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Transition from Townsend to glow discharge: Subcritical, mixed, or supercritical characteristics
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The transition from Townsend to glow discharge is investigated numerically in one space dimension in full
parameter space within the classical model: with electrons and positive ions drifting in the local electric field,
impact ionization by electronso procesg secondary electron emission from the cathogepfocess and
space charge effects. We also perform a systematic analytical small current expansion about the Townsend limit
up to third order in the current that fits our numerical data very well. Depending on the two determining
parametersy and system siz@d, the transition from Townsend to glow discharge can show the textbook
subcritical behavior, but for smaller values i, we also find supercritical or some unexpected intermediate
“mixed” behavior. Our work shows the same qualitative dependencd efU(l,pd) for fixed y as the old
experiments by Pokrovskaya-Soboleva and Klyarfeld. Furthermore, the analysis lays the basis for understand-
ing the complex spatiotemporal patterns in short planar barrier discharge systems.
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[. INTRODUCTION study of this classical problem. Therefore, our aim in the
present paper is to develop a consistent picture of the
Space charge effects in many cases are the first nonlinedpwnsend to glow transition in one dimension from analyti-

effects in gas discharges with increasing current. They arg@l and numerical investigations, in particular, for short sys-

known to induce the avalanche to streamer transition in tran€MS- . .
Many authors focus on quite long discharges that have a

sient discharges as well as the transition from Townsend to " o oI .
normal and further to abnormal glow in stationary dis- clearly pronounceq subcritical characteristics, ie., for fixed
charges. Generically, nonlinear couplings in nonequilibriumIarge pd and growing total current, the voltage first de-

systems lead to the formation of spontaneous spatiotemporgl. e > from the Townsend limit towards the normal glow
y 1 OF Spe P P gime, then it increases again in the abnormal glow regime
patterns. The current constriction in the normal glow dis-

S - .~ until heating effects become important and the voltage again
charge as well as the longitudinal striations of a long positivejecreases towards the arc discharge. We will not consider
column of a glow dischargfl 3] fall into this class of phe- s |ast thermally driven transition at high currents. The ini-

nomena. _ _ . tial decrease of voltage from Townsend discharge towards
Recently, the amazing variety of spatiotemporal patter$ormal glow creates a regime of negative differential con-
formed mainly in the transversal direction of a short dCductivity, and some authof4.9] believe that negative differ-
driven system has drawn considerable attenfibn12. The  ential conductivity is generic for this system.
system consists of a gas discharge layer and a semiconductor However, already in the early 1940s, e.g., in the extensive
layer sandwiched between two coplanar electrodes. Theseview by Druyvesteyn and Pennif@2], it was suggested
patterns are due to the nonlinear gas discharge being couplétht this subcritical behavior might not be the only possible
to the linearly responding semiconductor. In particular, aone, but that also a monotonic increase of voltage with cur-
negative differential conductivity of the gas discharge inrent was possible. Such a behavior we will call supercritical,
some region of the current-voltage characteristics is expected line with modern bifurcation theory. There are early ex-
[13-19 to play a significant role in the spontaneous forma-perimental papers by Pokrovskaya-Soboleva and Klyarfeld
tion of patterns, quite like in nonlinear semiconductor de-[23] and McClure[24] that clearly indicate a supercritical
vices[20]. Due to its geometry, modeling the syst¢d— transition for small values gbd in hydrogen and deuterium
12] as one dimensional is a very good approximation, as longn combination with metal electrodes. Later data by the same
as this symmetry is not spontaneously broken by the intrinsi@authors[25] is reproduced in Raizer’s textbodR1], how-
dynamics. So as a first step of any investigation, the behaviaver, only for rather long systems with subcritical character-
and the resulting current-voltage characteristics of the purelystics.
one-dimensional gas discharge system have to be under- Theoretical insight into the question of bifurcation behav-
stood. ior can be gained by analytical or numerical investigation of
An investigation of the systefl1] along the lines of the the appropriate model. The classical model contains the drift
textbook[21] shows that the pattern formation occurs at theof charged particles in the local field, taeprocess of impact
space charge driven transition from Townsend to glow disionization in the bulk of the gas, thg process of secondary
charge. The gas dicharge layer is rather short, more preciselglectron emission from the cathode, and space charge effects.
the producipd of gas pressurp times electrode distanakis Numerical calculations date back to the 19%@6], the
small. This raises the question of the Townsend to glow tranfirst numerical evaluations using an “electronic computer”
sition for smallpd. However, despite a history of more than can be found in the early 1960s in Reff27,28. In particu-
70 years, we are not aware of any thorough and complettar, in the work of Ward 28], current-voltage characteristics
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with or without a region of negative differential conductivity while the expression given in Refgl3,21] does not depend
can be found for different values pfd. However, computing on y at all. We also evaluate the next ordex(13). Our
power at the time was quite restricted and hence only a fevanalytical result fits our numerical solutions very well within
current-voltage characteristics were calculated. The worlds range of validity. The stationary states of the pattern form-
does not seem to have been extended significantly lateroilg system[11] are within the range of validity of this ex-
We will take up the issue in Sec. IV. pansion.

