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Critical Conditions for Phytoplankton Blooms
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We motivate and analyse a reaction—advection—diffusion model for the dynamics
of a phytoplankton species. The reproductive rate of the phytoplankton is deter-
mined by the local light intensity. The light intensity decreases with depth due to
absorption by water and phytoplankton. Phytoplankton is transported by turbulent
diffusion in a water column of given depth. Furthermore, it might be sinking or
buoyant depending on its specific density. Dimensional analysis allows the reduc-
tion of the full problem to a problem with four dimensionless parameters that is
fully explored. We prove that the critical parameter regime for which a station-
ary phytoplankton bloom ceases to exist, can be analysed by a reduced linearized
equation with particular boundary conditions. This problem is mapped exactly to
a Bessel function problem, which is evaluated both numerically and by asymptotic
expansions. A final transformation from dimensionless parameters back to labo-
ratory parameters results in a complete set of predictions for the conditions that
allow phytoplankton bloom development. Our results show that the conditions for
phytoplankton bloom development can be captured by a critical depth, a compen-
sation depth, and zero, one or two critical values of the vertical turbulent diffusion
coefficient. These experimentally testable predictions take the form of similarity
laws: every plankton—water—light-system characterized by the same dimensionless
parameters will show the same dynamics.
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1. INTRODUCTION

Phytoplankton, the microscopically small plants that drift in the water column of
lakes and oceans, provide the basis of nearly all food webs in aquatic ecosystems.
Phytoplankton species depend on light for their metabolism. Hence, phytoplank-
ton populations need to stay close to the surface, since light availability decreases
with depth. On the other hand, many phytoplankton species are heavier than water.
They have a tendency to sink. Sinking phytoplankton populations play an impor-
tant role in climate regulation, as they can act as a carbon pump. By means of
their photosynthetic carbon fixation, phytoplankton extract carbon dioxide from
the atmosphere, and they can export a considerable part of this carbon by sink-
ing downwards into the ocean interid¥alkowskiet al., 1998 Arrigo et al,, 1999
DiTullio et al, 2000. Here we will consider light as the factor limiting the growth
rate of sinking phytoplankton populations. Thereby, we implicitly assume that all
other resources, like nitrogen, phosphorus, and iron, are in ample supply. The sink-
ing of phytoplankton can be compensated by turbulent mixing, or it can be stopped
at the bottom of the water column. Hence, the question arises whether in an aquatic
system with given depth, given rate of turbulent mixing, and given light intensity
at the surface, a particular phytoplankton population will survive. Even for a single
species, a full answer to this question is still missing.

If a phytoplankton population can survive in the long run, we will say that
there is phytoplankton ‘bloom development’. For well-mixed aquatic systems with
homogeneous phytoplankton density, conditions for phytoplankton bloom devel-
opment have been extensively investigated by means of integro-differential equa-
tion models Gverdrup 1953 Platt et al, 1991, Huisman and WeissindL994
Weissing and Huismari994). Here, theory predicts that phytoplankton blooms
can develop only if the depth of the well-mixed water column is less than a critical
threshold value, generally known as the ‘critical depth’ in oceanography. If the
depth of a mixed layer would exceed this critical depth, the average light intensity
is too low to sustain a phytoplankton population. This theory for well-mixed sys-
tems is supported by extensive laboratory experimdiitgsfnan 1999 Huisman
et al, 19993. Many, if not most, aquatic ecosystems are not well mixed, how-
ever. A few theoretical studies, using partial differential equation models, have
investigated phytoplankton bloom development under incomplete mixiigy(
et al, 1949 Shigesada and Okub®981, Totarq 1989 Britton and Timm 1993.

In particular, recent numerical work considering neutrally buoyant phytoplankton
led to the discovery of a critical threshold value for the vertical turbulent diffu-
sion coefficient Huismanet al, 1999hc). If turbulent diffusion remains below
this threshold value, populations of neutrally buoyant phytoplankton can outgrow
the vertical mixing rates, and maintain a position in the upper well-lit part of the
water column. Thus, the critical-depth theory applicable to well-mixed systems
no longer holds if turbulent diffusion is sufficiently low. This finding was based
on numerical simulations. A rigorous mathematical analysis of the conditions that
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allow phytoplankton bloom development under incomplete mixing is still lacking.

In the present paper, we close this gap. Moreover, we generalize the analysis by
including sinking or buoyancy of the phytoplankton. We analyse the long time
survival conditions of a single phytoplankton species in the complete regime of
possible physical parameters.

The paper is organized as follows: in Sectiyrwe introduce and motivate our
model for one phytoplankton species. In Sect®&nwve perform a dimensional
analysis that reduces the nine physical parameters of the problem to four dimen-
sionless parameters callég B, C and the dimensionless water-column depth
In Section4, we prove that the phase boundaries that determine phytoplankton
bloom development can be derived from a reduced linearized equation with homo-
geneous boundary conditions. This is the key for a simple numerical procedure,
developed and used in Sectibnthat characterizes the critical conditions for phy-
toplankton blooms in terms of a maximal dimensionless water-column depth
L*(A, B, C). In Section6, we present our analytical results in terms of the dimen-
sionless parameters. A key ingredient is the mapping of the linearized equation
derived in Sectiod onto a Bessel function problem with particular boundary con-
ditions. This allows for the identification of several limit cases and for asymptotic
expansions about them. In Sectigrwe return from the dimensionless variabkes
B andC to physical variables like the diffusion constdhor the light intensityli,
at the surface, and we discuss under which conditions a (bounded) maximal water
depthH = H(D, l;j,) for a given phytoplankton species exists and how it can be
derived from the previous analysis. Secti®oontains summary and conclusion.

2. THE MODEL

We here introduce our model for a single phytoplankton species. The phyto-
plankton population density is taken as a continuous quantity, and variations in the
directions parallel to the water surface are neglecteds deinote the depth below
the water surface, wheexuns from 0 at the surface to sorie> 0 at the bottom,
and letw(s, t) denote the phytoplankton population density at dep#énd time
t. The changes in population density then take, in general, the form of a partial
differential equation

ad ad

— w(s,t — Ju(s, 1) = S(w(s,t)). 1

ot w( )+as Jo(S, 1) (w(s, 1)) 1)
This is the continuity equation for plankton, relating the local plankton density
to the local plankton flux density, and to the source ternﬁ(a) (s, t)) accounting
for reproduction and death of the plankton. Plankton does not cross the air—water-
and the water—ground-interface, therefore the boundary conditions=a0 and
s=H are

jo0,1) =0 and jo(H, ) = 0. (2)
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For the plankton flux density, we use the simple approximation

It is composed of an undirected diffusive motierDdsw that is driven by the
plankton density gradient, and a directed motien The diffusion can be just
Brownian molecular diffusion if the water is macroscopically at rest, or it can
mimic turbulent mixing of water. For planktonic cells the second effect is consid-
ered dominant, an® is called the turbulent diffusion coefficier®kubq 1980.

