)ρ0,1 − S(h2, x)ρ0,2 ]. (45)

Now suppose that after an interval 0≤ x ≤ X with h2 > h1, there is a point
x = X whereh1 = h2. The expressionS(h1, x)ρ0,1 − S(h2, x)ρ0,2 at this point
X is positive. This is true becauseS(h2, x) < S(h1, x) ≤ 1 according to (40)
with h2 ≥ h1 and becauseSρ0,2 < Sρ0,1 for all 0 < S < 1 with inequality (43).
Therefore for the expression in (45)

S(h1, x)ρ0,1 − S(h2, x)ρ0,2

= [S(h1, x)ρ0,1 − S(h2, x)ρ0,1] + [S(h2, x)ρ0,1 − S(h2, x)ρ0,2] ≥ 0. (46)

It follows from (45) that at the pointX where we suppose thath2 = h1, we have
dxh2 > dxh1. But this implies that at the crossing point,h2 approachesh1 from
below, which is in contradiction withh2 initially being aboveh1. Therefore a
crossing pointX cannot exist, and

h2 > h1 for all x > 0. (47)

Therefore ifh2 reaches the valueC/2 for somex = L[ρ0,2] < ∞, then this value
of x will be smaller than thex = L[ρ0,1] of h1. HenceL[ρ0,2] < L[ρ0,1] for all
ρ0,2 > ρ0,1, and (30) is proven.‡ Equation (32) follows immediately from setting
ρ0,1 = 0 and taking the continuity ofL[ρ0] into account.

‡We thank Lothar Scḧafer for helpful discussions in shaping this proof.
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We remark that for 1− B � 1, equation (42) immediately yields the explicit
approximation

L[ρ0] =
2 (1 − B)

1 + ρ0
+ O(1 − B)2 (48)

for small water depthL. Of course, this result confirms (30) and (32).
We note finally that our proof of (30) and (32) was performed for a growth rate

g(I ) as in equations (6) or (9). However, the generalization of (30) and (32) to any
functiong(I ) that is monotonically increasing inI like (7) or (8) is straightforward.

5. NUMERICAL EVALUATION OF THE PHASE TRANSITION

Because of the rigorous bound (32), it is not necessary to study the full nonlinear
problem (23), (24) for determining the phase diagram. Rather the maximal water-
column depthL∗

= L[0] still allowing for a stationary phytoplankton bloom can
be derived from the linear problem defined by

d2
xρ − Cdxρ + A(e−x

− B)ρ = 0, (49)

[dxρ − Cρ]x=0,L∗ = 0, ρ(x) ≥ 0 for all 0 ≤ x ≤ L∗, (50)

if L∗ is finite. As equation (49) is linear and the boundary conditions and con-
straint (50) are homogeneous, the amplitude ofρ is no longer fixed, and the single
initial condition [dxρ − Cρ] = 0 at x = 0 is sufficient to fix a solution that is
unique up to the arbitrary amplitude ofρ. This amplitude can be fixed, e.g., by

ρ(0) = 1. (51)

The two conditions (50) and (51) at x = 0 together with the second-order equa-
tion (49) define an initial value problem that can be integrated numerically towards
growing x. As also proven, a parameterL∗ obeying the conditions (50) does not
need to exist for fixedA, B andC, but if it exists, it is unique.

The data forL∗ presented in Fig.2 have been derived by simple numerical inte-
gration of this initial value problem for the linear second-order ordinary differential
equation (49). Figure3 could have been derived by extrapolation of theL∗

→ ∞-
lines from Fig.2, but again we found a much simpler numerical technique for Fig.3
that will be explained in Section6.2. We will now discuss these figures in more
detail.

A plot of the maximal water depthL∗ as a function ofA, B andC would contain
the complete information of the phase transition. But as(A, B,C, L∗) is a four-
dimensional space, only projections can be visualized in a three-dimensional plot.
In Fig. 2, we have chosen to fixB at the values 0.01, 0.2, 0.5 and 0.9 and to plotL∗

as a function ofA andC. The choice of fixedB was made, becauseB = `/aI αin
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Figure 2. The maximal water-column depthL∗ as a function of the parametersA andC
for fixed values ofB = 0.01, 0.2, 0.5 and 0.9. (The slight roughness of the surfaces is a
numerical artefact.) For each value ofB, the maximal water depthL∗ diverges at a certain
curve in the(A,C)-plane. TheseL∗

→ ∞-curves as a function ofB are drawn in Fig.3.

has a simple interpretation as the ratio of death rate and reproduction rate for a
given light intensityI in at the surface. It will allow for an easy interpretation of the
figures, when we return from dimensionless to laboratory parameters in Section7.
For small A and sufficiently largeC, the maximal water depthL∗ approaches a
constant. This constant value ofL∗ decreases with increasing death rateB. Fur-
thermore, for fixedB, the maximal water depthL∗ increases with increasingA and
decreasingC, and reaches infinity at a critical line in the(A,C)-plane.