Analytical efforts were constrained to small current ex- Furthermore, we explore the current-voltage characteris-
pansions about the Townsend limit. The old German texttics numerically beyond the range of the small current ex-
book of von Engel and Steenbefk3] contains an elegant pansion in the full parameter space. We show that within the
argument that the initial increase or decrease of the chara€lassical model, there is not only the familiar subcritical bi-
teristics from the Townsend limit depends on the sign offurcation from Townsend to glow discharge for large values
a"(Et) wherea(E) is the effective impact ionization coef- 0f pd, but for sufficiently small values g¥d, the bifurcation
ficient as a function of the electric fiel, and” denotes the is supercritical, in agreement with the scenario suggested by
second derivative evaluated at Townsend’s breakdown fiel@ruyvesteyn and Pennin@2]. Furthermore, for intermedi-
E+. We recall this argument in Sec. IlI B. The bod3] also ~ ate values opd, there always exist completely unexpected
gives an explicit expression for the coefficient " (E+) in mixed bifurcations. This surprising finding implies that the
the expansiot) (1) =U++ c,I?, however, without derivation negative differential conductivity does not vanish when
or reference. Exactly the same statements can be found mog€ (E7) =0 in the Townsend limit, as most authors assume
than 60 years later in Raizer's much read textbgak].  [21,29, but only for smaller values gfd. These statements
Kolobov and Fiald29] assume that”=0 marks the point are true for all relevant values of secondary emisgio®@ur
were negative differential conductivity disappears. A similarthree-dimensional plots of the voltage as a function of di-
small current expansion of the voltage about the Townsenfensionless system sidexpd and currentl for a given
limit has recently been performed in R¢l9], but with a  gas-electrode combination are done in the same manner as
different result — here the leading correction is found to bethe old experimental plots by Pokrovskaya-Soboleva and
linear in the current rather than quadratic. None of the twdKlyarfeld [25].
results has been compared to numerical solutions. In the The paper is organized as follows: in Sec. Il, we recall the
present paper, we will present yet another result for the smaftlassical model and its parameters, perform dimensional
current expansion and evaluate it to higher orders. Our derianalysis, and reformulate the stationary one-dimensional
vation is a systematic expansion and in very good agreemeiitoblem as a boundary condition problem. In Sec. Ill, we
with our numerical results. recall the Townsend limit and the classical argument of von

In general, our aim in the present paper is a consistent andngel and Steenbeck on the qualitative dependence of the
thorough theoretical investigation of the simple classicalsmall current expansion am’. We then perform a new sys-
model of these discharges treated by so many authoigmatic small current expansion up to third order in the total
[13,18,19,21,22,26-30The exploration of the full param- current1® and determine the coefficients of the expansion
eter space is possible, because the current-voltage charactexplicitly. Sec. IV begins with our numerical strategy and a
istics in appropriate dimensionless units depends essentialfjiscussion of the parameters with their ranges. The param-
only on two parameters: the secondary emission coeffigent eter dependence of the current-voltage characteristics on sys-
and the dimensionless system slizepd. tem sizelL «pd and secondary emission coefficients first

Of course, various extensions of the model can be consideresented in the form of (U, pd) plots for fixedy as in Ref.
ered: particle diffusion, attachment, nonlinear particle mo{25]. We then present spatial plots of electron current and
bilities, a field-dependent secondary emission rate or nonldfield, and compare our numerical results to our analytical
cal ionization rates. However, e.g., Bod®1] has argued small current expansion. Finally, we classify the bifurcation
that for the transition from normal to abnormal glow, nonlo- structure in the complete relevant parameter space. Section V
cal terms in the impact ionization reaction should be takercontains a summary and an outlook onto the implications of
into account through hybrid numerical modgs2], while in  this work for spatiotemporal pattern formation in barrier dis-
the subnormal regime between Townsend and normal glow, eharges. Two appendices contain the proof of the uniqueness
local fluid model is considered sufficief29]. This supports  of the solution of the boundary value problem and details of
the strategy to first seek a full understanding of the predicthe small current expansion in ordet:
tions of the classical model as a corner stone and starting
point for any further work. Il. THE CLASSICAL MODEL

In the present work, we perform a systematic analytical
expansion of the voltage about the Townsend limit up to
0O(1%), recovering the qualitative features of the solution We investigate the classical model for glow discharges in
from Refs.[13,21]: in particular, we find that a linear term in simple nonattaching gases in a planar, quasi-one-dimensional
currentl indeed is missing, and that the coefficieatindeed  geometry. The same model was previously investigated in,
is proportional toa”(Et), but with a different proportional- e.g., Refs[13,21,22,26—-3pas discussed in the Introduction.
ity constant. In fact, our coefficiert, depends strongly on The model consists of continuity equations for two charged
the secondary emission coefficiept— it varies by almost species, namely, electrons and positive ions with particle
three orders of magnitude foy between 10° to 10 —  densitiesn, andn

A. Definition
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AN+ dxJ.= (source, (1) eodiE+e(J, —Jo)=J(t), dxJI=0, (10

N+ dxJ . =(source. (2) and that the ion current densify. (4) with the help of Eq.

(3) can be completely expressed byandE,
Their space charges can modify the externally applied &eld

through the Poisson equation €
g a 3, =P g 2 EaE]. (11)
e Me €
E=—(ny—ny). . : : . . .
Ix 80(n+ ne) @ By dimensional analysis, the independent dimensionless pa-

