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Abstract. - A single self-repelling polymer chain embedded in (2 < d S 4)-dimensional space and 
moving in a quenched short-ranged random potential is analysed with the help of the dynamical 
renormalization group. The renormalization group flow of the time scale is discussed for the first 
time. The results allow for the evaluation of the mean-squared displacement of the centre of mass 
in the limit of weak disorder. In contrast to the linear time dependence of a Markovian process, we 
find a strong acceleration of the motion on short time scales, represented by some anomalous 
chain-length-dependent power law. For long times we recover normal diffusion with some 
drastically reduced chain-lengthdependent diffusion coefficient. 

The behaviour of long-isolated-chain molecules in a random environment poses a 
challenging problem, which has found some interest recently. Most work [l, 21 concentrates on 
static properties like the size or the free energy of a single chain. Investigations of dynamical 
properties[2-4] are rare, even though these properties are most strongly affected by a 
spatially random (but time-independent, i.e. <<quenched.) external potential V. To explain the 
relevance of an analysis of dynamical phenomena, let us recall that the partition function of a 
finite chain per unit volume 

1 Z[V] = lim -X[V, Sa] 
D - t m  Q 

is self-averaging. (Sa is the volume of the embedding space.) This is a strict consequence of the 
ergodic theorem. In standard terms it implies that the quenched average, i.e. the average over 
F = - lnX[VI, is equivalent to the annealed average, i.e. the average over 2. Now, the 
annealed average has been analysed in great detail[5]. It has been found that for weakly 
fluctuating potentials correlated over some finite distance, only the second moment vo of the 
local potential fluctuations is relevant. The only effect of disorder consists in reducing the 
excluded-volume constant uo , which measures the self-repulsion of chain segments. uo is to be 
replaced by wo = uo - vo. This argument holds for all quantities which are defined as an 
average over the (infinite) volume. For instance, the end-to-end distance RE of a chain of 
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polymerization index (4engthn) No behaves as Ri  
irrespective of disorder, as long as wo stays positive. 

- N? , v = 0.588 in three dimensions, 
N o +  II 

To outwit this argument, one either 

i) increases the disorder so that wo becomes negative and the polymer chain collapses, 

ii) fxes the position of the chain in the volume, thus breaking ergodicity. 
or 

Both possibilities have been discussed to some extent, but we do not expect the result to be 
universal. They will depend on the type of disorder or the polymer model used. 

In contrast, in dynamics we find interesting effects of weak disorder also for freely moving 
chains embedded in an infinite volume. These effects are new, universal and non-trivial. 
Consider, for instance, the diffusion coefficient D(No). In the absence of a random potential, the 
polymer coil diffuses like a Brownian particle of the same mass, the diffusion coefficient being 
given as 

Do(No) = 2 d E  , (2 )  NO 
where yo is some microscopic friction coefficient and d denotes the dimension of the system. 
The self-repulsion alone does not affect the centre-of-mass motion. (We ignore hydrodynamic 
interactions.) On the other hand, diffusion is clearly slowed down by a random external 
potential. The effect should be more pronounced for longer chains, since these are more 
strongly bound to favourable regions of the potential. Indeed, a rough hopping-type model 
including the statistics of large potential fluctuations [3] suggests an exponential decrease of 
D(N,), proportional to exp [ - const voN,2 - dI. 

In this communication we report the results of a dynamical renormalization group (RG) 
calculation of the centre-of-mass motion, discussing both short- and long-time scales. We use 
the standard model of polymer dynamics (see [2], for instance). Its equilibrium properties are 
governed by the dimensionless effective potential 

The segment coordinates rj = rj(t)  fx the polymer configuration. The first part of 5%- 
incorporates chain connectedness, involving the microscopic length l,, which determines the 
average size of the segments. The second part represents the excluded-volume interaction of 
strength uo > 0. The last part is a one-body potential, which is taken to be a Gaussian- 
distributed random variable of second moment V(r) V(r ') = v0 # 6d (r - r '). (The bar denotes 
averaging over disorder.) Dynamics is incorporated via the Langevin equation 

where the noise tje ( t )  is Gaussian distributed with second moment 2y0 +j ,  6,. &t - t '1. Except 
for possible long-range forces due to solvent effects, or long-range correlations in the potential 
distribution, which we ignore, this model contains all terms which near d = 4 are relevant or 
marginal in the RG sense. In the limit of large N o ,  the results can therefore be expected to be 
universal, provided the model is renormalizable. We should note, however, that in any physical 
realization of three-dimensional quenched disorder the connectedness of the disordered 
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medium introduces long-range correlations, which might limit the applicability of our 
results. 