Figure3 summarizes the position of theL∗
→ ∞-lines from Fig.2 as a function

of B in a single plot: it shows the surface whereL∗
→ ∞ in the(A, B,C) param-

eter space. If a system is characterized by a point(A, B,C) below this surface, a
maximal water depthL∗ does not exist and phytoplankton blooms can develop for
any water-column depthL.
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Figure 3. The surface whereL∗(A, B,C) → ∞ in (A, B,C)-parameter space. The
curves on the surface mark either constantA or constantν =

√
4AB + C2. For any

combination(A, B,C) below this surface, phytoplankton blooms can exist for any water
depthL. Conversely, for any combination(A, B,C) above this surface, phytoplankton
blooms can exist only if water depth is less than a maximal water depthL∗.

6. ANALYTICAL RESULTS ON THE PHASE TRANSITION

The phase transition problem (49), (50) can be studied not only numerically,
but also analytically. This will allow the derivation of explicit asymptotes for the
surfaces shown in Figs2 and3.

6.1. The general criterion. For the analytical study, it is convenient to transform
equations (49), (50) first toψ(x) = e−Cx/2ρ(x) as in (34)–(36). Then the variable
x is transformed further as

z2
= 4Ae−x, ψ(x) = ϕ(z). (52)

This brings equation (49) into the form of a Bessel equation

z2 d2

dz2
ϕ(z)+ z

d

dz
ϕ(z)+ (z2

− ν2) ϕ(z) = 0, ν =

√
4AB + C2. (53)

The boundary conditions and constraint (50) now read

zC

[
z

d

dz
ϕ(z)+ Cϕ(z)

]
z=z0,z1

= 0, (54)
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at z0 =
√

4A, z1 = z0 e−L∗/2, (55)

and ϕ(z) ≥ 0 for z1 ≤ z ≤ z0. (56)

The solutionL∗ is unique if it exists, since we analyse a transformed but equivalent
version of the problem studied in Section4. The general solution of (53) is given
by the superposition of two Bessel functions

ϕ(z) = c1Jν(z)+ c2Yν(z), (57)

whereJν(z) andYν(z) are the Bessel functions of orderν of first and second kind,
respectively, andc1 andc2 are constants of integration. For the general properties
of the Bessel functions, their notation, and for a number of explicit expansions and
identities that will be used later, we refer toAbramowitz and Stegun(1964). In
particular, the functionJν(z) has the expansion

Jν(z) =

(
z

2

)ν ∞∑
n=0

(−z2/4)n

n!0(ν + n + 1)
, (58)

where0(x) is the0-function. The functionYν(z) is related toJν andJ−ν as

Yν(z) =
cosνπ Jν(z)− J−ν(z)

sinνπ
. (59)

Therefore for small argumentz and forν > 0, Jν vanishes likezν , while Yν and
J−ν diverge likez−ν .

The ratioc2/c1 of the arbitrary constantsc1 andc2 in (57) is fixed by the boundary
conditions (54):

−
c2

c1
=
(zdz + C)Jν(z)

(zdz + C)Yν(z)

∣∣∣∣
z0

=
(zdz + C)Jν(z)

(zdz + C)Yν(z)

∣∣∣∣
z1

. (60)

Elimination ofc2/c1 leads to the determinant condition onν, C, z0 andz1

1 :=

∣∣∣∣ (zdz + C)Jν(z)|z0 (zdz + C)Yν(z)|z0

(zdz + C)Jν(z)|z1 (zdz + C)Yν(z)|z1

∣∣∣∣ = 0. (61)

Equation (60) or (61) together with the positivity constraint (56) for the func-
tion (57) define the phase transition from bloom to no bloom.

The original variablesA, B, C andL∗ can be recovered fromν, C, z0 andz1 by

A =
z2

0

4
, B =

ν2
− C2

z2
0

, C = C, L∗
= 2 ln

z0

z1
. (62)
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6.2. The limit L∗
→ ∞L∗
→ ∞L∗
→ ∞. For systems with an infinite water-column depth, the

condition takes a simpler form. This can be seen by inserting the smallz asymp-
totics of the Bessel functions (58) into (60). Evaluation of the expression for
L∗

→ ∞ corresponds toz1 → 0. One finds

−
c2

c1
= lim

z1→0

π (ν + C) (z/2)ν

(ν − C) (z/2)−ν 0(ν + 1) 0(ν)

∣∣∣∣
z1

= 0 for AB> 0 (63)

sinceν =
√

4AB + C2 > |C| for AB> 0 and the parameter regimes given in (17).
[In particular in view of the limitz → 0, the factorseCx/2 or z−C have been kept
in (37) and (54), and we remark that the full expression (54) also vanishes atz = 0,
if and only if c2 = 0.] Insertingc2 = 0 from (63) in equation (57), ϕ(z) is found to
be proportional toJν(z), and the boundary condition atz0 reduces to