. o o rameters of the model are identified. It is convenient to in-
In the simplest approximation, diffusion is neglected and partgquce the following dimensionless times, lengths, and
ticle current densities, and J, are approximated by drift fje|ds

only
X t
Je:_neMeE! ‘]+:n+/~L+E1 (4) X:X_’ T:t_l
0 0
where the drift velocity here is assumed to be linearly depen-
dent on the local field with mobilitieg , < . (x,7)= Ne(X,1) Eix,7) = E(X,D) 12
Two ionization processes are taken into account: ¢he ’ ng ' ' Eq '’
process of ionization by electron impact in the bulk of the
gas, and they process of electron emission by ion impact Where
onto the cathode. In a local field approximation, thepro-
cess is modeled as a local source term in the continuity equa- Xo=—, Eo=Bp, (13)
tions Ap
— — |E| XO —_ foEo EoAB
(source=|J | a(|E|), a(|E))=Ap a(B—p , (5 E=,ueEo=,ueBp°, o= = e p2.
wherep is the pressure of the gad.he mobilities then scale The equations now take the form
with inverse pressurgue=we/p and w,=u,/p.) In the .
classical Townsend approximati¢®l], the function 9:0=0yjetjea(E), (14
a(&)=e " (Meh® (6) 9E=1(17)—(1+ p)je— mEIE, (15

is characterized by the single parametevith typical values ~ Whereje=o&= —eJe/[engX,/to] is the dimensionless con-
s=1/2 or 1 depending on the type of gas. Our numericaductive current carried by the electrons,
results are for the most common valse 1.

The parametety is the probability that a positive ion hit- __ J _Jy v
. 7 . = o and u= o (16)
ting the cathode leads to the emission of a free electron into engXo/to p? EoXo p°
the gas. For a discharge of lengttwith the anode akK=0
and the cathode at=d, the vy process enters as boundary are the dimensionless total current and potential, and
condition atX=d

M+ 0

d
[Je(d,)[ =y [3(d,1)], (7 w=0 0P and '—IX—OIADd 17)

while ions are absent at the anode are the ratio of ion over electron mobility and the dimension-

J.(01)=0 ®) less length of the gas discharge layer.
L ' We here have also recalled the scaling properties with
The electric potentiall between the electrodes is pressurep, such that the pressure dependent similarity laws

easily can be identified in the dimensionless results below.
U(t)=d(0t)—P(d,t)>0, EXt)=—09xP. (9
. . . _— . C. The stationary problem
With this convention, the average electric fiélds positive.
Equations(1)—(9) define the classical model. For a given dimensionless total currgntmobility ratio
M, secondary emission coefficiet functional forma(E)
as in Eq.(6) and dimensionless system lendththe station-

) o ary solutions of Eqs(14) and(15) are determined by
For the further calculation, it is useful to note, that the

B. Reformulation and dimensional analysis

continuity equationg1) and (2) together with the Poisson dyje=—a(O)je, (19
equation(3) in one dimension result in the spatial conserva-
tion of the total electric current pEAE=]—(1+ u)je, (19
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together with the boundary condition), (8) that are con- The Paschen curve relates the potentig=&;L in the

veniently expressed byas Townsend limit to the system size through a(ut/L)

_ _ _ _ =L, /L. In particular, for the form of Eq(6), the Paschen

je(0)=] and je(L)=je ", (200 curve is
with

ur(L,y)= —c—, (27)
1+ In*S(L/L,)
L,=In—. (21
Y while the field is

We assume that(€)>0 andda/d|E|>0 within the relevant

range of fields€. We prove in Appendix A that this deter- &(L,y)= P )
mines a unique solution for the two functiogg(x) and lnlS(L/L'y)
&(x). Finally, the integrated field yields the potential

(28)

In dimensionless formy; and & depend only on the sec-

L ondary emission coefficient, system sizé, and the param-

u= J’ &(xydx, (220 etersin Eq.(6). The Townsend field; increases monotoni-
0 cally with decreasing system siteand diverges fot | L.
The Paschen curveir(L,y) (27) has a minimum atL

and hence the current-voltage characteristi@g . —L e and diverges both fok | L and forlL —os
Y Y )

D. A global conservation law B. The argument of von Engel and Steenbeck

a(&(x)) is related toL,, andL through the global conser-

. In the old German textbook of von Engel and Steenbeck
vation law

[13], the following argument for an expansion about the
L Townsend limit can be found: write the electric field as the
f a(&(x))dx=L,. (23)  Townsend fieldé; plus a perturbatiom(x), and note that
0 the potential is the integrated field

for all solutions[ j<(x),E(x)] parametrized by. This can be L
seen by formally integrating E¢18) with the boundary con- Ex)=&r+A(X), u=urt Jo A(x)dx. (29
dition jo(0)=]j with the result

The local impact ionization coefficient can then be expanded

jo(X) = je JorDax’ (24 abouta(&r) as
and by evaluating this solution with the boundary condition , a" (&) )
je(L)=je tr at L. The identity(23) also can be found in a(é(x)=a(&r) +a (5T)A(X)+TA () + -

Refs.[13,21]. (30)
It follows immediately that for a bounded function with
a(&§)<1 for all £ as in Eq.(6), the system sizk needs to be For fixed system siz& and parameteL ,, the global con-

larger thanlL ,, straint (23) relates different solutions£(x) to «(&r)L
through
L=L, (25)
L
to sustain a stationary self-sustained discharge. This is true a(ér)l= JO a(&())dx

for arbitrary currentg and space charge effects.

The identity(23) also plays a prominent role in the small
current expansion about the Townsend limit, as we will see
now.