The approximation3) is valid for relatively low plankton densities, since effects

of collective transport or the interaction of hydrodynamic flow fields when several
cells are sinking or rising together in the same area, are neglected. Many phy-
toplankton species lack flagella or cilia, so they cannot swim actively and their
motion is passive. This is the case to be considered here. Hence, the directed mo-
tion vw is due to a specific plankton density different from water. In the absence
of diffusion, the drift velocityv can be approximated by Stokes’ labhafidau and
Lifshitz, 1966 Reynolds 1984 Denny, 1993

d_Z (pp - low) g
18 n ’

whereg is the earth’s gravitational acceleratiqs), is the specific density of the
phytoplankton species concerneyq, is the density of water is the viscosity of
water, andl is the diameter of a plankton cell. The paramet& a numerical form
factor which takes the particular shape of the object into account. For a spherical
cell, we havep = 1. For a species heavier than water, the veloeitg posi-

tive, and the motion is downwards. If diffusion is nonvanishing, the laminar flow
approximation of equatiord] loses its validity, but dimensional analysis for the
mean velocity due to the gravitational foree(p, — p,,) g still yields a parameter
dependence as id), but with a different numerical facta.

The densityp,, of phytoplankton cells is a species-specific parameter. Species
with gas vesicles, like some cyanobacteria, and species with a high oil content,
like the green alga®otryococcushave a lower density than water. They will
float upwards{ < 0) and will be called buoyant. Because most cell components
have a slightly higher density than water, most species that lack gas vesicles have
a tendency to sink downwards slowly & 0). According to the area factal®
in (4), larger cells will move faster than smaller ones. The smallest species, like
Chlorella, SynechococcyusindProchlorococcushave almost no vertical velocity
(v =~ 0).

The source term for the reproduction and death raté)irs(approximated as

v=2¢ (4)

S(w(s, 1)) =gl (s, 1) (s D), ®)

whereg(l (s, t)) is the specific growth rate of phytoplankton as a function of light
intensity | (s, t). This form implies that all nutrients are sufficiently available so
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that the light intensity limits the growth rate. The simplest approximation for such
behaviour is

gll(s,t) =al(st)—¢, (6)

with a reproduction ratal proportional to the local light intensity and a constant
death rate. (Here¢ stands for loss, in agreement with the earlier literature.) This
is a good approximation at low light intensities. However, owing to physiological
limits of the maximal reproduction rates of organisms, the reproduction rate gen-
erally saturates for high light intensities. Such behaviour can be modelled by a
function of the form Monod, 1950

al
1+cl

or alternatively by {WVebbet al,, 1974 Plattet al,, 1980

1— efcl

gl(s,t) =a — L. (8)
Forcl « 1, these functions reduce to the approximation of equathnWe here
work with another general expression

gl (s,t)) =a l%s,t) — ¢, 9)

that with an appropriate choice for the exponenkO«a < 1 can give a good
approximation to 7) or (8). Equation 9) is used because it allows for explicit
analytical solutions in terms of Bessel functions. The structure of these solutions
turns out to be completely independent of the value of the expanexg long
asa > 0 and, hence, as long agl) is an increasing function of. Besides
the numerical evidence, this strongly suggests that our findings do not rely on the
particular form of {), (8), or (9).

As the simplest possible approximation and since typical life and reproduction
times are of the order of a day or longer, we assume the light intensity at the surface
to take the constant value

1(0,t) = lin. (10)
Light intensity is decreasing with depgirdue to light absorption
8% I(s,t) = —(Kpg+ Kka(s 1) I(s1), (12)

wherek is the specific light absorption coefficient of the phytoplankton Epglis
the total background absorption due to nonphytoplankton components. The explicit
solution of equations1Q) and (L1) for a given integrated phytoplankton density
[y (s, t)ds is
(5, t) = lijp & Koss g ko0 ds, (12)
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Equations 1), (2), (3), (5), (9), (10) and (L1) determine the mathematical prob-
lem, together with initial conditions and with the constraint that densities and
intensities have to be nonnegative, so

w(s,t) >0 and I(s,t) >0 foral0<s<Handt >0. (13)

3. DIMENSIONAL ANALYSIS AND SIMILARITY LAWS

As it stands now, the model has nine parameters with physical dimensions: the
water-column deptiH, the diffusion constanD, the sinking/buoyancy velocity
v, the parametera and« in the reproduction rate and the death ratehe light
intensity l;, at the surface, and the absorption ragg andk. However, phys-
ical phenomena are invariant under the choice of physical units like centimetres
or metres. We use this invariance to reduce the number of parameters by means
of dimensional analysis. A most convenient choice is to measure length and time
scales, plankton density and light intensity as

Xx=aKpgs, — 7=Da’Kit, (14)
k : 1“(s,t)
p(x7 T):_(,()(S, t)a J(X’ T) = T (15)
Kbg IS

In terms of these rescaled dimensionless variables, the problem depends only on
the following four dimensionless parameters

alif, l v
- Da?KE Taly’ " D aKpyg

and L =aKpg H.

(16)

A can be understood as the ratio between the growth rate at the surface and the
scales of absorption and diffusioB, is the ratio between death and growth at the
surface,C < 0 measures the buoyancy afid > 0 the sinking, and. is the
dimensionless depth of the water column.

By definition, A, B andL are positive quantities, while the sign®©fis not fixed.
Additionally, the problem has no nontrivial solution fBr> 1 when the death rate
is larger than the growth rate even at the surfaee 0, as will be proven formally
in equation 28). The parameter regime to be explored is, therefore,

0< A< oo, 0<B<l1, -0 < C < o0, O<L<oo. (17)

In terms of these variables and parameters, the equation for the phytoplankton
density defined byl), (3), (5) and @), reads

d:p =030 —Cdxpo+A(j —B)p, (18)
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with the boundary conditiong], (3)
[0xp — Cplx=0 =0, [0xp — Cplx=L = 0. (19)
The equation for the light intensityL{) becomes
lInj=—-1—p, (20)
with the boundary conditiorlQ)
j(O, 1) =1 (21)
The constraintX3) on the nonnegativity of the plankton density now reads
o(X,7) >0 forall0<x <L and > 0. (22)

From equations20) to (22), it follows immediately, thaj is positive and monoton-
ically decreasing towards 0 as— oo, so the constraintl@3) on j is automatically
obeyed.