(zdz+C)Jν(z)|z0 = 0 ⇐⇒
d ln Jν(z)

d lnz

∣∣∣∣
z0

= −C for L∗
→ ∞ (64)

with the positivity constraint

Jν(z) ≥ 0 for 0 ≤ z ≤ z0. (65)

Now the criterion (64) and (65) is further evaluated. Let us introduce, in particular,
the function

fν(z) :=
d ln Jν(z)

d lnz
=

z Jν−1(z)

Jν(z)
− ν, (66)

where the last identity results from the general relationJ ′

ν(z) = Jν−1(z)−ν Jν(z)/z
between Bessel functions.fν(z) solves the first order nonlinear equation

dz fν(z) =
ν2

− f 2
ν (z)− z2

z
, fν(0) = ν. (67)

[ fν(z) is related to the functionh0(x) from Section4 by fν(z) = −2h0(x) and the
relation (52) betweenx andz.] z0 is now determined by the constraint (65) and

fν(z0) = −C. (68)

We remark that theL∗
→ ∞ solutions in Fig.3 have actually been generated by

varyingν andz0 in (66) and calculatingC from (68). The lines in Fig.3 are lines
of constantA andν. The relation of these parameters to the parameters(A, B,C)
is given in (62).

For the further analytical progress, it is easy to realize either fromAbramowitz
and Stegun(1964) or from a construction of the flow of (67), that fν(z) is a mono-
tonically decreasing function ofz. Since|C| < ν by construction, the limiting
values forz0 are

−C = ν ↔ z0 = 0, C = 0 ↔ z0 = j ′

ν,1 > ν, C = ν ↔ z0 = jν−1,1, (69)

with j ′

ν,1 and jν,1 the first zero ofJ ′

ν(z) andJν(z) for positivez.
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In the limits z0 � 1 andz0 � 1, several asymptotic expansions can be given.
For z2

0 = 4A � 1, we get either from (67) or fromAbramowitz and Stegun(1964)

− C = ν −
z2

0

2(1 + ν)
−

z4
0

8(1 + ν)2(2 + ν)
−

z6
0

16(1 + ν)3(2 + ν)(3 + ν)
+ O(z8

0).

(70)
If also |C| � 1, we get from expression (70) in lowest order thatB = A − C. So
B also has to be small, ifA andC are small, cf. Fig.3. Further expansion with
B = A − C + O(A + C)2 yields

B = A − C −
(3A − 2C)(2A − C)

2
+

143A3
− 208A2C + 93AC2

− 12C3

12

+ O(A4)+ O(A3C)+ · · · + O(C4) for A � 1 and |C| � 1.

(71)

The expansion of (70) for A � 1 and an arbitrary negative value of−C = |C| �
√

4AB is

B =
|C|

1 + |C|
+

2 A

(1 + |C|)3(2 + |C|)
+ O(A2)

for A � 1, C < 0 and A �
|C|(1 + |C|)

4
. (72)

For A � 1 andC �
√

4AB, there is no solution with positiveB.
For z2

0 = 4A � 1, alsoν � 1 because of the boundz0 ≤ jν−1,1 = O(ν)
from (69). Expressing the Bessel functionJν(z) for argumentz0 = ν − x(ν/2)1/3

by Airy functions Ai(x) yields the largeν expansion

z0 = ν −

(
ν

2

)1/3

x

[
C

ν2/3

]
+ O

(
1

ν1/3

)
, (73)

wherex[C/ν2/3
] is defined implicitly by

C

ν2/3
= 21/3 d ln Ai(x)

dx
, (74)

andw(x) = Ai(x) is the solution of d2xw = xw with limx→∞w(x) = 0.
There are two limiting values forx, namelyx ≈ −1.0 for |C| � ν2/3 and

x ≈ −2.3 for C � ν2/3. [For |C| � ν2/3 andC < 0, z0 eventually becomes so
small that the ansatz (73) loses its validity.] Insertion of (62) into (73) for a fixed
value ofx results in

B = 1 −
C2

4A
+

x

A1/3
+ O

(
1

A2/3

)
for A � 1 and C ≥ 0. (75)
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Note thatC can become large, while−2.3 ≤ x ≤ −1.0 for all C ≥ 0.
We finally remark that forL∗

� 1, the expansion (63) for z2
1 = 4A e−L∗

� 1
inserted into the general relation (60) yields the expansion about the limit (64) of
L∗

→ ∞

(zdz + C) Jν(z)

(zdz + C) Yν(z)

∣∣∣∣
z0=

√
4A

= (A e−L∗

)ν
π (ν + C)

(ν − C) 0(ν + 1) 0(ν)

+O(A e−L∗

)ν+1. (76)

The asymptotic expansions (71), (72) and (75) provide simple approximations to
the surface shown in Fig.3.