L
= a(&)L+a' (&) fo A(x)dx

a"(&) (L 2
+ Ac(x)dx+-- -, (32
[l. ANALYTICAL SMALL CURRENT EXPANSION 2 Jo

A. The Townsend limit where the expansiof80) of a was used in the second step.

The well-known Townsend limit can be understood as aThis identity allows one to expreg§A(x) dx by the higher
consequence of E¢23): for currentsj so small thatd,&  order termsf5A"(x) dx, n=2,3,...,.Insertion of this ex-
~0 in Eqg. (19), the electric field is a constardi{x)=E&5. pansion into the definition afi yields
Equation(23) then reduces to the familiar “ignition condi-

tion” [21] " (&) J‘L

=Uur A2(x)dx+ - - -. (32

u f—
a(Er)L=L, = y(e “®t—1)=1. (26) 2a’(&7)J0
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SinceA? is positive and since is assumed to be an increas- O(jY):dge1(X)=—1;(X) a, (37)
ing function of&, the sign of the correction is determined by

the sign ofa”. This statement from Ref13] is recalled in O(j?):0y12(X)=— t1a(X)a— t1(X) &’ E1(X), . .. . (38
the recent literatur€21,29. It should be noted that the esti- )

mate (32) is valid as long aga(™ fA"dx|<|a”fA%dx| for ~ For EQ.(19), the same procedure gives

all n=3. S0y _

The question is now how to calculaf§A2(x)dx. In Ref. O(7):9xEr=0, 39
[13], a result is quoted referring to a long calculation whose O(jY): w10 E1=1— (14 w)e1(X), (40)
details and reference are not given. The same result is given
more than 60 yr later in Ref21] in Sec. 8.3 with a sketch of O(j2): uErdyErt uE10xE1=—(1+ m)1p(X), . .. .
an argument and again without reference. The argument as- (41

sumes thatJ , |>|J.| throughout the discharge volume. This » _ _
assumption is in disagreement with the boundary conditiod N boundary conditiof20) at the anodex=0) yields
(8). A somewhat different argument based on a constant 1(0)=1, (0)=0, 13(0)=0,... . (42

space charge through the whole system is given in [Ré&l.
In Ref.[21], the electric field profile is assumed to 5€x)
o/ 1—x/Xy, while [23] it is assumed to bef(x)«(1
—X/xo) where the length scabe, depends on the curret

The boundary condition20) at the cathode X=L) most
conveniently is evaluated with the help of the global conser-
vation law (23). Taking into account that , is independent

In both cases, the breakdown of the approximation is determf j, the expanded form reads

mined from the field vanishing at the anod#L)~0. This
prescription yields no dependence ¢rat all, quite in con-
trast to our results below. The functional forms 6¢x)

should be compared with our systematic analytical results
(33) and (49) below (note that we reversed the order of an-

ode and cathode and with our numerically derived field
profiles in Figs. 4 and 5. They do not justify thnsaze
given above.

Rather a consistetnsatzis chosen in Refl19], and the
structure of their expansion in terms ef‘» andL, is quite

similar to ours below. However, these authors fail to incor-

porate the global conservation 1d&3), and get a correction
already in linear order of, in contrast to the rigorous result
(32) above.

C. A systematic expansion in smalj

We now perform a systematic expansion in powerg of

about the Townsend limit. In principle, this expansion can be

O(j%:aL=L,, (43
L
O(jl):f & (x)dx=0, (44)
0
82
O(jz):fL(a’é’z(x)+a”%x))dx=0, (45)
0
L 5:1"
O(js):fo (a'53+ a" &6+ a'”a> dx=0,
(46)

where the first equatiof43) reproduces the ignition condi-
tion (26). Finally, the potential from Eg. (22) is

L L
u=ur(L,y)+]j jo Sl(x)dx+j2J’0 Ex(x)dx

extended to arbitrary order. We have evaluated it up to

0(j®). We write the field correction as a power serieg,in
namely,A(x) =] &, (X) +j2E,(X)+ - - -, and use the samfn-
satzfor the currentj(x)

EX)=Er+ [ E(X) +]2E(X) + - - -, (33
Je(X)=j () +j2u(0)+- - -, (34
and we introduce the short hand notation
a=a(&r), a'=a' (&), a"'=a"(&), (35
in the Taylor expansion
a(Ex)=a+a' (E(X)+]2EX)+--+)
a”
+7(151(X)+1'252(X)+~-)2+~--- (36)

Insertion of theAnsdze (33) and (34) into Egs.(18) and
ordering in powers of yields

+j3JOL53(x)dx+ . (47)

The lowest orderur(L,y) reproduces the Paschen curve
(27). Eq. (44) reveals immediately that the ordgrin u has

to be absent. For the ordgt in Eq. (47), the function&;(x)
has to be calculated. First,

u(x)=e" (48)

is the solution of Eqs(37) and(42). ¢1(x) has to be inserted
into Eq. (40) which now can be solved analytically up to a
constant of integration. This constant is determined by Eq.
(44). The result is

e~ X

L,
aX— > +(1+uw)
&(x)=

e (49)

For the contribution in ordej? to the potential, the calcula-
tion of &, is sufficient since with the help of E¢45),

066410-5



DANIJELA D. SIJACIC AND UTE EBERT

F(y,1)

10° 10° 10" 107 10 107 7y 10°

FIG. 1. Plot of F(y,u) as a function ofy in a double-
logarithmic plot. The dependence qn for realistic values & u
=<0.0095 is too weak to be visible in the plot. Howeve(y, 1)
varies over almost four orders of magnitude as a functiory.of

L a” L a" F ,
fgz(x)dx=——f £2(x)dx=— —— (”L)Z,
0 2a' Jo 2a’ aPu’es

with the function

3
F( )=b+(1+ )(2—L —2e bL—L e_l‘v)
YL 12 M y Y

1_e72Ly (1—e7|-y)2

2 L,

+(1+ )’ (50

The function is plotted in Fig. 1. Within the interesting pa-

rameter regime, it depends strongly prand invisibly onu.

Here we use the parameter range foisuggested by Ref.

[21] and the maximal mobility ratiqu=w , /u=0.0095 is
reached for the lightest molecules, namely, hydrogen.

