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Comment on ‘‘Spontaneous Branching of Anode-
Directed Streamers between Planar Electrodes’’

Arrayás, Ebert, and Hundsdorfer [1] (see also [2,3])
describe a 2D numerical simulation of branching of a
negative streamer between parallel-plate electrodes. The
mechanism of branching is identified as Laplacian insta-
bility of the streamer tip. The branching, however, may be
caused by numerical instability. Besides, the model [1]
does not take into account photoionization, which dra-
matically changes the physics of streamer propagation.
This Comment aims to indicate a possible source of
numerical instability of the algorithm [1] and to empha-
size the role of photoionization in streamer dynamics.

Unlike classical hydrodynamics, the simulation of a
plasma with self-consistent electric field requires that the
numerical scheme satisfies a ‘‘consistency’’ condition.
The model [1] contains continuity equations for electrons
and ions coupled by the Poisson equation for the electric
field. From this system it immediately follows that the
total current is conserved:
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where E is electric field and j is electron flux.
Consistency means that finite-difference equations

must conserve total current on a computational grid.
Equation (1) shows that such schemes are constructed
using essentially the same finite-difference expressions
for divergence r �E [4] and r � j in the Poisson and
continuity equations, respectively (as in, e.g., [5–7]).
This is guaranteed if the densities and potential are given
at the nodes, whereas components of the field and the
electron flux are calculated at the half-integer points (on
a staggered grid). Conversely, the total current is not
conserved if different approximations of r � E and r � j
are used (as in [8,9]).

The third-order upwind-biased scheme used in [1]
requires the values of electron flux j � �Dr�� �E at
the nodes (here notations and dimensionless variables are
those of [1]). For that reason it seems natural to calculate
the field also at the nodes. In that case, however, Eq. (1) on
a finite-difference level is not fulfilled.

Nonconservation of total current may lead to an un-
physical instability of streamer tip. This numerical insta-
bility is particularly dangerous in large fields due to an
exponential collisional source term in the continuity
equations. Therefore, it would be very desirable for the
authors of [1] to publish these details of their numerical
model.

The standard theory of the Laplacian instability (see,
e.g., [10]) tells that a child filament has no characteristic
radius. However, a characteristic scale may arise due to
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photoionization, which is not accounted for in [1]. Photo-
ionization creates precursor electrons ahead of the tip and
dramatically changes the physics of streamer propagation
[8]: the streamer moves faster than the local drift velocity
of electrons and Firsov’s theory is not valid. 2D simula-
tion of a positive streamer in air with photoionization
shows that in a strong uniform field the streamer head
rapidly expands in the radial direction and retains its form
[11], whereas in a nonuniform field it exhibits 2D
‘‘branching’’ [12]. The characteristic radius of a child
filament appears to be proportional to the absorption
length of the photoionizing radiation.

The crucial test for verification of the branching
mechanism would, therefore, be a fully 3D simulation
of the streamer using a consistent numerical scheme and
taking into account the photoionization source of the
charged particles.
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