7. BACK TO THE ORIGINAL PARAMETERS

Let us return from the dimensionless variablesA, B, C and L defined in (16)
to the original variables. These are the death rate`, the parametersa andα in the
growth rate (9), the sinking velocityv and the specific light absorption coefficientk
of the phytoplankton, and the incident light intensityI in, the background turbidity
Kbg, the diffusion constantD and the depthH of the water basin.

7.1. Critical diffusion and water-column depth.We now study the effect of the
diffusion constantD on the phase transition. It was absorbed into the dimensionless
parametersA andC. Hence we now define

A0 = AD =
aI αin
α2K 2

bg

and C0 = C D =
v

αKbg
. (77)

The parametersA0, C0 andD all have the physical dimension of a diffusion con-
stant. A variation of the parameterD for fixed light intensity I in amounts to a
variation ofA andC with fixed value ofB and fixed ratio

γ =
C

A
=

C0

A0
=
v αKbg

aI αin
=
v αKbg

`
B. (78)

Possible phase transition scenarios as a function of diffusion constantD and
water depthL where all other parameters are fixed, will be presented in Fig.5. In
particular, we will discuss the caseB = 0.5 as an example, i.e., the case when the
incident light intensity is related to the growth and death rate like` = 0.5 aI αin.

Figure5 can be derived by a simple projection of Fig.2. To illustrate and ex-
plain this procedure, we introduce Fig.4 as an intermediate step. The solid curves
in Fig. 4 represent the data of Fig.2 for B = 0.5 as level curves of constantL∗

in the(A,C) plane; the fat solid curve marks the divergence of the maximal water
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Figure 4. The solid curves in the(A,C)-plane are level curves of constantL∗(A, B,C)
for B = 0.5. They present the data of Fig.2(c). The fat solid curve denotesL∗

→ ∞,
the thin solid curvesL∗

= 1.6, 1.1 and 1. For any combination(A,C) abovethe fat solid
curve, phytoplankton blooms will exist independent of water-column depth. Conversely,
for any combination(A,C) belowthe fat solid curve, phytoplankton blooms can exist only
if water-column depth is less thanL∗(A, B,C). The three straight dashed lines starting
at the origin are lines of fixed ratioγ = C/A with the valuesγ = −0.05, 0.1 and 0.15.
Variation along these dashed lines implies that only the diffusion constantD is varied,
whereas all other model parameters are kept constant.

depthL∗, while the thin solid curves denote finite values ofL∗. The straight dashed
lines starting from the origin are lines of constantγ with the valuesγ = −0.05
for a buoyant phytoplankton species andγ = 0.1 and 0.15 for two species with
different sinking rates. These three dashed lines represent three different possible
behaviours: first, all lines withγ ≤ 0 (buoyant or neutrally buoyant species) in-
tersect with theL∗

→ ∞-curve precisely once. This intersection point indicates
the value of the turbulent diffusion constant at which the maximal water-column
depthL∗ diverges. Hence, for buoyant or neutrally buoyant phytoplankton, there
is precisely one critical value of the turbulent diffusion coefficient. Second, the
γ = 0.1-line intersects twice with theL∗

→ ∞-curve. This indicates that there
is a critical value of the diffusion constant at which the maximal water-column
depth diverges, and another value ofD, below which the maximal water-column
depth again becomes bounded. Third, theγ = 0.15-line does not intersect with
the L∗

→ ∞-curve at all. In this case, there is no critical value ofD; rather the
maximal water-column depth is bounded for all values ofD. Thus, for sinking phy-
toplankton, there are either two critical values of the turbulent diffusion constant
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Figure 5. The phase boundary of phytoplankton bloom development, plotted as a function
of water-column depthL = αKbg H and scaled diffusion constantD/A0. Phytoplankton
bloom always exists for sufficiently shallow water columnsL � 1. The phase boundary
in the plane ofL andD/A0 depends onB andγ . Here it is shown forB = 0.5 and three
values ofγ . The plots are projections of Fig.2 (with Fig. 4 as an intermediate step) onto
different plankton species withγ = −0.05 in (a),γ = 0.1 in (b) andγ = 0.15 in (c). We
indicated the asymptotic limits of critical depthL∞ at D → ∞, compensation depthL0
at D → 0, and maximal and minimal critical diffusionDmax andDmin at L∗

→ ∞.

or none at all. To be more precise, between 0.1 and 0.15, there is aγ -line tangent
to theL∗

→ ∞-curve, where the two intersection points merge and disappear. We
denote this particular value ofγ asγc(B).

Figure5 shows the phase boundary of phytoplankton bloom development as a
function of the water-column depthL = αKbgH and the scaled diffusion constant
D/A0. It should be remarked that these plots depend on the two parametersγ and
B only, and that the same values ofγ and B as in Fig.4 have been chosen. The
projection procedure from Fig.4 to Fig. 5 is as follows: theA-axis of Fig.4 is
inverted to give the 1/A = D/A0-axis of Fig.5. The values ofL∗(A, B,C) along
a line of constantγ andB in Fig. 4 are plotted on theL-axis of Fig.5.