The virtue of this dimensional analysis is threefold: (i) it simplifies the equations;
(ii) it reveals the similarity laws of different systems: if two systems are character-
ized by the same four dimensionless varialfle8, C, andL, they exhibit the same
behaviour; (iii) since parameter space is four-dimensional, it can be fully explored
and we will pay special attention to the three-dimensigal B, C)-parameter
subspace defined by the limit of infinite water-column ddpth

4. STATIONARY SOLUTIONS AND THE PHASE TRANSITION

From here on, we will investigate whether a given set of paraméferB, C, L)
allows for stationary phytoplankton blooms, i.e., whether there are stationary
solutionsd, p = 0 with nonvanishing phytoplankton density. In particular, we will
study the critical conditions, where phytoplankton blooms start to exist. Hence we
study the stationary solutions of the problem defined 18)(22). To simplify
the notation, we drop the variabtefrom p, so we now writep = p(x). The
partial derivativesd, then become ordinary derivativeg.dEquations 18)—(21)
now constitute a system of one second-order and one first-order nonlinear ordinary
differential equation with three boundary conditions. Integratior26§ ith (21)
leads to a reformulation as one second-order integro-differential equation

d2p — Cdyp + A(e ¥ o dvr _ By, =0, (23)

[dxp — Cplx=0.L =0, p(x)>=0  forall0<x<L. (24)
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A transformation to the variablR(x) = fox dy p(y), p = dyR would lead to a
third-order ordinary differential equation with additional boundary vét@@) = O,
but will not be considered further.

Equation 23) together with 24) for the boundary conditions at= 0 andx = L
and with the positivity constraint fgs(x) define a boundary value problem for the
phytoplankton density (x). However, it is much more convenient, in particular
for the numerics, to consider the problem rather as an initial value problem, where
the two initial conditions ak = 0

p(0) = po, [dxp — Cplx=0 =0 (25)

fix L = L[po] as a function ofog, A, B, C. From here on, we will considek, B
andC fixed, and only write the dependencylofon pg explicitly.

If L[po] exists, then it is unique, as can be seen from the following argument:
integrate 23) over 0 < x < X and use the boundary conditio24j atx = 0. The
result is

X
(G = Colx = —A [ dx[e75,00 — B1 p) (26)
0
S,(x) =€ Jo dy Py, (27)

wherep(x) depends parametrically gm, A, B, C. Herep(x) is positive on the
interval according tog4), whilee™S, (x) is monotonically decreasing for growing
X. A necessary condition for & = L[po] to existis that the functiofe™ S, (x) —

B] changes sign between 0 ahfog]. Hence

0 < e MS,(Lipol) < B < 5,(0) = L. (28)

An immediate consequence is that if Bfpo] exists, then the expressiddy o —
Cplx=x is negative forX < L[pg] and positive forX > L[pg]. Hence a second
solutionL [pg] cannot exist andl.[po] is unique.

We are now interested in the phase transttisam bloom to no bloom, in par-
ticular in the maximal water depth*, where for givenA, B, C phytoplankton
can still exist. It is intuitively clear, that a higher plankton density leads to more
light absorption, so that the deeper water layers are less favourable for the phyto-
plankton. One therefore expects that the maximal water depth can be realized for
infinitesimal plankton density. This is indeed the case, as we will prove now. More
precisely, we will show for the solutions of proble23}—(25):

TThis phase transition is of second order, hence continuous. Equivalently, in p.d.e. terms, it also
can be classified as a supercritical bifurcation. We prefer the notion of a phase transition since we
analyse a mean field description of an extended system. Inclusion of fluctuations at a second order
phase transition generically leads to slow, but nonhysteretic, relaxation which also is to be expected
in the present system.
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(1) For a large phytoplankton density > 1 at the surface, the water-column
depthL[po] is always finite and unique. In fact, in the limit of 39 — O, it is
given explicitly by the positive solutioff; = £1(B) of the equation

L1(B 1
BL,+ef1=1 whereL[pg] = 1(B) + O(—2>. (29)
£0 Lo

(2) L[po] is @ monotonically decreasing function o

L{po1] > L[po2l, if po1 < po2. (30)

Therefore the smaller the phytoplankton dengigyat the surface, the larger the
water-column depth.[pg]. As a consequence, for gively, B andC, there are
two possibilities: either the water-column deftfpg] becomes infinite already for
some nonvanishing value pf or it stays finite up tgpg — 0. We then define

L*:= L[0] := IimOL[po], (31)

PO~

which is unique and given by

L* = supL[pol. (32)
00>0

In the remainder of the section, these statements are proven.

(1) The result29) is derived as follows: analys€3), (24) in the limit of pg —
oo. Rescalep(X) = pg r(x) and use the new initial condition(0) = 1 and
dgr|o = C instead of 25). The analysis of the exponent i&3) reveals that 10
introduces a new small length scale into the problem, while on the otherhand,
=1+ Cx+ --- changes only on the larger scalgCL Inserting these expressions
into (26), L[pol solves[dyr — Crlx=L1,, = 0 and, therefore,

Llpol X
O:/ dx [e Xl YY) _ B]r(x)
0

c
= O:/ dX[erofOXdYr(ﬂYo)—B]r(§>, r<£>:1+ O(£>
0 Lo Lo Lo

c
=/ dX[e* —B]+ o(ﬁ), where £ = po L[po]. (33)
0 Po

The evaluation of the last line for/bg — 0 and forL = L£1(B) + O(1/p0),
L1(B) = O(pY) immediately yields 29).

(2) The proof of the statement3@) and @32) proceeds along the following steps:
first eliminate the first derivative from the equation of moti@8)(by the transfor-
mation

p(X) = po €% Y (x), (34)
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I‘[pO 2] L[po 1]

Figure 1. Qualitative behaviour df; (x) andha(x) with pg 1 < pg 2, together with the
resultingL[p0. 1] > L[po,2].

which leads to the transformed equation

2
e )w —0, v=+V4AB+C2 (35

Ey + Al €Sy (x)”° — —
xw+ <e S¢(X) AA

with the function

Sy(x) = S,(x)"" = eXp{— f dy e/ wm}, (36)
0

and the initial conditions, constraint and definitionldfoo]

=0, Y(x) =0  forO<x < L[pol.

¥(0) =1, eCX/Z[dxw—Ew}
2" Jo.Lipo) -

They-form of the equations will also be the starting point in Secon
For the proof of 80) and @2) it is convenient to perform still another transfor-

mation to g
Y (x) = elo hy dy — h(x) = %(:)() (38)

The transformed equation reads
2

dh + h? + A e *S(h, x)™ — UZ —0, (39)

with v from (35) and

X y
S, x) = exp|:—f0 dy exp|:Cy/2+/0 dz h(z) :|:| (40)

The initial conditions, constraint and definition of pg] now take the form

C
h(0) = 5= h(L[poD), Ih()| <oo  forO<x=<L[pol. (41)
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For smallx, the equation foh can be expanded as

2
h(x) = % —AQl-B)Xx+AQ+C(1-B)+ po) X? + 0(x3). (42)

Soh(x) initially for small positivex decreases belo®/2 and eventually has to
reachC/2 again from below ak [po] to obey the conditiom(L[pg]) = C/2.