PHYSICAL REVIEW E66, 066410 (2002

e Flv j;)sfgmu“). (53

2a’ (aéq)®

U:UT_(J; +

The functionfs can also be calculated fully analytically and
along the same lines: firgj(x) is derived from Eq(38) and

(42) and inserted into the 0.d.641) for £,(x). The equation

is solved, and the constant of integration is determined by
Eq. (45). Then [§&;(x)dx is derived from Eq(46) and the
explicit expressions fo€;(x) and £(x) and inserted into
Eq. (47). However, the result of this calculation is still con-
siderably longer than Ed50) and does not show any simple
structure. We therefore will not give the explicit form here.
Rather, we summarize essential steps of the calculation in
more detail in Appendix B. The final steps were done by
computer algebréamathematica Some of the results fof,

are shown in Fig. 6 and compared with numerical solutions
of the full problem(18)—(22).

D. Discussion of the result

Translating back from dimensionless to physical units, the
result reads

F(y,p)

“E.)3
ET(aET)

J )ZEaéZ
EoM + Z&E;

U(J)=UT—(

e
+ > + ...,
€om+) (EgAP)®
with the dimensionless coefficient
Eda

Era’  SEy—(st+1)E}
20:a '

20 2ES

(54)

Er

The small current expansion of the current-voltage charThe coefficient of J? changes sign for&=E;/E,

acteristics is in this approximation

e )
et (,U«) 2a’ t(affT)S_l—O(J ) 6D

The range of validity of this expansion can be easily esti
mated by inserting Eq49) into Eq. (33): the correction to
the field due to the current should not exceed half of the[2

Townsend field, so

< L.>1 2
Er =g Tt

1= e " 26 L

(52

'since the minimum is at =L e™".

=[s/(s+1)]*s. With the help of Eq(28), this transition at
a”"=0 can be located on the Paschen curve; it occurs at

Lerie=L,ett1s. (55)

This is always on the right blr/anch of the Paschen curve,
S

The result agrees qualitatively with that given by Raizer

1] and von Engel and Steenbefk3]. In particular, the

leading order correction is also of ordef(j/u)?. However,

the explicit coefficient ofj? differs: while the coefficient in

Refs.[13,21] does not depend om at all, we find that the

dependence of is essential, as the plot &fin Fig. 1 clearly

indicates. In fact, within the relevant range of £y

<10, this coefficient varies by almost four orders of mag-

In view of the very good fit of this expansion with our nitude. We remark that it indeed would be a quite surprising
numerical results to be presented below in.Fég, and in  mathematical result if the Townsend limit itself would de-
view of the interesting bending structure of the numericallypend onvy as in Eq.(28), but the small current expansion
derived current-voltage characteristics in Fig. 9 below, itabout it would not. Oury-dependent analytical result also
seemed promising to calculate the next term of the expansioexcellently fits our numerical solutions, as we will show in
of orderj? the following section.
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IV. NUMERICAL SOLUTIONS namely, hydrogen. As a standard, we use the value
Wi di ical its for th | =0.0035 for nitrogen.
e now discuss our numerical results for the voltages The functional form of the defining Eq&l8)—(21) and of

a function of total curren}, secondary emission coefficient e small current expansiof53) suggest that in leading
y, mobility ratio 4, and system sizé, as resulting from  order does not depend ¢rand . separately, but only on the
Egs. (18)—(22). We will work with the Townsend approxi- scaling variablg/u and on the factor (+ u)~1. This ob-
mationa(5)=e*1"5‘ (6) with s=1 as the standard cafel]. servation motivates our choice of the variablg. in the
following figures. However, Fig. 7 will show that for large
j/p in the abnormal glow regime and for large systelms
A. The numerical method there is some small.-dependent correction to this scaling
. . L behavior. Reconsidering Eq&l8)—(21), this means that the
_In Appen(_mx A, we showed that the solutian=u(j) is factor (1+ u) cannot simply be equated with 1 even for
unique for fixedy, x, andL, and we proved the useful —10-2 pyt'yields some correction. In physical terms, the
property that the system siteis a monotonically decreasing g pstitution of (1 ) by 1 means that the anode fall region
function of the electric field"(0) at the anodedL/d&(0) s eliminated, and we conclude that in large systems in the
<0 (A4), for fixed y, u, andj. The second observation lays glow regime, the anode fall yields some small contribution to

the basis for our numerical iteration procedure: the current-voltage characteristics.
First the two o.d.e.’¥18), (19) are integrated fronx=0
with the known initial valug ¢(0)=j and some guessed ini- C. General features of the current-voltage characteristics

tial value&(0) towgds largek. The equations are integrated We now give an overview over our numerical results in

until for somex=x, we find the valugje(x)=je"» that the full parameter regime of the current-voltage-
should be assumed at the fixed system gizd.. If x>L, a  characteristicau(j) from Townsend up to abnormal glow
larger value of(0) is chosen for the next iteration step, and discharge as a function of rescaled currght, system size
if x<L, a smaller&0). Here a linear interpolation of L. andsecondary emission coefficigntin Figs. 2 and 3, we

— . . . . . . plot u as a function ofj/x and L for y=10"° and y
dx/d£(0) is usgq. This Iteration loop IS contlnygd until the _ 10", respectively. The plots follow the style of an experi-
boundary conditior20) at L is obeyed with sufficient accu-

. o , mental plot in Ref[25], which is reproduced as Fig. 1 in
racy. The potentiap(x) is integrated together with(x) and  pef [29]. We are not aware of other numerical results repro-
&(x) by adding the third o.d.el,¢= —£[33]. The voltageu

o ducing this structure, apart form our Figs. 2 and 3.
over the system isi=¢(0)— (L ). Comparing the two figures for different, it can be noted

For the numerical integration of the o.d.e.'s, we used thenat on the one hand, the shapes look qualitatively similar,
Isodar.f routine of the ODE-PACK package from the frée-\ niie on the other hand, the actual parameter regimes of

ware site netlib.org. It integrates initial value problems for otentials, currents, and system sizes vary by an order of

sets (_)f first orde_r o.d.e’’s and chqoses automatically the a hagnitude or more. Let us now consider the common fea-
propriate numerical method for stiff or nonstiff systems. At

the same time, it locates the roots of any specified function.