The values ofγ have been chosen to illustrate the three different possible forms
of the(D, L) diagrams. Figure5(a) with γ = −0.05 is representative for all non-
positive values ofγ , i.e., for buoyant or neutrally buoyant phytoplankton. As can
be seen in Fig.4, a line of constantγ intersects with each value ofL∗ exactly once.
Hence the maximal water depthL∗ is a monotonically decreasing function ofD,
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and there is only one critical value ofD for L∗
→ ∞, called the maximal critical

diffusion Dmax. For sinking phytoplankton, i.e., forγ > 0, there are two possibil-
ities. Figure5(b) shows the data of Fig.4 projected ontoγ = 0.1. Here there are
two critical values ofD for L∗

→ ∞. We will call these two values the minimal
and the maximal critical diffusion,Dmin and Dmax, respectively. For all values of
D betweenDmin andDmax, a bounded maximal water-column depth does not exist,
and, hence, phytoplankton blooms can develop in any water-column depth. This
figure is representative for all positiveγ smaller thanγc(B). Figure5(c) shows the
data forγ = 0.15, which implies thatγ is larger thanγc(B). In this case, there is
no critical value ofD for L∗

→ ∞. That is, there is always a bounded maximal
water-column depthL∗, whatever the value of the diffusion coefficientD.

We note that the limit valueL∞ for D → ∞ is the same in all three panels in
Fig. 5. This can be understood immediately from Fig.4, since it corresponds to
the value ofL∗(A, B,C) in the point(A,C) → (0,0) that is reached by allγ -
lines. Also the limit valueL0 for D → 0 is the same for all positive values ofγ .
It corresponds to the saturation value ofL∗ in Fig. 4 for large A and fixed ratio
γ = C/A > 0.

In the remainder of this section, we will derive analytical results for the critical
valuesDmax andDmin in the limit L∗

→ ∞, and for the critical valuesL0 andL∞

in the limits ofD → 0 andD → ∞. We also present asymptotic expansions about
these limits.

7.2. Compensation depth: the limitD → 0D → 0D → 0. What happens if turbulent diffu-
sion is negligibly small? In this case, the motion of phytoplankton is governed
by buoyancy or sinking only. Hence, in the long run, buoyant phytoplankton will
completely float at the surface, so the depth of the water column below it does not
play any role, if only at the surface the growth rate is larger than the death rate.
Thus, forγ < 0, there is phytoplankton bloom development wheneverB < 1, and
hence there is no critical water-column depthL0 if diffusion is low [Fig. 5(a)].

In contrast, sinking phytoplankton will sink to the bottom of the water column if
diffusion is negligibly small, and hence they will survive only if the reproduction
rate at the bottom overcomes the death rate. Thus, for sinking phytoplankton, there
always exists a maximal water-column depth at low diffusion, defined earlier as the
compensation depthL0 [Fig. 5(b) and5(c)]. In terms of equations (9) and (16), the
compensation depthL0 = αKbgH0 is given by

g(I in e−KbgH0) = 0 ⇐⇒ L0(B) = − ln B for γ > 0, D = 0. (79)

The calculation presented in this subsection reproduces this result and extends it
with a smallD expansion:

e−L∗

= B

(
1 −

1

γ

D

A0
+ O

(
D

A0

)3)
(γ A0 = C0) (80)
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⇔ L∗
= − ln B +

1

γ

D

A0
+

1

2γ 2

(
D

A0

)2

+ O

(
D

A0

)3

for γ > 0, D → 0.

In the remainder of the section, we will derive this result from (61) and (62).
ν andz0 are expressed byA0, B, γ = C0/A0 > 0 andD as

ν = γ
A0

D

√
1 +

D

A0

4B

γ 2
, z0 =

√
4A0

D
. (81)

Hence for fixedA0, B andγ > 0 and forD → 0, we always haveν � 1 and
z0 � ν. Furthermorez1 = z0 e−L∗/2

≤ z0. Therefore for the evaluation of the
Bessel functions in (61), Debye’s asymptotic expansions can be used:

Jν(z)∼
eνχ

√
2πνt

(
1 +

∞∑
k=1

uk(t)

ν

)
, Yν(z) ∼

−2 e−νχ

√
2πνt

(
1 +

∞∑
k=1

uk(t)

(−ν)k

)
,

t =

(
1 −

z2

ν2

)−1/2

, χ = t − arcosh
ν

z

z�ν
≈ − ln

2ν

z
+ O(1). (82)

Theuk(t) are polynomials of degree 3k in t , that can be found inAbramowitz and
Stegun(1964). Insertion of these expansions into the determinant (61) leads to
the prefactorseν(χ(z0)−χ(z1)) ≈ (z1/z0)

ν
= e−νL∗/2 ande−ν(χ(z0)−χ(z1)) ≈ eνL∗/2.