Compare now two solutions; (x) andh,(x) of the problem 89)—(41) wherepg
is replaced by 1 andpg 2, respectively. Assume tha ; is smaller tharpg »:

£0,1 < 00,2- (43)

The functionsh;(x) andhy(x) are shown schematically in Fid. For smallx, h,
lies aboveh,, since 42) implies that

XZ
ho(X) — hi(X) = A (po.2 — po.1) >+ Ox® >0 for0<x<«l (44)

We will now prove thah, — h; stays positive. The equation fbg — h; is
dy(hy —hy) =h? —h3 4 A e [ S(hy, x)*1 — S(hy, x)™2 . (45)

Now suppose that after an interval©® x < X with h, > hy, there is a point
X = X whereh; = hy. The expressios(hy, x)?01 — S(hy, X)*02 at this point
X is positive. This is true becausth,, X) < S(hy, x) < 1 according to 40)
with h, > h; and becausé”2 < S”1 forall0 < S < 1 with inequality 43).
Therefore for the expression iA%)

S(hy, X)™1 — S(hy, x)P02
= [S(h1, )t = S(hy, )] + [S(hz, ) — S(hz, X)**?] > 0. (46)

It follows from (45) that at the pointX where we suppose thht = h;, we have
dih, > d¢h;. But this implies that at the crossing poii; approaches; from
below, which is in contradiction withn, initially being aboveh;. Therefore a
crossing pointX cannot exist, and

hy, > hy forall x > 0. 47

Therefore ith, reaches the valug€ /2 for somex = L[pg2] < oo, then this value
of x will be smaller than thex = L[pg1] of h;. HenceL[po2] < L[po.1] for all
po.2 > po.1, and B0) is provent Equation 82) follows immediately from setting
po.1 = 0 and taking the continuity df [ o] into account.

*We thank Lothar Scifer for helpful discussions in shaping this proof.
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We remark that for - B « 1, equation 42) immediately yields the explicit

approximation
2(1-B)
Llpol = ———— + 01— B)’ (48)
+ po
for small water depth.. Of course, this result confirm8@) and 32).
We note finally that our proof of30) and @2) was performed for a growth rate

g(l) as in equationsg) or (9). However, the generalization 3@ and @2) to any
functiong(l) that is monotonically increasing inlike (7) or (8) is straightforward.

5. NUMERICAL EVALUATION OF THE PHASE TRANSITION

Because of the rigorous boungly, it is not necessary to study the full nonlinear
problem @3), (24) for determining the phase diagram. Rather the maximal water-
column depthL* = L[0] still allowing for a stationary phytoplankton bloom can
be derived from the linear problem defined by

dZp — Cdyp + A€ — B)p =0, (49)
[dxp — Cplx=o,.L* =0, p(x)>0  forall0<x <L", (50)

if L* is finite. As equation49) is linear and the boundary conditions and con-
straint 60) are homogeneous, the amplitudeods no longer fixed, and the single
initial condition[dyp — Cp] = 0 atx = 0 is sufficient to fix a solution that is
unigue up to the arbitrary amplitude pf This amplitude can be fixed, e.g., by

p(0) = 1. (51)

The two conditionsg0) and 61) at x = 0 together with the second-order equa-
tion (49) define an initial value problem that can be integrated numerically towards
growing X. As also proven, a parametkt obeying the conditions50) does not
need to exist for fixedh, B andC, but if it exists, it is unique.

The data foriL* presented in Fig2 have been derived by simple numerical inte-
gration of this initial value problem for the linear second-order ordinary differential
equation 49). Figure3 could have been derived by extrapolation of the— oo-
lines from Fig.2, but again we found a much simpler numerical technique for3-ig.
that will be explained in Sectiof.2 We will now discuss these figures in more
detail.

A plot of the maximal water depth* as a function ofA, B andC would contain
the complete information of the phase transition. ButAsB, C, L*) is a four-
dimensional space, only projections can be visualized in a three-dimensional plot.
In Fig. 2, we have chosen to fiB at the values 0.01, 0.2, 0.5 and 0.9 and to pfot
as a function ofA andC. The choice of fixedB was made, becaud® = ¢/al,
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Figure 2. The maximal water-column deptfi as a function of the parametefsandC

for fixed values ofB = 0.01, 0.2, 0.5 and 0.9. (The slight roughness of the surfaces is a
numerical artefact.) For each value®fthe maximal water deptbh* diverges at a certain
curve in the(A, C)-plane. Thesé* — oco-curves as a function d are drawn in Fig3.

has a simple interpretation as the ratio of death rate and reproduction rate for a
given light intensityl;, at the surface. It will allow for an easy interpretation of the
figures, when we return from dimensionless to laboratory parameters in Séction
For small A and sufficiently largeC, the maximal water depth* approaches a
constant. This constant value bf decreases with increasing death rBteFur-
thermore, for fixed, the maximal water depth* increases with increasingyand
decreasing, and reaches infinity at a critical line in tli&, C)-plane.

Figure3 summarizes the position of the' — oo-lines from Fig.2 as a function
of B in a single plot: it shows the surface wheré — oo in the (A, B, C) param-
eter space. If a system is characterized by a potB, C) below this surface, a
maximal water depth.* does not exist and phytoplankton blooms can develop for
any water-column depth.
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Figure 3. The surface where*(A, B,C) — oo in (A, B, C)-parameter space. The
curves on the surface mark either constanbr constantv = v4AB+ C2. For any
combination(A, B, C) below this surface, phytoplankton blooms can exist for any water
depthL. Conversely, for any combinatiofA, B, C) above this surface, phytoplankton
blooms can exist only if water depth is less than a maximal water depth

6. ANALYTICAL RESULTS ON THE PHASE TRANSITION

The phase transition problerd9), (50) can be studied not only numerically,

but also analytically. This will allow the derivation of explicit asymptotes for the

surfaces shown in Figdand3.

6.1. The general criterion. For the analytical study, it is convenient to transform
equations49), (50) first to ¢ (x) = e ¥2p(x) as in B4)—(36). Then the variable
x is transformed further as

22 = 4Ae7*, v (X) = ¢(2). (52)

This brings equatiord@) into the form of a Bessel equation
2 d2 d 2 2
Z @go(z)—i-zd—z ©(2) + (Z° —v°) ¢p(2) =0, v=+4AB+C2.  (53)
The boundary conditions and constrais®) now read

d
zc[zd—Z 0@ + C<p(z)] _o, (54)
7=20,21
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at  zg= V4A, zn=z€e""2, (55)
and v >0 forz; <z < z,. (56)

The solutionL* is unique if it exists, since we analyse a transformed but equivalent
version of the problem studied in SectidnThe general solution 0b6Q) is given
by the superposition of two Bessel functions

(p(Z) = ClJu (Z) + CZY\)(Z)v (57)
whereJ, (z) andY, (z) are the Bessel functions of ordenf first and second kind,
respectively, and, andc, are constants of integration. For the general properties
of the Bessel functions, their notation, and for a number of explicit expansions and

identities that will be used later, we refer Adoramowitz and Steguf(i1964. In
particular, the functiond, (z) has the expansion

(7 (A"
20=(3) X areaniy 9

wherel' (x) is theI'-function. The functiorY, (z) is related toJ, and J_, as

cosvr J,(2) — J_,(2)

Y, (2) = -
@ sinvr

(59)
Therefore for small argumentand forv > 0, J, vanishes likez’, while Y,, and
J_, diverge likez™".

