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Transition from Townsend to glow discharge: Subcritical, mixed, or supercritical characteristics
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The transition from Townsend to glow discharge is investigated numerically in one space dimension in full
parameter space within the classical model: with electrons and positive ions drifting in the local electric field,
impact ionization by electrons (a process!, secondary electron emission from the cathode (g process! and
space charge effects. We also perform a systematic analytical small current expansion about the Townsend limit
up to third order in the current that fits our numerical data very well. Depending on the two determining
parametersg and system sizepd, the transition from Townsend to glow discharge can show the textbook
subcritical behavior, but for smaller values ofpd, we also find supercritical or some unexpected intermediate
‘‘mixed’’ behavior. Our work shows the same qualitative dependence ofU5U(I ,pd) for fixed g as the old
experiments by Pokrovskaya-Soboleva and Klyarfeld. Furthermore, the analysis lays the basis for understand-
ing the complex spatiotemporal patterns in short planar barrier discharge systems.

DOI: 10.1103/PhysRevE.66.066410 PACS number~s!: 52.80.2s, 05.45.2a, 51.50.1v, 47.54.1r
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I. INTRODUCTION

Space charge effects in many cases are the first nonli
effects in gas discharges with increasing current. They
known to induce the avalanche to streamer transition in tr
sient discharges as well as the transition from Townsen
normal and further to abnormal glow in stationary d
charges. Generically, nonlinear couplings in nonequilibri
systems lead to the formation of spontaneous spatiotemp
patterns. The current constriction in the normal glow d
charge as well as the longitudinal striations of a long posit
column of a glow discharge@1–3# fall into this class of phe-
nomena.

Recently, the amazing variety of spatiotemporal patte
formed mainly in the transversal direction of a short
driven system has drawn considerable attention@4–12#. The
system consists of a gas discharge layer and a semicond
layer sandwiched between two coplanar electrodes. Th
patterns are due to the nonlinear gas discharge being cou
to the linearly responding semiconductor. In particular
negative differential conductivity of the gas discharge
some region of the current-voltage characteristics is expe
@13–19# to play a significant role in the spontaneous form
tion of patterns, quite like in nonlinear semiconductor d
vices @20#. Due to its geometry, modeling the system@10–
12# as one dimensional is a very good approximation, as l
as this symmetry is not spontaneously broken by the intrin
dynamics. So as a first step of any investigation, the beha
and the resulting current-voltage characteristics of the pu
one-dimensional gas discharge system have to be un
stood.

An investigation of the system@11# along the lines of the
textbook@21# shows that the pattern formation occurs at t
space charge driven transition from Townsend to glow d
charge. The gas dicharge layer is rather short, more preci
the productpd of gas pressurep times electrode distanced is
small. This raises the question of the Townsend to glow tr
sition for smallpd. However, despite a history of more tha
70 years, we are not aware of any thorough and comp
1063-651X/2002/66~6!/066410~12!/$20.00 66 0664
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study of this classical problem. Therefore, our aim in t
present paper is to develop a consistent picture of
Townsend to glow transition in one dimension from analy
cal and numerical investigations, in particular, for short s
tems.

Many authors focus on quite long discharges that hav
clearly pronounced subcritical characteristics, i.e., for fix
large pd and growing total currentI, the voltage first de-
creases from the Townsend limit towards the normal gl
regime, then it increases again in the abnormal glow reg
until heating effects become important and the voltage ag
decreases towards the arc discharge. We will not cons
this last thermally driven transition at high currents. The i
tial decrease of voltage from Townsend discharge towa
normal glow creates a regime of negative differential co
ductivity, and some authors@19# believe that negative differ-
ential conductivity is generic for this system.

However, already in the early 1940s, e.g., in the extens
review by Druyvesteyn and Penning@22#, it was suggested
that this subcritical behavior might not be the only possi
one, but that also a monotonic increase of voltage with c
rent was possible. Such a behavior we will call supercritic
in line with modern bifurcation theory. There are early e
perimental papers by Pokrovskaya-Soboleva and Klyar
@23# and McClure@24# that clearly indicate a supercritica
transition for small values ofpd in hydrogen and deuterium
in combination with metal electrodes. Later data by the sa
authors@25# is reproduced in Raizer’s textbook@21#, how-
ever, only for rather long systems with subcritical charact
istics.