For any finiteL∗ and ν → ∞, these factors dominate the expressions in (61).
Further evaluation similar to (63), (64) shows that in the limit of vanishing diffusion
constant and forC > 0, L∗ as a function ofA, B andC is determined by

(zdz + C) Yν(z)|z1 = 0. (83)

This equation has a solution forD → 0 only if C > 0. Evaluating (83) further
with the help of (82) gives a functional relation between the three quantities

λ = 1 −
e−L∗

B
, δ =

1

C
=

D

γ A0
and ε =

AB

C2
=

D

A0

B

γ 2
= δ

B

γ
,

(84)
since the parameters in (83) can be written as

C =
1

δ
, ν =

√
1 + ε

δ
, t

(
z1

ν

)
=

√
1 + ε

1 + ελ
. (85)

Evaluating (83) up to orderD2, theD-expansion ofλ is λ = δ+ O(D3). Insertion
of (84) yields our final result (80).
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7.3. Critical depth: the limit D → ∞D → ∞D → ∞. What happens if mixing by turbulent
diffusion becomes infinitely fast? In this case, the phytoplankton is homoge-
neously distributed through the whole water column, and no spatial structures re-
main. Hence the critical depthL∞ = αKbgH∞ as defined bySverdrup(1953) is
reached if the growth rate integrated over the whole column balances the death rate
for constant phytoplankton density∫ H∞

0
g(I in e−Kbgs)ds = 0 ⇔ B =

1 − e−L∞

L∞

for D → ∞. (86)

Here the critical depthL∞ = L∞(B) is the positive solution of the above equation.
In the remainder of this subsection, we will expand in the small parameter 1/D
about the asymptotic behaviour forD → ∞. The result of this calculation can be
written as

L∗
= L∞(B)+

A0

D
L1(B, γ )+

(
A0

D

)2

L2(B, γ )+ · · · , (87)

whereL1 is given by

L1(B, γ )=
L∞

6(B − 1 + BL∞)
× [3γ (BL∞ − 2(1 − B))

+ (2B2L2
∞

+ 3B(3B − 2)L∞ + 6(2B − 1)(B − 1))]. (88)

Let us first discuss the consistency and implications of this result: if the death
rate at the surface almost equals the growth rate, i.e., ifB ↑ 1, then L∞ =

2(1 − B)+ O(1 − B)2 is small and the expansion (87) reproduces the earlier re-
sult (48). If the death rate at the surface is negligible, i.e., ifB ↓ 0, then the
water depth diverges likeL∞ = 1/B + O(e−1/B/B). Furthermore we remark that
L∞ > L0 from (79) for all B andC > 0: that is, the critical depth is always larger
than the compensation depth since phytoplankton distributed over the whole water
column has better reproduction conditions than phytoplankton at the bottom.

The results (86)–(88) are now derived from the determinant (61). For D → ∞,
the parametersz, ν andC are small. Expressed in terms of the small parameter
z2

0 = 4A = 4A0/D and the fixed parametersγ = C0/A0, B andL∗, they read

z2
1 = e−L∗

z2
0, C = γ z2

0/4, ν2
= B z2

0 + γ 2 z4
0/16. (89)

Sincez1 ≤ z0 � 1, the determinant (61) can now be evaluated with the asymptotic
expansions (58) and (59):

1= −
eνL∗/2

νπ
pν(z0) p−ν(z1)+

e−νL∗/2

νπ
p−ν(z0) pν(z1)

pν(z)=

∞∑
n=0

(2n + ν + C)(−z2/4)n

n!
∏n

k=1(k + ν)
. (90)
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A short consideration shows that1(−ν) = 1(ν), so1 is actually a function ofν2,
and therefore the expansion of1 orders in powers of 1/D, not 1/

√
D. With the

ansatz (87) and

1 =
1

νπD
√

D

[
10 +

11

D
+
12

D2
+ · · ·

]
, (91)

theLk can be solved hierarchically from1k = 0 for all k. Since10 = 0 for

1 − e−L∞ − BL∞ = 0, (92)

the result (86) for L∞ follows immediately.11 = 0 determinesL1, the result (88)
was given earlier.

7.4. Critical diffusion: the limit L∗
→ ∞L∗
→ ∞L∗
→ ∞. The case of diverging water depth

L∗
→ ∞ as a function ofA, B andC was already analysed in detail in Section6.2:

in general, the relation betweenA, B andC for infinite water depth is given by

z0 Jν−1(z0)

Jν(z0)
= ν − C with ν =

√
4AB + C2 and z0 =

√
4A.