: . o Ay _ In the limit of small curreng (i.e., in the foreground of the
We defined this function ag,(x) —je™ -» which returns the

figure9, the curves saturate to a plateau value which actually

valuex for the next iteration loop with high precision. reproduces the Paschen cuwve u(L,v) from Eq.(27).
Followingu=u(j) along a line of fixed system siie we
B. ParametersL, y, and y, and j/u scaling get the current-voltage characteristics for this particular sys-

The problem depends on the following parameters: thdem characterized by the two parameterandy. For these

first one is the system siZe which is proportional tgd in Cu'?:’eS‘IJ: U(IE’ tﬂe fol:owmgffeatléres can bef noted.
physical units. It can take arbitrary values; we explore a con- or largerL, the voltageu first decreases for increasing

tinuous range of on both the left and the right branch of the currentj. This is the familiar Townsend-to-glow transition
Paschen curve. with negative differential conductivity. For larggrthe volt-

The second parameter is the secondary emission coef 1geu increases again towards the regime of abnormal glow.

cient y which is determined by both the gas and the cathod h the minimum of the potentlal,_ th_ere is no plateau in con-
surface. Increasingy decreases the minimum breakdown trast to expe_rlmen.tal plots. This s because we g,plve the
voltage which isel, as discussed after Eq55). This purely one-dimensional system without the possibility of a
mechanism can be used for improving performance in techl-ateral growth of the glow discharge column.

: ot : For smaller values of, in particular, when starting from
nical applications such as plasma display panels [3f. ' '
According to[21], v can take values between 10 and the left branch of the Paschen curve, the voltage does not

10 1 in exeme cases even lrger. We show fesus enelecTense 0 Neeasing curent bt creases immecately
for the two extreme cases 1®and 10°%, or we show one

representative result fop=10"2 detail at the end of this section.

The third parameter is the mobility ratio=u, /e of
the charged species. Since ions are much heavier than elec-
trons, u is always much smaller than 1. The largest value of It is instructive to study the spatial profiles of electron
©n=0.0095 [21] is reached for the lightest molecules, currentj (x) and field &(x) for different system sizes. In

D. Spatial profiles
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= — 0.001 j/p
FIG. 2. u as a function of/u (on log scal¢andL for the small 0 > z . . . n
secondary emission coefficient—10-°. The parameter range is 0 4 6 8 10 1

3X10 Tu<jlu<5x10"3%u for ©=0.0035 and 178 L <160. _ o _ _
FIG. 4. Spatial profileg¢(x)/j and &(x) for system sizel

=elL, at the minimum of the Paschen curve. Plotted are curves for

Figs. 4 and 5, we plot such profiles far=elL, and forL i/4=0.01, 0.1, 0.3, 1, 3. Other parametegs. 0.01, 2= 0.0035.

= 3L,/=eLcm. The smaller system sizeL, coincides with
the minimum of the Paschen curve, WI”IJ'J@,it:eZL7 (55 is
the system size wher€’ in Eq. (53) changes the sign. So for part of the volume on the right hand side.
L<L the voltage increases initially in the small current
expansion around the Townsend limit, while for L, it
decreases.

Note that in contrast to previous plots, e.g., in Héfl],
our cathode is on the right hand sidexatL, because we

found it more convenient to work with a positive fiegdd The

E. Comparison of numerical and analytical results

Let us now compare the current-voltage characteristics
corresponding with these profiles with our analytical results

electron current is normalized by the total current. from Sec. lll. In Fig. 6, the numerical results fa(j) are
In each plot, the profiles for the two smallest current val-Plotted as a thick solid line, and the analytical expansions

ues are well described by the small current expansion fro®2) @nd(53) up to second or third order ijf as thin solid
Sec. Ill. This is in agreement with the range of validity of @nd dashed lines, respectively. For the calculation of the third

these expansions ¢ 4=<0.08 for L=eL,=L /e or of order, thg procedure descrik_)ed in_Appendix B has been fol-
jlu=1.3x10"2 for L=el,, respectively, estimated ac- lowed. Figure 6 shows that in particular the expansion up to
cording to Eq.(52). order (j/x)® gives a very good agreement within the range
For larger currents, a separation into resistive column of validity of j/#=<0.08 or 1.3<10"*, respectively, accord-
the left and cathode fall on the right becomes pronouncedng to Eq.(52).
While in the smaller system, both regions take about equal
parts, in the larger system, the cathode fall takes only a smal' 4
i/l

e

0.5

Illlllll |

i

L
-

i

i
T i,
i /%/;;;/ .

B I
\&!\\\\\\\\\ ) ' Ju=10
8. o -w. 0.3
10 ) 10 . . f .
L i/ % 20 40 60 80 X
FIG. 3. Plot as in Fig. 2, but now fop=10"1. The parameter FIG. 5. The same as in the previous figure, but now for the

range is 10%/u<j/u<7x10"%/u for ©=0.0035 and =L larger system size=e3Ly. The current now explores the smaller
<28. valuesj/u=10"%, 103, 3x10°%, 0.01, 0.03, 0.1, 0.3.
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FIG. 8. The current-voltage characteristics for fixed parameters
y=0.01 andx=0.0035 and different system sizes, measured in
multiples ochmzLyeZ. Shown are all possible bifurcation struc-
tures from supercritical up to the familiar subcritical case for vari-
ous values ot..