Theoretical insight into the question of bifurcation beha
ior can be gained by analytical or numerical investigation
the appropriate model. The classical model contains the d
of charged particles in the local field, thea process of impact
ionization in the bulk of the gas, theg process of secondar
electron emission from the cathode, and space charge eff

Numerical calculations date back to the 1950s@26#, the
first numerical evaluations using an ‘‘electronic compute
can be found in the early 1960s in Refs.@27,28#. In particu-
lar, in the work of Ward@28#, current-voltage characteristic
©2002 The American Physical Society10-1
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with or without a region of negative differential conductivi
can be found for different values ofpd. However, computing
power at the time was quite restricted and hence only a
current-voltage characteristics were calculated. The w
does not seem to have been extended significantly late
We will take up the issue in Sec. IV.

Analytical efforts were constrained to small current e
pansions about the Townsend limit. The old German te
book of von Engel and Steenbeck@13# contains an elegan
argument that the initial increase or decrease of the cha
teristics from the Townsend limit depends on the sign
a9(ET) wherea(E) is the effective impact ionization coef
ficient as a function of the electric fieldE, and9 denotes the
second derivative evaluated at Townsend’s breakdown fi
ET . We recall this argument in Sec. III B. The book@13# also
gives an explicit expression for the coefficientc2}a9(ET) in
the expansionU(I )5UT1c2I 2, however, without derivation
or reference. Exactly the same statements can be found m
than 60 years later in Raizer’s much read textbook@21#.
Kolobov and Fiala@29# assume thata950 marks the point
were negative differential conductivity disappears. A simi
small current expansion of the voltage about the Towns
limit has recently been performed in Ref.@19#, but with a
different result — here the leading correction is found to
linear in the current rather than quadratic. None of the t
results has been compared to numerical solutions. In
present paper, we will present yet another result for the sm
current expansion and evaluate it to higher orders. Our d
vation is a systematic expansion and in very good agreem
with our numerical results.

In general, our aim in the present paper is a consistent
thorough theoretical investigation of the simple classi
model of these discharges treated by so many aut
@13,18,19,21,22,26–30#. The exploration of the full param
eter space is possible, because the current-voltage chara
istics in appropriate dimensionless units depends essen
only on two parameters: the secondary emission coefficeg
and the dimensionless system sizeL}pd.

Of course, various extensions of the model can be con
ered: particle diffusion, attachment, nonlinear particle m
bilities, a field-dependent secondary emission rate or no
cal ionization rates. However, e.g., Boeuf@31# has argued
that for the transition from normal to abnormal glow, nonl
cal terms in the impact ionization reaction should be tak
into account through hybrid numerical models@32#, while in
the subnormal regime between Townsend and normal glo
local fluid model is considered sufficient@29#. This supports
the strategy to first seek a full understanding of the pred
tions of the classical model as a corner stone and star
point for any further work.

In the present work, we perform a systematic analyti
expansion of the voltage about the Townsend limit up
O(I 3), recovering the qualitative features of the soluti
from Refs.@13,21#: in particular, we find that a linear term i
currentI indeed is missing, and that the coefficientc2 indeed
is proportional toa9(ET), but with a different proportional-
ity constant. In fact, our coefficientc2 depends strongly on
the secondary emission coefficientg — it varies by almost
three orders of magnitude forg between 1026 to 1021 —
06641
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while the expression given in Refs.@13,21# does not depend
on g at all. We also evaluate the next orderO(I 3). Our
analytical result fits our numerical solutions very well with
its range of validity. The stationary states of the pattern for
ing system@11# are within the range of validity of this ex
pansion.