The ratioc,/c; of the arbitrary constantg andc; in (57) is fixed by the boundary
conditions b4):

C;  (zd;+C)J (2 (zd; +C)J,(2
SR S B et b (60)
¢ (2d;+CO)WY(2) |, (zd,+C)Yu(D)|,
Elimination ofc,/c; leads to the determinant condition onC, z; andz;
(zd; + C)1,(2D) |z (zd; + C)Y, (D)4
A= =0. 61
(20, +C)Dls (2 +CYe @y (61

Equation 60) or (61) together with the positivity constrainb§) for the func-
tion (57) define the phase transition from bloom to no bloom.
The original variable®\, B, C andL* can be recovered from C, z, andz; by

ég’ B:vz_cz’
4 2

c=C, L'=2h?® (62
Z 2
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6.2. The limit L* - oo. For systems with an infinite water-column depth, the
condition takes a simpler form. This can be seen by inserting the graajfmp-
totics of the Bessel function$®) into (60). Evaluation of the expression for
L* — oo corresponds t@; — 0. One finds

C . 7 (v+C)(z/2)

T a0 @) T DTh, O rAB=0 (63)

sincev = v/4AB + C2 > |C|for AB > 0 and the parameter regimes giveni)(
[In particular in view of the limitz — 0, the factore®*/2 or z~C have been kept
in (37) and 64), and we remark that the full expressidl) also vanishes &= 0,

if and only if c, = 0.] Insertingc, = 0 from (63) in equation §7), ¢(2) is found to
be proportional tal,(z), and the boundary condition & reduces to

dinJ,
(20,4 C)3,(2)]5, = O dind@ 1 _ ¢ for L > 0o (64)
dinz %
with the positivity constraint
J,(2>0 forO< z < 7. (65)

Now the criterion 64) and ©5) is further evaluated. Let us introduce, in particular,

the function

dind,(29 z 342
dinz 3@

where the last identity results from the general relatlp) = J,-1(2) —v J,(2)/z

between Bessel functions, (z) solves the first order nonlinear equation

f,(2) := v, (66)

2 £2.n 2
aio="""2"E  fo=u (67)
[ f,(2) is related to the functiohg(x) from Sectiord by f,(z) = —2hg(Xx) and the

relation 62) betweerx andz.] zy is now determined by the constrai®s) and

We remark that thé.* — oo solutions in Fig.3 have actually been generated by
varyingv andz in (66) and calculatingC from (68). The lines in Fig3 are lines
of constantA andv. The relation of these parameters to the paraméiers, C)

is given in 62).

For the further analytical progress, it is easy to realize either fiddamamowitz
and Steguri1964) or from a construction of the flow o6{), that f,(z) is a mono-
tonically decreasing function of. Since|C| < v by construction, the limiting
values forzy are

—C=vo2=0 C=0sz=j,>v, C=vez=j,_11. (69)

with j;’l and j, 1 the first zero of)/(z) and J, (z) for positivez.
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In the limitszy « 1 andzy > 1, several asymptotic expansions can be given.
Forzz = 4A <« 1, we get either fromg7) or from Abramowitz and Stegu(1964)
2 4 6
e, % z B Z
214+v) 81+v)22+v) 161+ v)32+v)B+v)

+ 0(2D).

(70)
If also|C| « 1, we get from expressiorr() in lowest order thaB = A — C. So
B also has to be small, ih andC are small, cf. Fig3. Further expansion with
B=A—C+ O(A+ C)?yields

BA-2C)(2A-C) n 143A3% — 208A%C + 93AC? — 12C3
2 12

+ O(AYH + O(A%C) + --- + O(CH for A< 1 and |C|« 1

B=A-C-

(71)
The expansion off0) for A « 1 and an arbitrary negative value-efC = |C| >
4ABis

_ e 2A
C1+ICI @A+IChi2+ICh

+ O(A?)

C|(1+|C
for A« 1, C<0 and A<<W.

(72)
For A <« 1 andC > +/4AB, there is no solution with positivB.

Forzg = 4A > 1, alsov > 1 because of the boury < j,_11 = O(v)
from (69). Expressing the Bessel functidi(z) for argumentzg = v — x(v/2)3
by Airy functions Ai(x) yields the large> expansion

p\ 3 C
e S ),

wherex[C/v??] is defined implicitly by

Cc _ 13 dInAi(x)

v2/3 dx (74)

andw(x) = Ai(x) is the solution of aw = Xw with limy_, o, w(x) = 0.

There are two limiting values fox, namelyx ~ —1.0 for |C| « v%3 and
x ~ —2.3 for C > v%3. [For|C| > v%® andC < 0, z; eventually becomes so
small that the ansatZ8) loses its validity.] Insertion of§2) into (73) for a fixed
value ofx results in

c? X

1
BZl‘ﬂ*M“’(W) forA> 1 and C=>0. (75



1112 U. Ebertet al.

Note thatC can become large, while2.3 < x < —1.0forallC > 0.

We finally remark that fol.* > 1, the expansione@) for 22 = 4A - « 1
inserted into the general relatioBQ) yields the expansion about the lim&4) of
L* —> o0

(zd, + C) J,(2) —(Aet) 7 (v+C)
(2d;+C) Yo (D) | yevar (v—C)T(w+1)T(v)

+O(A gyt (76)

The asymptotic expansiongl), (72) and (/5) provide simple approximations to
the surface shown in Fi@.

7. BACK TO THE ORIGINAL PARAMETERS

Let us return from the dimensionless variabkesB, C and L defined in (6)
to the original variables. These are the death ¢atbe parametera and« in the
growth rate 9), the sinking velocity and the specific light absorption coefficiént
of the phytoplankton, and the incident light intensiify, the background turbidity
Kbg, the diffusion constand and the deptiH of the water basin.

7.1. Critical diffusion and water-column depth. We now study the effect of the
diffusion constanD on the phase transition. It was absorbed into the dimensionless
parameter@ andC. Hence we now define

al® v
and Co=CD=
angg 0

Ay = AD = (77)

aKbg.

The parametergy, Co and D all have the physical dimension of a diffusion con-
stant. A variation of the parameté& for fixed light intensityl;, amounts to a
variation of A andC with fixed value ofB and fixed ratio

_C_Co_vaKbg_vaKbg 5
A A ald '

14 (78)

Possible phase transition scenarios as a function of diffusion conStamtd
water depthL where all other parameters are fixed, will be presented inF-ifn
particular, we will discuss the ca&= 0.5 as an example, i.e., the case when the
incident light intensity is related to the growth and death ratedike0.5 al.,.