FIG. 6. u(j) for the systems from Figs. 4 and 5 in the small
current limit: upper plot.=eL,, lower pIotL=e3Ly, both with
vy=0.01. Numerical resultthick solid line, analytical resul{51)
up to second order ijy u (thin solid line and analytical resul53)
up to third order inj/u (dashed ling

visible consequences. In contrast, for large systems and large

) o currents, there is a small, but visibje correction to the
Figure 7 shows the current-voltage characteristics for th@jominantj/x scaling.

same two systems, but now up to larger values of the current
than in Fig. 6. Actually, the same current range is explored in
each system as in the corresponding Figs. 4 and 5. ] ) o )

In addition, in Fig. 7 we test thg/ u scaling by plottingu We now set the final step in thg quantitative unde_:rgtandmg
as a function ofj/ within the physical range of. values, Of the current-voltage characteristics at the transition from
including the limit of x=0. It can be noted that for short Townsend to glow discharge. We characterize the transitions

means that ( 1) can be replaced by 1 in E¢L9) without ~ rameter space. . . _
Figure 8 gives an overview over the different behaviors

for y=0.01. It corresponds to differehtsections of plots as
H_O‘oo'gs in Figs. 2 and 3, but now witiy u plotted on a linear rather
than a logarithmic scale. For the terminology of subcritical
Trpu=1 1 or supercritical bifurcations, it should be noted that =0
is a solution for arbitraryu. So the completau axis is a
solution, too.

In the case ofL=0.89_,;;, there is a pure forward or
10, 05 1 15 > 25 .. 3 supercritical bifurcationu increases monotonically g¢u
in increases. In contrast, fdr=1.09_,;;, the bifurcation is
purely subcritical: with increasing/ ., the voltage first de-
creases, and eventually it increases again. This subcritical
behavior continues down tdL:Lcm:Lyez, where «”
changes the sign. So indeed, the sign change”oin the
small current expansion determines the transition from sub-
critical to some other behavior. However, fox L, the

F. Corrections to j/pu scaling

G. Discussion of bifurcation structures

25
u

201

15}

20 ) ) ) , drp=t | system does not immediately enter the supercritical regime,
0 0.05 0.1 0.15 0.2 0.25 j/ 0.3 but some unexpected mixed behavior can be seen: for in-
H creasingj/u, the voltageu first increases, then it decreases

FIG. 7. Current-voltage characteristics for the same two system@nd then it increases again. We distinguish “rhixhere the
as in Figs. 4, 5, and @upper plotL=eL.,, lower plotL=€L,), voltage minimum at finitg/w is smaller than the Townsend

but now for a larger current range than in Fig. 6. Furthermorevoltage, and “mix” where it is larger.

besides the curves for the nitrogen value for the mobility ratio Figure 9 shows a zoom into Fig. 8: a smaller range of
=0.0035, also the curves fqu=0.0095 (hydrogen, «=0.001, current and of system sizes. The form of an upwards pa-
and the limiting valugu=0 are shown. rabola of the orderj( ..)? next to theu axis is well described
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V. SUMMARY AND OUTLOOK

16.4}
mix, L, = 039 We have studied the classical minimal model that creates
u mix o a Townsend or glow discharge, in one-dimensional approxi-
) 0.9 mation. The dimensionless current-voltage characteristics
6 m'lx 4_)/ =u(j/u) depends on essentially only two parameters, the
' secondary emission coefficieptand the dimensionless sys-

tem sizeLxpd. (With j/u scaling, the further dependence
on the small mobility ratiow=pu, /ue is very weak and
becomes visible only for long systems in the normal and
abnormal glow regimeéNumerically, we have fully explored
the bifurcation structure as a function pfandL. Besides the
familiar subcritical bifurcation structure of long systems, for
decreasing system side there is a sequence of current-
voltage characteristics, that we have called naixd mix, ,
before the supercritical transition is reached. This general
sequence is the same for all relevant values ofhile the
precise lengths where the transitions occur, depeng, af.

FIG. 9. Zoom into Fig. 8 with smaller values pfu and system  Fig, 10. Analytically, we have calculated the small current
s!zesL. T.he.range of validity of the analytical small current expan- expansion about the Townsend limit in a systematic expan-
sion (53) is j/u<0.017. sion. We found that the term of ordpiu is missing, and that
_ . the term of order j/ )? indeed is proportional to the second
by the_ analytical sr_nal_l current expansion of Sec. IIl. HOW'derivative of the Townsend coefficieat’ according to the
ever, in contrast to initial hopes, the turnover of the curves af|q argument from von Engel and Steenbgtg], but with a

J/p~0.02is QOt covered b)_/ t_he small current exp_ansio_n URjifferent, stronglyy-dependent proportionality constant. We
to order (/u)* whose coefficient even changes sign within Iso have calculated the term of ord@f#)3. These analyti-
the parameter range of Fig. 9. In fact, the range of validity ota