Furthermore, we explore the current-voltage characte
tics numerically beyond the range of the small current
pansion in the full parameter space. We show that within
classical model, there is not only the familiar subcritical b
furcation from Townsend to glow discharge for large valu
of pd, but for sufficiently small values ofpd, the bifurcation
is supercritical, in agreement with the scenario suggested
Druyvesteyn and Penning@22#. Furthermore, for intermedi-
ate values ofpd, there always exist completely unexpect
mixed bifurcations. This surprising finding implies that th
negative differential conductivity does not vanish wh
a9(ET)50 in the Townsend limit, as most authors assu
@21,29#, but only for smaller values ofpd. These statement
are true for all relevant values of secondary emissiong. Our
three-dimensional plots of the voltage as a function of
mensionless system sizeL}pd and currentI for a given
gas-electrode combination are done in the same manne
the old experimental plots by Pokrovskaya-Soboleva a
Klyarfeld @25#.

The paper is organized as follows: in Sec. II, we recall
classical model and its parameters, perform dimensio
analysis, and reformulate the stationary one-dimensio
problem as a boundary condition problem. In Sec. III, w
recall the Townsend limit and the classical argument of v
Engel and Steenbeck on the qualitative dependence of
small current expansion ona9. We then perform a new sys
tematic small current expansion up to third order in the to
current I 3 and determine the coefficients of the expans
explicitly. Sec. IV begins with our numerical strategy and
discussion of the parameters with their ranges. The par
eter dependence of the current-voltage characteristics on
tem sizeL}pd and secondary emission coefficientg is first
presented in the form of (I ,U,pd) plots for fixedg as in Ref.
@25#. We then present spatial plots of electron current a
field, and compare our numerical results to our analyti
small current expansion. Finally, we classify the bifurcati
structure in the complete relevant parameter space. Secti
contains a summary and an outlook onto the implications
this work for spatiotemporal pattern formation in barrier d
charges. Two appendices contain the proof of the uniquen
of the solution of the boundary value problem and details
the small current expansion in orderI 3.

II. THE CLASSICAL MODEL

A. Definition

We investigate the classical model for glow discharges
simple nonattaching gases in a planar, quasi-one-dimensi
geometry. The same model was previously investigated
e.g., Refs.@13,21,22,26–30# as discussed in the Introduction
The model consists of continuity equations for two charg
species, namely, electrons and positive ions with part
densitiesne andn1
0-2
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] tne1]XJe5~source!, ~1!

] tn11]XJ15~source!. ~2!

Their space charges can modify the externally applied fielE
through the Poisson equation

]XE5
e

«0
~n12ne!. ~3!

In the simplest approximation, diffusion is neglected and p
ticle current densitiesJe and J1 are approximated by drif
only

Je52nemeE, J15n1m1E, ~4!

where the drift velocity here is assumed to be linearly dep
dent on the local field with mobilitiesm1!me .

Two ionization processes are taken into account: thea
process of ionization by electron impact in the bulk of t
gas, and theg process of electron emission by ion impa
onto the cathode. In a local field approximation, thea pro-
cess is modeled as a local source term in the continuity e
tions

~source!5uJeuā~ uEu!, ā~ uEu!5Ap aS uEu
BpD , ~5!

wherep is the pressure of the gas.~The mobilities then scale
with inverse pressureme5m̄e /p and m15m̄1 /p.! In the
classical Townsend approximation@21#, the function

a~E!5e2(1/uEu)s
~6!

is characterized by the single parameters with typical values
s51/2 or 1 depending on the type of gas. Our numeri
results are for the most common values51.

The parameterg is the probability that a positive ion hit
ting the cathode leads to the emission of a free electron
the gas. For a discharge of lengthd with the anode atX50
and the cathode atX5d, the g process enters as bounda
condition atX5d

uJe~d,t !u5g uJ1~d,t !u, ~7!

while ions are absent at the anode

J1~0,t !50. ~8!

The electric potentialU between the electrodes is

U~ t !5F~0,t !2F~d,t !.0, E~X,t !52]XF. ~9!

With this convention, the average electric fieldE is positive.
Equations~1!–~9! define the classical model.

B. Reformulation and dimensional analysis

For the further calculation, it is useful to note, that t
continuity equations~1! and ~2! together with the Poisson
equation~3! in one dimension result in the spatial conserv
tion of the total electric current
06641
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«0] tE1e~J12Je!5J~ t !, ]XJ50, ~10!

and that the ion current densityJ1 ~4! with the help of Eq.
~3! can be completely expressed byJe andE,

J15
m1

me
S 2Je1

«0

e
meE]XED . ~11!