To evaluate the model we use standard methods of critical dynamics as derived in ref. [61 
and applied to polymer dynamics in ref. [7]. We calculate the Green’s functions 

giving the time dependence of the correlations among the centre-of-mass (t) of the same 
(a = b)  or two different (a # b) polymers. (As usual the pointed brackets stand for the average 
over the random force tj,(t), and the time interval is extended to - WJ < z < CO so that the 
system equilibrates before the first measurement occurring at  z = 0.) The free theory (u0 = 
= v0 = 0) is easily solved by introducing Rouse coordinates. We then perform perturbation 
theory in u0 and vo up to one-loop order. To exemplify the typical structure we give the 
expression for the centre-of-mass motion 

where 
+ 112 

F(r) = dx dy[z + (x - y) t A(z, x - y) + A(z, x + y>l-‘d + 2)12 , (7) 
- 112 

” 

A(z, x) = dz’ cos (xkx) exp [ - n 2 k 2  2’/21, (8) 
k = l  

0 

and T = yo t / N t  2 2 .  The function A(z, x) contains the effect of the internal relaxation modes of the 
chain and x or y fix the position of the interacting segments j ,  j ’  along the chain (x = j / N o  - 1/2, 
etc.). The detailed derivation of such one-loop (and some two-loop) results will be given 
elsewhere. 

The result (6) exhibits the typical problems of the unrenormalized perturbation theory: the 
one-loop correction is proportional to Ni4 - d ) / 2  and thus diverges in the limit of long chains. This 
problem can be solved by renormalization which amounts to studying the behaviour of the 
theory under a change of the microscopic length scale. We map the original theory defined by 
l o ,  WO = uo - WO , WO, N O ,  yo to a renormalized counterpart ZR , W R  , WR , NR , yR, constructed 
such that all macroscopic observables stay invariant. The scale invariance of the theory allows 
us to determine the change of wR, w R ,  NR , yR under an infinitesimal change of lR . These <<RG 
equations. can be integrated from lR - l o ,  where wR - wo etc. to lR - R E ,  where the 
renormalized chain essentially consists of a single segment: NR = 1. With NR = 1, the 
coefficients of the renormalized perturbation theory are of order 1, and the problem is solved, 
provided that integrating the flow equations up to ZR - R E  yields renormalized couplings which 
are not too large. This in particular is guaranteed if the couplings for ZR / lo  >> 1 tend to some 
small fured-point value. 

Since renormalization of polymer theory has been extensively discussed in the literature 
(see, for instance, [8], we omit all technical details except for stating that we use the method of 
dimensional regularization and minimal subtraction, implying the expansion of all quantities in 
powers of E = 4 - d. With Gab (q, t ) ,  a, b = 1,2, we have sufficient observables to uniquely 
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extract the renormalization of all parameters. An important difference to the static problem 
should be noted. As pointed out above the static theory involves only the combination wo = 
= uo - wo. In contrast, in dynamics uo and wo can be disentangled by their different time 
dependence. The self-repulsion uo Jd (ri (t) - rj ( t ) )  is strictly local in time, whereas the 
quenched average over the random potential yields an effective attraction which is strictly 
independent of time, involving a factor Jdt dt ' Jd (rj ( t )  - ri (t ')). This allows for a unique 
derivation of the flow equations for wR, wR and should be contrasted to a previous attempt [2] to 
calculate the diffusion coefficient, where the flow of the couplings was deduced from a static 
<<replica. approach, without exhibiting a relation of replica theory to the dynamic problems. 
Still, the dynamical method happens to reproduce the replica equations. 

The RG equations suffer from the lack of a stable fixed point for VR : for ZR /lo >> 1, VR runs 
away to infinity. As a result, dynamical correlations do not obey standard power laws like 
RE - N,'. Presumably due to this result, the approach [2] has not been pursued further. 
However, even though this feature keeps us from treating the strong disorder limit wo > 0, 
No + co, i.e. wR -+ a, we still can use renormalized perturbation theory to get non-trivial 
results in the region wR << 1. 

In our further discussion we set NR = 1, and we restrict ourselves to the fixed point wR = w * , 
which governs the polymer chain in the excluded-volume limit. The well-known static result 
ZR = 6 (bNo)" follows, where b is some non-universal constant. The RG flow of the disorder coupling 
takes the form 

where V = ~ / 4  + 0(c2), w12 = - ~ / 2  + O ( E ~ ) ,  E = 4 - d. The non-universal constant c relates 
wR (IR = &) to vo. Note that the same result follows from the replica formalism [2]. 