. . ; . cal expansions are in very good agreement with our numeri-
the expansion breaks downjd.<0.017, just briefly before cal results within their predicted range of validity.
the first interesting bending structure in the characteristics. Of course, the study of this minimal model can only be a
Finally, in Fig. 10.’ the bifurcation behay!or in the full first step, and it has been suggested to include a number of
parameter range of is explored. The transition from sub-

tical to mix al tak | het' ch the si additional features. Firsty might not be constant; while the
criical to mix always takes E ace w changes the sign, dependencer= y(l,V) [18] on global parameters seems un-
i.e., at system sizk. ;=L ,e°. The transitions from mixto

i . physical, the local dependence=y(E/p) has been sug-
mix and thep further to supercritical occur at §mgller rela’gestec{35] and experimentally tested®6]. Second, the par-
tive system sizet /L,y when the secondary emission coef-

_ ) " _ ticle mobilities might be field-dependent.=pu. (E).
ficient y is smaller. All transitions occur on the right branch Third, diffusion was neglected, the approach was fully local,
of the Paschen curve, since its minimum isLék ;;=e™?!

and only one ion type was considered. However, our aim was

0.02 0.04 0.06 0.08 J / T} 0.1

=0.368. first to settle the predictions of the classical model in full
1.05 . i i i . parameter space as a corner stone and starting point for any
’ future extension that simultaneously also will increase the
L/ Lcm subcritical number of parameters.
L] = ¢ The motivation for this work is the impressive variety of
K spatiotemporal patterns formed in short barrier discharges
0.95h ] [4-12. The nonlin_ear _element responsible for _the spon';ane-
) o ous pattern formation is believed to be a gas discharge in the
mc o parameter range of the present work. Parameter regions with
oo} e L AN 1 negative differential conductivityNDC) are generally be-
o o Ii(_aygd to play a decisive role in theT formation of t.he insta—
0.85h Pt bilities. Knowledge about NDC regions and the bifurcation
“““ 0 o structure in the_range o_f thes_e experiments therefore are a
! B mix, e condition for their future investigation, and conversely, prop-
o8f e ° supercritical 1 erties of the current-voltage characteristics might be deduced
Lo ¢ from temporal_ oscillations or current constrictions. These
0.75 . ) . ) . pattern formation processes will be the subject of our future
“10° 10° 10”10 107 107 10°  studies.
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APPENDIX B: THE CORRECTION OF O(j®) ABOUT
THE TOWNSEND LIMIT

Here we prove that the boundary value problem defined We here sketch the essential elements of the calculation of
by Eqgs.(18)—(21) for fixed j, u, y, andL defines a unique the third termj® of the expansion about the Townsend limit:
solution [j«(x),&(x)] and hence a unique potential first Eqg.(38) is integrated. With Eq(48) for «;, Eq. (49) for
= [5&(x)dx. This lays the ground for our analytical as well £;, and the boundary conditiof@#2), we get
as for our numerical procedure. We will kegpu, and y
fixed within this appendix, and will discuss ha¥(x) is de-

' i a'e” [ (ax)? -
termined byL and vice versa. (X)) = — ————| ——+ (L+ pu)(1—e~ %)
First Eq. (18) for j, is integrated with initial condition Puésl 2
je(0)=j (20) and inserted into Eq.19), L 1— - ax
_ _
aX > +(1+w) L, ” (B1)

pENE=|[1—(1+ p)e o], (A1)

This result allows us now to integrag(x) in Eq. (41) with

The boundary conditiofi20) at L amounts to the rather lengthy result

L
fa(E(x))dx:Ly, (A2) 1 [ a' &y
0 E(X)=—————=|(1+
A0=5 m (1H
where we assume that
X1 —(ax)?e” '+ (1+pu)(e 2¥—2e~ )

a(&)>0 and JaldE>0  forall £>0. (A3)

7L'y

Ly

LV
+2( L —1+(1+u)

5 )(ax+1)e“”‘]

An initial condition £(0) defines a unique solutiof(x) of
Eqg. (A1) and hence a unique system sizéhrough Eq(A2).
We will show below thatL is a monotonically decreasing

1-e by
—ax|L,—ax+2(1+u)

function of £(0), L,
L — -
dL/dE0)<0  for fixed j, u, 7. (Ad) +2(1+p)| 5+ (1+p) Ly“dX)G X
This statement has two immediate consequer(i:)aiﬂ;:shows —(1+p)%e 2|+ C. (B2)
that £(0) and therefore alsé(x) andu are uniquely deter-

mined byL; and (i) it lays the ground for our numerical
iteration procedure whei&0) is fixed, and the resulting is
calculated and compared to the triue

Why is the statemenfA4) true? Compare two solutions
&1 Ax) and suppose thaf;(x')>E&,(x") on some interval L a" F(y,p)
0=<x’=x. Then for the difference, we get from E@\1) that Edx=——"— 2° (B3)

The constant of integratio@ is determined through E45),

o

P Finally, f553 dx is determined by, and &, through Eg.
2j(1+p)

(46) as

(0,82 — 9,£2) = e Tor(E0)dx_ o= [a(E1(0)dx= g

(A5)

where the bound- - =0 is a direct consequence of H&3).
So whené; is above&, on some interval &x’'<x, then at
the end of the interval, we hawg&2>4,£5, and&; stays
aboveé&,. As a consequence

L a!/ L a!!l L
fgs dx=— —f £.& dx——f E3dx. (B4)
0 a’'Jo 3la’Jo

Insertion of the result in Eq47) yields the third order ex-
pansion(53) with an explicit expression for the functidn.

All integrals can be performed analytically. However, the
results are lengthy and exhibit no simplifying structure.
Therefore, we rather have performed the remaining integrals
by computer algebra. Results are shown in Fig. 6.

E1(X)>E5(x) forall x=0, if £(0)>&,(0). (A6)

Inserting this into Eq(A2) and using Eq(A3), statement
(A4) results.
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