By dimensional analysis, the independent dimensionless
rameters of the model are identified. It is convenient to
troduce the following dimensionless times, lengths, a
fields

x5
X

X0
, t5

t

t0
,

s~x,t!5
ne~X,t !

n0
, E~x,t!5

E~X,t !

E0
, ~12!

where

X05
1

Ap
, E05Bp, ~13!

X0

t0
5meE05m̄eBp0, n05

e0E0

eX0
5

e0AB

e
p2.

The equations now take the form

]ts5]xj e1 j ea~E!, ~14!

]tE5 j ~t!2~11m! j e2mE]xE, ~15!

where j e5sE52eJe /@en0X0 /t0# is the dimensionless con
ductive current carried by the electrons,

j 5
J

en0X0 /t0
}

J

p2
and u5

U

E0X0
}

U

p0
~16!

are the dimensionless total current and potential, and

m5
m1

me
}p0 and L5

d

X0
5Apd ~17!

are the ratio of ion over electron mobility and the dimensio
less length of the gas discharge layer.

We here have also recalled the scaling properties w
pressurep, such that the pressure dependent similarity la
easily can be identified in the dimensionless results belo

C. The stationary problem

For a given dimensionless total currentj, mobility ratio
m, secondary emission coefficientg, functional forma(E)
as in Eq.~6! and dimensionless system lengthL, the station-
ary solutions of Eqs.~14! and ~15! are determined by

dxj e52a~E! j e , ~18!

mEdxE5 j 2~11m! j e , ~19!
0-3
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together with the boundary conditions~7!, ~8! that are con-
veniently expressed byj as

j e~0!5 j and j e~L !5 j e2Lg, ~20!

with

Lg5 ln
11g

g
. ~21!

We assume thata(E).0 and]a/]uEu.0 within the relevant
range of fieldsE. We prove in Appendix A that this deter
mines a unique solution for the two functionsj e(x) and
E(x). Finally, the integrated field yields the potential

u5E
0

L

E~x!dx, ~22!

and hence the current-voltage characteristicsu( j ).

D. A global conservation law

a„E(x)… is related toLg andL through the global conser
vation law

E
0

L

a„E~x!…dx5Lg . ~23!

for all solutions@ j e(x),E(x)# parametrized byj. This can be
seen by formally integrating Eq.~18! with the boundary con-
dition j e(0)5 j with the result

j e~x!5 je2*0
xa„E(x8)…dx8, ~24!

and by evaluating this solution with the boundary conditi
j e(L)5 je2Lg at L. The identity ~23! also can be found in
Refs.@13,21#.

It follows immediately that for a bounded function wit
a(E)<1 for all E as in Eq.~6!, the system sizeL needs to be
larger thanLg,

L>Lg ~25!

to sustain a stationary self-sustained discharge. This is
for arbitrary currentsj and space charge effects.

The identity~23! also plays a prominent role in the sma
current expansion about the Townsend limit, as we will s
now.

III. ANALYTICAL SMALL CURRENT EXPANSION

A. The Townsend limit

The well-known Townsend limit can be understood a
consequence of Eq.~23!: for currents j so small that]xE
'0 in Eq. ~19!, the electric field is a constantE(x)5ET .
Equation~23! then reduces to the familiar ‘‘ignition condi
tion’’ @21#

a~ET!L5Lg ⇔ g~e a(ET)L21!51. ~26!
06641
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The Paschen curve relates the potentialuT5ETL in the
Townsend limit to the system sizeL through a(uT /L)
5Lg /L. In particular, for the form of Eq.~6!, the Paschen
curve is

uT~L,g!5
L

ln1/s~L/Lg!
, ~27!

while the field is

ET~L,g!5
1

ln1/s~L/Lg!
. ~28!

In dimensionless form,uT and ET depend only on the sec
ondary emission coefficientg, system sizeL, and the param-
eters in Eq. ~6!. The Townsend fieldET increases monotoni
cally with decreasing system sizeL and diverges forL↓Lg .
The Paschen curveuT(L,g) ~27! has a minimum atL
5Lge1/s and diverges both forL↓Lg and forL→`.