Some comments on eq. (9) are appropriate: 

i) To leading order in E the identity - vul2 = 2 - vd = a is valid. We believe that this 
result holds generally: a / v  is the Hausdorff dimension of the set of points common to two 
uncorrelated self-avoiding walks. The expansion in the (weak) interaction among the walks 
should thus proceed in powers of wo No". It is amusing to note that the occurrence of a is 
consistent with the Harris criterion [9], though the argument is completely different. 

ii) wR depends on wo , No only via the combination W~N,-,-'"~* = woN,". It may be shown that 
this holds to all orders in w R ,  provided wo << 1. 

iii) Equation (9) is valid only for w R < < l ,  implying the limit of weak disorder: 
cwo (bN0)' << 1. It does not imply that we may neglect the denominator on the r.h.s. In the sense 
of the &-expansion the range of wR is bounded by wR - E ,  implying w R / V  = O(1). 

The completely new aspect of the present problem is the renormalization of yo.  We find the 
RG flow 

dt(2~t)- ' '~exp[ - 1/2tl = 3.587 is the remainder of the short 
0 

segment-short time-singularity of the Rouse modes, which can be isolated from eq. (6) by a 
Poisson transform on A(z,z) .  Equation (10) shows that yR decreases rapidly with 
increasing v R .  
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The renormalized counterpart of eq. (6) to first order of the E-expansion reads 

where t = YR t / l i .  For t - 1 the chain has moved a distance of the order of its mean-squared 
end-end distance R i  - 2dZi. This time also coincides with the longest internal relaxation 
time. 

Evaluating eq. (11) for i+ 03, we find normal diffusion (R2(t)  - t) with the diffusion 
coefficient 

As a result D(No)/D0(No) only depends on vR = v ~ ( v ~ N ; ) .  If evaluated for d = 3, in the 
interval 0 S cv, (bNo>o S 0.2, corresponding to 0 S wR S 1, D(No)/Do (No)  almost linearly drops 
down from 1 to 0.18. So at least for the initial decrease of the diffusion constant, we do not 
recover the exponential law of ref. [3]. 

The first-order term of the short-time behaviour of eq. (11) is dominated by a t In 
contribution. Following the standard philosophy of exponentiating logarithmic singularities, 
we find the following equivalent form: 

So on times t << 1, the chain on the average moves faster than without disorder, the diffusion 
being anomalous. In fig. 1 we plot r 2  = R 2  (t, N0)/(2 dli) as a function of T = Do (NO)  t/(2 dli). 
To get an impression of the overall behaviour, we have combined the short-time asymptotics 
(13) and the long-time asymptotics r 2  = D(No) T/Do (No)  + 0 . 3 7 2 ~ ~ .  Note that the length-or 
time-scales are independent of the disorder strength. So fig. 1 allows for a direct comparison 
of the diffusion of chains of the same length No in disorder of different strength v R ,  

; 

Fig. 1. - r 2  = R2(t ,  N 0 ) / ( 2 d l i )  as a function of T = Do(No)  t l ( 2 d l i )  for vR = 0.0, 025, 0.5. The thick lines 
give the asymptotic behaviour for vR = 0.25,0.5 as calculated from eq. (9) ff. The broken lines interpolate 
between the short-time and the long-time behaviour. For comparison we included free diffusion 
(VR = 0.0). 
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respectively, wo . The disorder-induced acceleration of the short-time motion is clearly brought 
out. 

Some final comments on these results may be appropriate: 
i) The memory terms effectively introduced by the quenched random potential render 

the time evaluation of the process non-Markovian. For a Markovian process, R2(t ,  No)  = 
= const. t necessarily holds on all time scales. In the presence of the potential the diffusion in 
thermal equilibrium becomes anomalously faster in times t << To - I: /yR (t << 1) and it diffuses 
slower in times t >> To. 

ii) We interpret the short-time accelerated diffusion as relaxation of subchains from 
unfavourable regions, which are populated to some extent in thermal equilibrium. We suspect 
that every extended flexible object in a random potential of shorter coherence length should 
show a similar effect. For polymers this effect is universal, due to their universal structure on 
intermediate length scales. 

iii) The anomalous short-time diffusion is governed by the disorder- and chain- 
length-dependent exponent 1 - (1/4) w R .  Such a behaviour has also been observed in Monte 
Carlo simulations [lo, 111. (In their terms we discuss the 4ntermediate. regime after some 
non-universal short-time regime, which is suppressed by renormalization.) The resource of 
MC data is best for Gaussian chains [lo] (w* = 0, v = 1/2). It is easy to modify our calculations 
correspondingly. When analysing the anomalous slopes in the plots of log R 2  (t,  N o )  against 
logt (p. 3085 in [lo]) for different wo and N o ,  we find results not inconsistent with our 
calculation. 
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