(93)
The critical diffusionD as a function ofA0, B andC0 results from replacingA
by A0/D andC by C0/D = γ A0/D. The identity (93) yields both the maximal
critical diffusion Dmax and the minimal critical diffusionDmin, if they exist. How-
ever, the relation is implicit, and explicit predictions for the critical diffusion can
only be derived by asymptotic expansions valid in some part of parameter space.
Depending on the values ofB andγ = C0/A0, these expansions take different
forms. We only consider a few special cases with the following explicit results:

For z2
0 = 4A0/D � 1, equation (93) is approximated by equation (70). If,

furthermore,B � 1 andγ of order unity, the diffusion constant according to (71)
diverges like

Dmax

A0
=

1 − γ

B
−
(3 − 2γ )(2 − γ )

2(1 − γ )
+ B

35− 99γ + 82γ 2
− 21γ 3

12(1 − γ )3
+ O(B2)

for B � 1 and γ ≤ O(1). (94)

This is an explicit result for the maximal critical diffusionDmax in the limit of small
death rateB.

For buoyant phytoplankton withγ < 0 and large|γ |, another approximation for
the upper critical diffusionDmax can be derived from (72):

Dmax

A0
= |γ |

1 − B

B
+

(1 − B)3

B (1 − B/2)
+ O

(
1

γ

)
for γ < 0 and |γ | � max[4(1 − B), B/(1 − B)].(95)
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For weakly sinking plankton withγ > 0 andγ � 2
√

1 − B, the minimal critical
diffusion Dmin is, according to (75),

Dmin

A0
=

γ 2

4(1 − B)

(
1 + O

(
γ

(1 − B)2

)2/3)
for 0< γ � (1 − B)2. (96)

This last approximation reproduces the result ofRiley et al. (1949) andShigesada
and Okubo(1981) that D = v2/(4 g(I in)) + · · · and restricts its validity toγ �

(1 − B)2.

8. SUMMARY AND CONCLUSIONS

8.1. Theoretical summary. We have analysed the critical conditions for phyto-
plankton bloom development. Our results are particularly relevant for bloom de-
velopment in eutrophic waters, as the model assumes that phytoplankton growth is
determined by light availability only, whereas all nutrients are assumed to be avail-
able in ample supply. What distinguishes our analysis from many previous anal-
yses of light-limited phytoplankton dynamics (Kok, 1952; Sverdrup, 1953; Evers,
1991; Platt et al., 1991; Huisman, 1999; Huismanet al., 1999a) is that we have
here specifically focussed on incomplete mixing of phytoplankton (Shigesada and
Okubo, 1981; Ishii and Takagi, 1982; Totaro, 1989; Huismanet al., 1999b,c). This
paper confirms the recent numerical discovery ofHuismanet al. (1999b,c) of a
critical threshold value for the vertical turbulent diffusion coefficient by means of
rigorous mathematical analysis. Furthermore, the paper extends the investigation
to sinking and buoyant phytoplankton. Using dimensional analysis, the physical
parameters like incident light intensity, background turbidity, water-column depth,
maximal growth rate of phytoplankton, and so on reduce to the four dimensionless
parameters(A, B,C, L) defined in equation (16). These four parameters estab-
lish scaling rules and similarity laws between different phytoplankton–water–light-
systems. A transformation from dimensionless parameters back to physical param-
eters allows a straightforward interpretation of the conditions for phytoplankton
bloom development in terms of measurable species traits and environmental con-
ditions.

The full four-dimensional parameter space of phytoplankton bloom development
cannot be displayed in a single three-dimensional plot. Therefore two different pro-
jections onto three-dimensional parameter spaces are represented in Figs2 and3.
In the different panels of Fig.2, the maximal water-column depthL∗(A, B,C) is
shown as a function ofA andC, and the panels are distinguished by different fixed
values ofB. Figure3 shows the surface in the three-dimensional parameter space
(A, B,C), where the maximal water-column depth divergesL∗(A, B,C) → ∞.
The water-column depthL can be treated as being infinite, from the perspective
of phytoplankton bloom development, ifL � 1/ν in dimensionless parameters,
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or if H � D/
√

4`D + v2 in physical parameters. Various analytical results and
asymptotic expansions for the phase boundaries of phytoplankton bloom develop-
ment, in terms of the dimensionless parameters, are derived in Section6.

In Section7, these results are transformed back to physical parameters, and the
complete scenario of critical diffusion vs critical depth is visualized in Fig.5,
as well as evaluated analytically. We emphasize that the three different types of
diagrams of critical depth vs critical diffusion in Fig.5 are distinguished by two
parameters only, namelyB andγ . The parameterB = `/(aI αin) is the ratio be-
tween death and reproduction rate of the phytoplankton at the surface, andγ =

vαKbg/(aI αin) is the ratio between sinking velocity times light absorption coeffi-
cient and the reproduction rate at the surface.

Our analysis was restricted to growth equations in the form of (6) and (9). This
choice kept the dimensionless parameter space four-dimensional, and allowed our
transformation to Bessel functions and the use of their tabulated properties. An
analysis of more complex growth equations in the form of (7) or (8) would add an
additional 10th physical parameterc, which would make the dimensionless param-
eter space five-dimensional. In that case, our four-dimensional results withα = 1
would apply to low light conditions only (I in � 1/c, to be precise), where theg(I )
function is still in its linear range. However, the nonlinear behaviour ofg(I ) for
larger I can be mimicked by an exponent 0< α < 1 in (9), and this form ofg(I )
is fully covered by our analysis.