B. The argument of von Engel and Steenbeck

In the old German textbook of von Engel and Steenbe
@13#, the following argument for an expansion about t
Townsend limit can be found: write the electric field as t
Townsend fieldET plus a perturbationD(x), and note that
the potential is the integrated field

E~x!5ET1D~x!, u5uT1E
0

L

D~x!dx. ~29!

The local impact ionization coefficient can then be expand
abouta(ET) as

a„E~x!…5a~ET!1a8~ET!D~x!1
a9~ET!

2
D2~x!1•••.

~30!

For fixed system sizeL and parameterLg , the global con-
straint ~23! relates different solutionsE(x) to a(ET)L
through

a~ET!L5E
0

L

a„E~x!…dx

5a~ET!L1a8~ET!E
0

L

D~x!dx

1
a9~ET!

2 E
0

L

D2~x!dx1•••, ~31!

where the expansion~30! of a was used in the second ste
This identity allows one to express*0

LD(x) dx by the higher
order terms*0

LDn(x) dx, n52,3, . . . ,.Insertion of this ex-
pansion into the definition ofu yields

u5uT2
a9~ET!

2a8~ET!
E

0

L

D2~x!dx1•••. ~32!
0-4
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SinceD2 is positive and sincea is assumed to be an increa
ing function ofE, the sign of the correction is determined b
the sign ofa9. This statement from Ref.@13# is recalled in
the recent literature@21,29#. It should be noted that the est
mate ~32! is valid as long asua (n)*Dndxu!ua9*D2dxu for
all n>3.

The question is now how to calculate*0
LD2(x)dx. In Ref.

@13#, a result is quoted referring to a long calculation who
details and reference are not given. The same result is g
more than 60 yr later in Ref.@21# in Sec. 8.3 with a sketch o
an argument and again without reference. The argumen
sumes thatuJ1u@uJeu throughout the discharge volume. Th
assumption is in disagreement with the boundary condi
~8!. A somewhat different argument based on a cons
space charge through the whole system is given in Ref.@23#.
In Ref. @21#, the electric field profile is assumed to beE(x)
}A12x/x0, while @23# it is assumed to beE(x)}(1
2x/x0) where the length scalex0 depends on the currentj.
In both cases, the breakdown of the approximation is de
mined from the field vanishing at the anode,E(L)'0. This
prescription yields no dependence ong at all, quite in con-
trast to our results below. The functional forms forE(x)
should be compared with our systematic analytical res
~33! and ~49! below ~note that we reversed the order of a
ode and cathode!, and with our numerically derived field
profiles in Figs. 4 and 5. They do not justify theAnsätze
given above.

Rather a consistentAnsatzis chosen in Ref.@19#, and the
structure of their expansion in terms ofe2Lg andLg is quite
similar to ours below. However, these authors fail to inc
porate the global conservation law~23!, and get a correction
already in linear order ofj, in contrast to the rigorous resu
~32! above.

C. A systematic expansion in smallj

We now perform a systematic expansion in powers oj
about the Townsend limit. In principle, this expansion can
extended to arbitrary order. We have evaluated it up
O( j 3). We write the field correction as a power series inj,
namely,D(x)5 jE1(x)1 j 2E2(x)1•••, and use the sameAn-
satzfor the currentj e(x)

E~x!5ET1 jE1~x!1 j 2E2~x!1•••, ~33!

j e~x!5 j i1~x!1 j 2i2~x!1•••, ~34!

and we introduce the short hand notation

a5a~ET!, a85a8~ET!, a95a9~ET!, . . . ~35!

in the Taylor expansion

a„E~x!…5a1a8„jE1~x!1 j 2E2~x!1•••…

1
a9

2
„jE1~x!1 j 2E2~x!1•••…

21•••. ~36!

Insertion of theAnsätze ~33! and ~34! into Eqs. ~18! and
ordering in powers ofj yields
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O~ j 1!:]xi1~x!52i1~x!a, ~37!