Figure5 can be derived by a simple projection of F&. To illustrate and ex-
plain this procedure, we introduce Figjas an intermediate step. The solid curves
in Fig. 4 represent the data of Fig.for B = 0.5 as level curves of constaht
in the (A, C) plane; the fat solid curve marks the divergence of the maximal water
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B=05
) . . —_—

0 10 20 30 40 50 60 70
A

Figure 4. The solid curves in thg, C)-plane are level curves of constdnt(A, B, C)

for B = 0.5. They present the data of Fig(c). The fat solid curve denotds® — oo,

the thin solid curved* = 1.6, 1.1 and 1. For any combinatigé, C) abovethe fat solid
curve, phytoplankton blooms will exist independent of water-column depth. Conversely,
for any combinatior{A, C) belowthe fat solid curve, phytoplankton blooms can exist only

if water-column depth is less thdn* (A, B, C). The three straight dashed lines starting
at the origin are lines of fixed ratip = C/A with the valuesy = —0.05, 0.1 and 0.15.
Variation along these dashed lines implies that only the diffusion con&astvaried,
whereas all other model parameters are kept constant.

depthL*, while the thin solid curves denote finite valued.¢f The straight dashed
lines starting from the origin are lines of constanwith the valuesy = —0.05

for a buoyant phytoplankton species and= 0.1 and 015 for two species with
different sinking rates. These three dashed lines represent three different possible
behaviours: first, all lines witlk < 0 (buoyant or neutrally buoyant species) in-
tersect with theL* — oo-curve precisely once. This intersection point indicates
the value of the turbulent diffusion constant at which the maximal water-column
depthL* diverges. Hence, for buoyant or neutrally buoyant phytoplankton, there
is precisely one critical value of the turbulent diffusion coefficient. Second, the
y = 0.1-line intersects twice with the* — oo-curve. This indicates that there

is a critical value of the diffusion constant at which the maximal water-column
depth diverges, and another value»f below which the maximal water-column
depth again becomes bounded. Third, the= 0.15-line does not intersect with
theL* — oo-curve at all. In this case, there is no critical valuenfrather the
maximal water-column depth is bounded for all value®ofThus, for sinking phy-
toplankton, there are either two critical values of the turbulent diffusion constant
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Figure 5. The phase boundary of phytoplankton bloom development, plotted as a function
of water-column depth = aKpg H and scaled diffusion constabt/ Ag. Phytoplankton
bloom always exists for sufficiently shallow water coluninsg 1. The phase boundary

in the plane ofL andD/Ag depends orB andy. Here it is shown foB = 0.5 and three
values ofy. The plots are projections of Fig.(with Fig. 4 as an intermediate step) onto
different plankton species with = —0.05 in (a),y = 0.1 in (b) andy = 0.15in (c). We
indicated the asymptotic limits of critical depthy, at D — oo, compensation depthg

atD — 0, and maximal and minimal critical diffusioBmax and Diyjn atL* — oo.

or none at all. To be more precise, between 0.1 and 0.15, thene-I;a tangent
to theL* — oo-curve, where the two intersection points merge and disappear. We
denote this particular value pfasy.(B).

Figure5 shows the phase boundary of phytoplankton bloom development as a
function of the water-column depth = «K,yH and the scaled diffusion constant
D/ Ag. It should be remarked that these plots depend on the two parameters
B only, and that the same valuesjofand B as in Fig.4 have been chosen. The
projection procedure from Figl to Fig. 5 is as follows: theA-axis of Fig.4 is
inverted to give the AA = D/ Ag-axis of Fig.5. The values oL *(A, B, C) along
a line of constany andB in Fig. 4 are plotted on thé& -axis of Fig.5.

The values ofy have been chosen to illustrate the three different possible forms
of the (D, L) diagrams. Figur&(a) withy = —0.05 is representative for all non-
positive values of, i.e., for buoyant or neutrally buoyant phytoplankton. As can
be seenin Fig4, a line of constany intersects with each value af exactly once.
Hence the maximal water depth is a monotonically decreasing function D,
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and there is only one critical value &f for L* — oo, called the maximal critical
diffusion Dmayx. FoOr sinking phytoplankton, i.e., for > 0, there are two possibil-
ities. Figure5(b) shows the data of Figk projected ontgy = 0.1. Here there are
two critical values oD for L* — oco. We will call these two values the minimal
and the maximal critical diffusionDmin and Dmay, respectively. For all values of
D betweenDpmi, and Diax, @ bounded maximal water-column depth does not exist,
and, hence, phytoplankton blooms can develop in any water-column depth. This
figure is representative for all positiyesmaller than/(B). Figure5(c) shows the
data fory = 0.15, which implies thay is larger than/.(B). In this case, there is
no critical value ofD for L* — oc. That is, there is always a bounded maximal
water-column depth *, whatever the value of the diffusion coefficiebt

We note that the limit valué ., for D — oo is the same in all three panels in
Fig. 5. This can be understood immediately from Fgsince it corresponds to
the value ofL*(A, B, C) in the point(A, C) — (0, 0) that is reached by al-
lines. Also the limit valueLo for D — 0 is the same for all positive values pf
It corresponds to the saturation valueldf in Fig. 4 for large A and fixed ratio
y=C/A>0.

In the remainder of this section, we will derive analytical results for the critical
valuesDpax and Dy, in the limit L* — oo, and for the critical valuekg andL o,
in the limits of D — 0 andD — oco. We also present asymptotic expansions about
these limits.

7.2. Compensation depth: the limiD — 0. What happens if turbulent diffu-
sion is negligibly small? In this case, the motion of phytoplankton is governed
by buoyancy or sinking only. Hence, in the long run, buoyant phytoplankton will
completely float at the surface, so the depth of the water column below it does not
play any role, if only at the surface the growth rate is larger than the death rate.
Thus, fory < 0, there is phytoplankton bloom development when&et 1, and
hence there is no critical water-column depthif diffusion is low [Fig. 5(a)].

In contrast, sinking phytoplankton will sink to the bottom of the water column if
diffusion is negligibly small, and hence they will survive only if the reproduction
rate at the bottom overcomes the death rate. Thus, for sinking phytoplankton, there
always exists a maximal water-column depth at low diffusion, defined earlier as the
compensation depthg [Fig. 5(b) and5(c)]. In terms of equation®j and ({6), the
compensation depthy = o KpgHo is given by

g(li, ey =0 «— LoB)=—-InB  fory >0, D=0. (79)

The calculation presented in this subsection reproduces this result and extends it
with a smallD expansion:

3
oo 12e0f2)) vaee e
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1D 1 [/D\? D\?
@L*:—InB+——+—(—) +O<—) fory >0, D—0.
y Ao 292 \ Ag Ao g

In the remainder of the section, we will derive this result fr@t) @nd 62).
v andz, are expressed bgo, B, y = Co/Ap > 0 andD as

A [ DaB  [aA

Hence for fixedAq, B andy > 0 and forD — 0, we always have > 1 and
Zo < v. Furthermorez; = 75 e /2 < z,. Therefore for the evaluation of the
Bessel functions inq1), Debye’s asymptotic expansions can be used:

evx 2 ug(t) —2ex ( 20 uk(t) )
J, ~ 1 — ), Y, ~ 1 ,
(@ V2 vt ( * Z v ) @ V2 vt * é (—v)K

k=1

22 —1/2 v 2
t= (1 — —) , x=t— arcosh; T 7” + 0O(). (82)