8.2. General summary and conclusions.From a biological perspective, we
found that the conditions for bloom development depend quite sensitively on the
specific weight and hence on the vertical velocity of the phytoplankton species
concerned. Our results can be characterized as follows:
• Bloom conditions for positively buoyant phytoplankton and neutrally buoyant
phytoplankton are summarized in Fig.5(a). They can develop blooms in highly
turbulent waters if the water-column depth is less than the critical depth (Sverdrup,
1953). They can develop blooms in waters with an intermediate or low turbulent
diffusion independent of water-column depth;
• Bloom conditions for sinking phytoplankton with a low to moderate sinking ve-
locity are summarized in Fig.5(b). They can develop blooms in highly turbulent
waters if the water-column depth is less than the critical depth. Also, they can
develop blooms in quiet waters if the water-column depth is less than the compen-
sation depth. Finally, in waters where turbulent diffusion has a value between the
minimal and the maximal turbulent diffusion, they can develop blooms indepen-
dent of water-column depth;
• Bloom conditions for sinking phytoplankton with a high sinking velocity are
summarized in Fig.5(c). They cannot develop blooms in deep waters. They can
develop blooms in turbulent shallow waters if the water-column depth is less than
the critical depth, and in quiet shallow waters if the water column depth is less than
the compensation depth.
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Thus, compared to previous work that studied incomplete mixing of neutrally
buoyant plankton (Huismanet al., 1999b,c), this paper shows that sinking phy-
toplankton species have either two or no critical threshold values for the vertical
turbulent diffusion coefficient [Fig.5(b) and5(c)]. In contrast, positively buoyant
and neutrally buoyant phytoplankton always have one critical threshold value for
the vertical turbulent diffusion coefficient, since a minimal turbulent diffusionDmin

does not exist for buoyant species [Fig.5(a)].
Intuitively, these various patterns can be explained by the light requirements of

phytoplankton and the position they can obtain in the vertical light gradient. Nei-
ther buoyant nor sinking phytoplankton species can persist if vigorous mixing ex-
poses the phytoplankton population to the low depth-averaged light conditions of
deep waters [upper right corner in Fig.5(a)–5(c)]. Phytoplankton species with
a low sinking velocity cannot persist in deep waters if turbulent diffusion is too
low to prevent sinking losses of phytoplankton into the dark [lower right corner in
Fig. 5(b) and5(c)], but these phytoplankton species may persist if turbulent diffu-
sion has intermediate values, because growth rates may then overcome both mixing
rates and sinking losses. Phytoplankton species with a high sinking speed cannot
persist in deep waters at all, independent of turbulence, because their growth rate
is insufficient to compensate for the sinking losses [Fig.5(c)].

These qualitative considerations together with depth profiles, with some(D, L)-
plots of the type of Figs.5(b) and5(c) and with population size data between the
phase boundaries can be found inHuismanet al. (2001 or 2002).

Many empirical studies confirm the importance of vertical mixing processes for
phytoplankton bloom development (Reynoldset al., 1983; Jones and Gowen, 1990;
Cloern, 1991; Berman and Shteinman, 1998). One interesting example of an in-
depth study supporting the theory comes from Lake Nieuwe Meer, a deep and
eutrophic lake in The Netherlands (Visser et al., 1996a,b). In former days, the
phytoplankton of Lake Nieuwe Meer was dominated byMicrocystis, a buoyant
cyanobacterial species that can form toxic algal blooms. Artificial increase of ver-
tical turbulent diffusion in the lake, by means of large-scale air bubbling, led to the
replacement of buoyantMicrocystisby sinking phytoplankton species, especially
several diatoms and the green algaScenedesmus(Visseret al., 1996a). Consistent
with these field observations, laboratory experiments withScenedesmusshowed
that this sinking species is lost from the water column if turbulent diffusion is too
low (Visseret al., 1996b). Hence, this in-depth study underscores the idea that an
increased turbulent mixing of the water column may lead to shifts in species com-
position from buoyant species towards sinking phytoplankton species, in line with
the theory developed here.

As a general message, our model analysis and the given empirical example
illustrate that incomplete mixing has a major impact on phytoplankton dynamics.
Although incorporation of mixing processes in plankton models is gradually
becoming more popular, there are still many models in plankton ecology and ocea-
nography that lack information on the turbulence structure of the water column.
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Numerous models, sometimes even used as policy tools in water management,
simply assume uniform mixing of the phytoplankton populations within the upper
water column. Our mathematical analysis suggests that such simplified model ap-
proaches, that neglect the turbulence structure of the water column, might seriously
underestimate opportunities for phytoplankton bloom development.
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