O~ j 2!:]xi2~x!52i2~x!a2i1~x!a8E1~x!, . . . . ~38!

For Eq.~19!, the same procedure gives

O~ j 0!:]xET50, ~39!

O~ j 1!:mET]xE1512~11m!i1~x!, ~40!

O~ j 2!:mET]xE21mE1]xE152~11m!i2~x!, . . . .
~41!

The boundary condition~20! at the anode (x50) yields

i1~0!51, i2~0!50, i3~0!50, . . . . ~42!

The boundary condition~20! at the cathode (x5L) most
conveniently is evaluated with the help of the global cons
vation law ~23!. Taking into account thatLg is independent
of j, the expanded form reads

O~ j 0!:aL5Lg , ~43!

O~ j 1!:E
0

L

E1~x!dx50, ~44!

O~ j 2!:E
0

LS a8E2~x!1a9
E 1

2~x!

2 Ddx50, ~45!

O~ j 3!:E
0

LS a8E31a9E1E21a-
E 1

3

3! Ddx50,

. . . ~46!

where the first equation~43! reproduces the ignition condi
tion ~26!. Finally, the potentialu from Eq. ~22! is

u5uT~L,g!1 j E
0

L

E1~x!dx1 j 2E
0

L

E2~x!dx

1 j 3E
0

L

E3~x!dx1•••. ~47!

The lowest orderuT(L,g) reproduces the Paschen cur
~27!. Eq. ~44! reveals immediately that the orderj 1 in u has
to be absent. For the orderj 2 in Eq. ~47!, the functionE1(x)
has to be calculated. First,

i1~x!5e2ax ~48!

is the solution of Eqs.~37! and~42!. i1(x) has to be inserted
into Eq. ~40! which now can be solved analytically up to
constant of integration. This constant is determined by
~44!. The result is

E1~x!5

ax2
Lg

2
1~11m!S e2ax2

12e2Lg

Lg
D

amET
. ~49!

For the contribution in orderj 2 to the potential, the calcula
tion of E1 is sufficient since with the help of Eq.~45!,
0-5
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E
0

L

E2~x!dx52
a9

2a8
E

0

L

E 1
2~x!dx52

a9

2a8

F~g,m!

a3m2E T
2

,

with the function

F~g,m!5
Lg

3

12
1~11m!~22Lg22e2Lg2Lge2Lg!

1~11m!2S 12e22Lg

2
2

~12e2Lg!2

Lg
D . ~50!

The function is plotted in Fig. 1. Within the interesting p
rameter regime, it depends strongly ong and invisibly onm.
Here we use the parameter range forg suggested by Ref
@21# and the maximal mobility ratiom5m1 /me50.0095 is
reached for the lightest molecules, namely, hydrogen.

The small current expansion of the current-voltage ch
acteristics is in this approximation

u5uT2S j

m D 2 ETa9

2a8

F~g,m!

t~aET!3
1O~ j 3!. ~51!

The range of validity of this expansion can be easily e
mated by inserting Eq.~49! into Eq. ~33!: the correction to
the field due to the current should not exceed half of
Townsend field, so

j &
ET

2 max
x

uE1~x!u
5

g<1 ET

2E1~L !
'

Lg@1mE T
2

L
. ~52!

In view of the very good fit of this expansion with ou
numerical results to be presented below in Fig. 6 , and in
view of the interesting bending structure of the numerica
derived current-voltage characteristics in Fig. 9 below,
seemed promising to calculate the next term of the expan
of order j 3

FIG. 1. Plot of F(g,m) as a function ofg in a double-
logarithmic plot. The dependence onm for realistic values 0<m
<0.0095 is too weak to be visible in the plot. However,F(g,m)
varies over almost four orders of magnitude as a function ofg.
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u5uT2S j

m D 2 ETa9

2a8

F~g,m!

~aET!3
1S j

m D 3

f 31O~ j 4!. ~53!