Theu(t) are polynomials of degreek3n t, that can be found idbramowitz and
Stegun(1964). Insertion of these expansions into the determinédj} [eads to
the prefactore’*@)—x@)) ~ (z,/75)" = —vL*/2 gnde v (@) —x(@1) ~ @'L/2
For any finiteL* andv — oo, these factors dominate the expressions6ii).(
Further evaluation similar t&g), (64) shows that in the limit of vanishing diffusion
constant and fo€ > 0, L* as a function ofA, B andC is determined by

(Zdz +0) YU(Z)|21 =0. (83)

This equation has a solution f@ — 0 only if C > 0. Evaluating 83) further
with the help of 82) gives a functional relation between the three quantities

B =1 5 1 D and AB DB
= _ = —= — €E = — = — ——
B C rhA Cz  Agy?

since the parameters iB83) can be written as

1 Jite 1
SR e Y < b (85)
) ) v 1+ €er

Evaluating 83) up to orderD?, the D-expansion of is . = § + O(D?). Insertion
of (84) yields our final result&0).

B
=5 —,
14
(84)
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7.3. Critical depth: the limit D - oo. What happens if mixing by turbulent
diffusion becomes infinitely fast? In this case, the phytoplankton is homoge-
neously distributed through the whole water column, and no spatial structures re-
main. Hence the critical depth,, = «KygH as defined bysverdrup(1953 is
reached if the growth rate integrated over the whole column balances the death rate
for constant phytoplankton density
Hoo 1—ete
/ g(li, e Xee%Yds=0 & B=—"—"— for D — . (86)
0 I—oo

Here the critical depth ., = L. (B) is the positive solution of the above equation.
In the remainder of this subsection, we will expand in the small paramgi@r 1
about the asymptotic behaviour fBr — oo. The result of this calculation can be
written as

2
L* = Lu(B) + % L1(B.y) + (%) La(B.y) + - (87)

wherelL  is given by

Lo
L1(B,y) = 6B_1+BLy) - [By (BLw —2(1—B))

+ (2B2L2, + 3B(3B — 2)L, + 6(2B — 1)(B — 1))]. (88)

Let us first discuss the consistency and implications of this result: if the death
rate at the surface almost equals the growth rate, i.eB if 1, thenlL, =
2(1— B) + O(1 — B)? is small and the expansioB7) reproduces the earlier re-
sult 48). If the death rate at the surface is negligible, i.e.Bif{ 0, then the
water depth diverges like,, = 1/B + O(e~/B/B). Furthermore we remark that
L. > Lo from (79) for all B andC > 0: that is, the critical depth is always larger
than the compensation depth since phytoplankton distributed over the whole water
column has better reproduction conditions than phytoplankton at the bottom.

The results §6)—(88) are now derived from the determinagtlf. For D — oo,
the parameterg, v andC are small. Expressed in terms of the small parameter
zZ = 4A = 4Ao/D and the fixed parameteps= Co/ Ao, B andL*, they read

Z=e"2%,  C=yz/4 V=BZ+y’%/16  (89)
Sincez; < 7y « 1, the determinan®B(l) can now be evaluated with the asymptotic
expansionsi8) and 69):
vL*/2 —vL*/2

Py (ZO) P-v (Zl) +

1% % 1% 4

A=—

P-v (ZO) Py (Zl)

oo

@4+ v+ 0O)(—Z2/4)"
P@) =) Mok

(90)

n=0
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A short consideration shows thati—v) = A(v), SOA is actually a function o2,
and therefore the expansion aforders in powers of AD, not 1/+/D. With the
ansatz 87) and

1 A1 Ao i|
_ Ag+ — + —= 4+ .-, 91
WTD«/B|: °"p D? 1)

the Ly can be solved hierarchically fromy = 0 for all k. SinceAq = 0 for
1—elt* _BlLy =0, (92)

the result 86) for L, follows immediately.A; = O determined. ,, the result 88)
was given earlier.

7.4. Critical diffusion: the limit L* — oo. The case of diverging water depth
L* — oo as afunction ofp, B andC was already analysed in detail in Sect®&
in general, the relation betwee) B andC for infinite water depth is given by

J,_ .
ZOT;O()Z") —v—C with v=+v4AB+C2 and 2z, = V4A.
' (93)

The critical diffusionD as a function ofAg, B and Cy results from replacingA

by Ag/D andC by Co/D = y Ag/D. The identity 93) yields both the maximal

critical diffusion Dax @and the minimal critical diffusio,, if they exist. How-

ever, the relation is implicit, and explicit predictions for the critical diffusion can

only be derived by asymptotic expansions valid in some part of parameter space.

Depending on the values & andy = Cy/Ag, these expansions take different

forms. We only consider a few special cases with the following explicit results:
Forz; = 4A¢/D < 1, equation 93) is approximated by equatior’@). If,

furthermore B « 1 andy of order unity, the diffusion constant according ¥

diverges like

Dnax _1-y (3=2y)@—y) 35-99 +82°—21y°
A B 21-y) 12(1 - y)*
for B« 1 and y <0(@. (94)

+ O(B?

This is an explicit result for the maximal critical diffusi@axin the limit of small
death rateB.

For buoyant phytoplankton with < 0 and larggy |, another approximation for
the upper critical diffusiorDpax can be derived from7Q):

Dmax , , 1—B (1—-B)3 1
n VTB TBA-BR O(?)

for y <0 and |y| > max4(1— B), B/(1— B)].(95)
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For weakly sinking plankton witlr > 0 andy « 2+/1 — B, the minimal critical
diffusion Dy is, according to75),

Drmin y? y 2/3 ,
2o :4(1—8)(1+O(—(1—B)2) ) for0 <y « (1—B)“. (96)

This last approximation reproduces the resulRdéy et al. (1949 andShigesada
and Okubo(1981) thatD = v?/(4 g(lin)) + - - - and restricts its validity toy <«
(1-B)2

8. SUMMARY AND CONCLUSIONS

8.1. Theoretical summary. We have analysed the critical conditions for phyto-
plankton bloom development. Our results are particularly relevant for bloom de-
velopment in eutrophic waters, as the model assumes that phytoplankton growth is
determined by light availability only, whereas all nutrients are assumed to be avail-
able in ample supply. What distinguishes our analysis from many previous anal-
yses of light-limited phytoplankton dynamickdk, 1952 Sverdrup 1953 Evers

1991 Plattet al,, 1991, Huisman 1999 Huismanet al, 19993 is that we have

here specifically focussed on incomplete mixing of phytoplank&higesada and
Okubq 1987, Ishii and Takagil982 Totarq 1989 Huismanet al., 1999hc). This

paper confirms the recent numerical discoveryHoismanet al. (1999hc) of a
critical threshold value for the vertical turbulent diffusion coefficient by means of
rigorous mathematical analysis. Furthermore, the paper extends the investigation
to sinking and buoyant phytoplankton. Using dimensional analysis, the physical
parameters like incident light intensity, background turbidity, water-column depth,
maximal growth rate of phytoplankton, and so on reduce to the four dimensionless
parameterg A, B, C, L) defined in equation1). These four parameters estab-
lish scaling rules and similarity laws between different phytoplankton—water—light-
systems. A transformation from dimensionless parameters back to physical param-
eters allows a straightforward interpretation of the conditions for phytoplankton
bloom development in terms of measurable species traits and environmental con-
ditions.