The functionf 3 can also be calculated fully analytically an
along the same lines: firsti2(x) is derived from Eq.~38! and
~42! and inserted into the o.d.e.~41! for E2(x). The equation
is solved, and the constant of integration is determined
Eq. ~45!. Then*0

LE3(x)dx is derived from Eq.~46! and the
explicit expressions forE1(x) and E2(x) and inserted into
Eq. ~47!. However, the result of this calculation is still con
siderably longer than Eq.~50! and does not show any simpl
structure. We therefore will not give the explicit form her
Rather, we summarize essential steps of the calculatio
more detail in Appendix B. The final steps were done
computer algebra~mathematica!. Some of the results forf 3
are shown in Fig. 6 and compared with numerical solutio
of the full problem~18!–~22!.

D. Discussion of the result

Translating back from dimensionless to physical units,
result reads

U~J!5UT2S J

«0m1
D 2E]E

2 ā

2]Eā
U

ET

F~g,m!

~āET!3

1S J

e0m1
D 3 f 3

~E0
2Ap!3

1•••,

with the dimensionless coefficient

E]E
2 ā

2]Eā
U

ET

5
ETa9

2a8
5

sE0
s2~s11!ET

s

2ET
s

. ~54!

The coefficient of J2 changes sign for ET5ET /E0
5@s/(s11)#1/s. With the help of Eq.~28!, this transition at
a950 can be located on the Paschen curve; it occurs at

Lcrit5Lge111/s. ~55!

This is always on the right branch of the Paschen cur
since the minimum is atL5Lge1/s.

The result agrees qualitatively with that given by Raiz
@21# and von Engel and Steenbeck@13#. In particular, the
leading order correction is also of ordera9( j /m)2. However,
the explicit coefficient ofj 2 differs: while the coefficient in
Refs. @13,21# does not depend ong at all, we find that the
dependence ong is essential, as the plot ofF in Fig. 1 clearly
indicates. In fact, within the relevant range of 1026<g
<100, this coefficient varies by almost four orders of ma
nitude. We remark that it indeed would be a quite surpris
mathematical result if the Townsend limit itself would d
pend ong as in Eq.~28!, but the small current expansio
about it would not. Ourg-dependent analytical result als
excellently fits our numerical solutions, as we will show
the following section.
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IV. NUMERICAL SOLUTIONS

We now discuss our numerical results for the voltageu as
a function of total currentj, secondary emission coefficien
g, mobility ratio m, and system sizeL, as resulting from
Eqs. ~18!–~22!. We will work with the Townsend approxi
mationa(E)5e21/uEu ~6! with s51 as the standard case@21#.

A. The numerical method

In Appendix A, we showed that the solutionu5u( j ) is
unique for fixedg, m, and L, and we proved the usefu
property that the system sizeL is a monotonically decreasin
function of the electric fieldE(0) at the anode,dL/dE(0)
,0 ~A4!, for fixed g, m, andj. The second observation lay
the basis for our numerical iteration procedure:

First the two o.d.e.’s~18!, ~19! are integrated fromx50
with the known initial valuej e(0)5 j and some guessed in
tial valueE(0) towards largerx. The equations are integrate
until for somex5 x̄, we find the valuej e( x̄)5 je2Lg that
should be assumed at the fixed system sizex5L. If x̄.L, a
larger value ofE(0) is chosen for the next iteration step, a
if x̄,L, a smaller E(0). Here a linear interpolation o
dx̄/dE(0) is used. This iteration loop is continued until th
boundary condition~20! at L is obeyed with sufficient accu
racy. The potentialf(x) is integrated together withj e(x) and
E(x) by adding the third o.d.e.]xf52E @33#. The voltageu
over the system isu5f(0)2f(L).

For the numerical integration of the o.d.e.’s, we used
lsodar.f routine of the ODE-PACK package from the fre
ware site netlib.org. It integrates initial value problems
sets of first order o.d.e.’s and chooses automatically the
propriate numerical method for stiff or nonstiff systems.
the same time, it locates the roots of any specified funct
We defined this function asj e(x)2 je2Lg which returns the
value x̄ for the next iteration loop with high precision.

B. ParametersL, g, and µ, and j Õµ scaling

The problem depends on the following parameters:
first one is the system sizeL which is proportional topd in
physical units. It can take arbitrary values; we explore a c
tinuous range ofL on both the left and the right branch of th
Paschen curve.