The full four-dimensional parameter space of phytoplankton bloom development
cannot be displayed in a single three-dimensional plot. Therefore two different pro-
jections onto three-dimensional parameter spaces are represented 2aRig_3.

In the different panels of Fig, the maximal water-column depthi(A, B, C) is
shown as a function oA andC, and the panels are distinguished by different fixed
values ofB. Figure3 shows the surface in the three-dimensional parameter space
(A, B, C), where the maximal water-column depth diverggsA, B, C) — oo.

The water-column depth can be treated as being infinite, from the perspective
of phytoplankton bloom development, lif > 1/v in dimensionless parameters,
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orif H > D/+/4¢D + v2 in physical parameters. Various analytical results and
asymptotic expansions for the phase boundaries of phytoplankton bloom develop-
ment, in terms of the dimensionless parameters, are derived in Séction

In Section?, these results are transformed back to physical parameters, and the
complete scenario of critical diffusion vs critical depth is visualized in Big.
as well as evaluated analytically. We emphasize that the three different types of
diagrams of critical depth vs critical diffusion in Fi§.are distinguished by two
parameters only, namel andy. The parameteB = ¢/(al$) is the ratio be-
tween death and reproduction rate of the phytoplankton at the surface, and
vaKpg/(@l®) is the ratio between sinking velocity times light absorption coeffi-
cient and the reproduction rate at the surface.

Our analysis was restricted to growth equations in the fornép&fid ©). This
choice kept the dimensionless parameter space four-dimensional, and allowed our
transformation to Bessel functions and the use of their tabulated properties. An
analysis of more complex growth equations in the form®faf (8) would add an
additional 10th physical parametgmwhich would make the dimensionless param-
eter space five-dimensional. In that case, our four-dimensional results with
would apply to low light conditions onlyl(, <« 1/c, to be precise), where tiggl )
function is still in its linear range. However, the nonlinear behavioug @9 for
larger| can be mimicked by an exponentOa < 1 in (9), and this form ofg(l)
is fully covered by our analysis.

8.2. General summary and conclusionsFrom a biological perspective, we
found that the conditions for bloom development depend quite sensitively on the
specific weight and hence on the vertical velocity of the phytoplankton species
concerned. Our results can be characterized as follows:

e Bloom conditions for positively buoyant phytoplankton and neutrally buoyant
phytoplankton are summarized in Fig(a). They can develop blooms in highly
turbulent waters if the water-column depth is less than the critical d&y#rdrup
1953. They can develop blooms in waters with an intermediate or low turbulent
diffusion independent of water-column depth;

e Bloom conditions for sinking phytoplankton with a low to moderate sinking ve-
locity are summarized in Figh(b). They can develop blooms in highly turbulent
waters if the water-column depth is less than the critical depth. Also, they can
develop blooms in quiet waters if the water-column depth is less than the compen-
sation depth. Finally, in waters where turbulent diffusion has a value between the
minimal and the maximal turbulent diffusion, they can develop blooms indepen-
dent of water-column depth;

e Bloom conditions for sinking phytoplankton with a high sinking velocity are
summarized in Fig5(c). They cannot develop blooms in deep waters. They can
develop blooms in turbulent shallow waters if the water-column depth is less than
the critical depth, and in quiet shallow waters if the water column depth is less than
the compensation depth.
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Thus, compared to previous work that studied incomplete mixing of neutrally
buoyant planktonHuismanet al, 1999hc), this paper shows that sinking phy-
toplankton species have either two or no critical threshold values for the vertical
turbulent diffusion coefficient [Figh(b) and5(c)]. In contrast, positively buoyant
and neutrally buoyant phytoplankton always have one critical threshold value for
the vertical turbulent diffusion coefficient, since a minimal turbulent diffusbag,
does not exist for buoyant species [Figa)].

Intuitively, these various patterns can be explained by the light requirements of
phytoplankton and the position they can obtain in the vertical light gradient. Nei-
ther buoyant nor sinking phytoplankton species can persist if vigorous mixing ex-
poses the phytoplankton population to the low depth-averaged light conditions of
deep waters [upper right corner in Fig(a)-5(c)]. Phytoplankton species with
a low sinking velocity cannot persist in deep waters if turbulent diffusion is too
low to prevent sinking losses of phytoplankton into the dark [lower right corner in
Fig. 5(b) and5(c)], but these phytoplankton species may persist if turbulent diffu-
sion has intermediate values, because growth rates may then overcome both mixing
rates and sinking losses. Phytoplankton species with a high sinking speed cannot
persist in deep waters at all, independent of turbulence, because their growth rate
is insufficient to compensate for the sinking losses [B(g)].

These qualitative considerations together with depth profiles, with $dmke)-
plots of the type of Figsh(b) and5(c) and with population size data between the
phase boundaries can be founddnismanet al. (2001 or 2002

Many empirical studies confirm the importance of vertical mixing processes for
phytoplankton bloom developmeméynoldset al, 1983 Jones and Gowei99Q
Cloern 1991 Berman and Shteinmai998. One interesting example of an in-
depth study supporting the theory comes from Lake Nieuwe Meer, a deep and
eutrophic lake in The Netherland¥igseret al., 1996ab). In former days, the
phytoplankton of Lake Nieuwe Meer was dominatedMicrocystis a buoyant
cyanobacterial species that can form toxic algal blooms. Atrtificial increase of ver-
tical turbulent diffusion in the lake, by means of large-scale air bubbling, led to the
replacement of buoyamdlicrocystisby sinking phytoplankton species, especially
several diatoms and the green ajzenedesmuy¥isseret al, 19963. Consistent
with these field observations, laboratory experiments \Bitenedesmushowed
that this sinking species is lost from the water column if turbulent diffusion is too
low (Visseret al,, 19960. Hence, this in-depth study underscores the idea that an
increased turbulent mixing of the water column may lead to shifts in species com-
position from buoyant species towards sinking phytoplankton species, in line with
the theory developed here.

As a general message, our model analysis and the given empirical example
illustrate that incomplete mixing has a major impact on phytoplankton dynamics.
Although incorporation of mixing processes in plankton models is gradually
becoming more popular, there are still many models in plankton ecology and ocea-
nography that lack information on the turbulence structure of the water column.
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Numerous models, sometimes even used as policy tools in water management,
simply assume uniform mixing of the phytoplankton populations within the upper
water column. Our mathematical analysis suggests that such simplified model ap-
proaches, that neglect the turbulence structure of the water column, might seriously
underestimate opportunities for phytoplankton bloom development.
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