The second parameter is the secondary emission co
cientg which is determined by both the gas and the cath
surface. Increasingg decreases the minimum breakdow
voltage which is eLg as discussed after Eq.~55!. This
mechanism can be used for improving performance in te
nical applications such as plasma display panels Ref.@34#.
According to @21#, g can take values between 1026 and
1021, in extreme cases even larger. We show results ei
for the two extreme cases 1026 and 1021, or we show one
representative result forg51022.

The third parameter is the mobility ratiom5m1 /me of
the charged species. Since ions are much heavier than
trons,m is always much smaller than 1. The largest value
m50.0095 @21# is reached for the lightest molecule
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namely, hydrogen. As a standard, we use the valuem
50.0035 for nitrogen.

The functional form of the defining Eqs.~18!–~21! and of
the small current expansion~53! suggest thatu in leading
order does not depend onj andm separately, but only on the
scaling variablej /m and on the factor (11m)'1. This ob-
servation motivates our choice of the variablej /m in the
following figures. However, Fig. 7 will show that for larg
j /m in the abnormal glow regime and for large systemsL,
there is some smallm-dependent correction to this scalin
behavior. Reconsidering Eqs.~18!–~21!, this means that the
factor (11m) cannot simply be equated with 1 even form
,1022, but yields some correction. In physical terms, t
substitution of (11m) by 1 means that the anode fall regio
is eliminated, and we conclude that in large systems in
glow regime, the anode fall yields some small contribution
the current-voltage characteristics.

C. General features of the current-voltage characteristics

We now give an overview over our numerical results
the full parameter regime of the current-voltag
characteristicsu( j ) from Townsend up to abnormal glow
discharge as a function of rescaled currentj /m, system size
L, and secondary emission coefficientg. In Figs. 2 and 3, we
plot u as a function of j /m and L for g51026 and g
51021, respectively. The plots follow the style of an expe
mental plot in Ref.@25#, which is reproduced as Fig. 1 i
Ref. @29#. We are not aware of other numerical results rep
ducing this structure, apart form our Figs. 2 and 3.

Comparing the two figures for differentg, it can be noted
that on the one hand, the shapes look qualitatively sim
while on the other hand, the actual parameter regimes
potentials, currents, and system sizes vary by an orde
magnitude or more. Let us now consider the common f
tures.

In the limit of small currentj ~i.e., in the foreground of the
figures!, the curves saturate to a plateau value which actu
reproduces the Paschen curveu5uT(L,g) from Eq. ~27!.

Following u5u( j ) along a line of fixed system sizeL, we
get the current-voltage characteristics for this particular s
tem characterized by the two parametersL andg. For these
curvesu5u( j ), the following features can be noted.

For largerL, the voltageu first decreases for increasin
current j. This is the familiar Townsend-to-glow transitio
with negative differential conductivity. For largerj, the volt-
ageu increases again towards the regime of abnormal gl
In the minimum of the potential, there is no plateau in co
trast to experimental plots. This is because we solve
purely one-dimensional system without the possibility of
lateral growth of the glow discharge column.

For smaller values ofL, in particular, when starting from
the left branch of the Paschen curve, the voltage does
decrease for increasing current, but it increases immedia
We will discuss this different bifurcation structure in mo
detail at the end of this section.

D. Spatial profiles

It is instructive to study the spatial profiles of electro
current j e(x) and field E(x) for different system sizes. In
0-7
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DANIJELA D. ŠIJAČIĆ AND UTE EBERT PHYSICAL REVIEW E66, 066410 ~2002!
Figs. 4 and 5, we plot such profiles forL5eLg and for L
5e3Lg5eLcrit . The smaller system sizeeLg coincides with
the minimum of the Paschen curve, whileLcrit5e2Lg ~55! is
the system size wherea9 in Eq. ~53! changes the sign. So fo
L,Lcrit the voltage increases initially in the small curre
expansion around the Townsend limit, while forL.Lcrit it
decreases.

Note that in contrast to previous plots, e.g., in Ref.@21#,
our cathode is on the right hand side atx5L, because we
found it more convenient to work with a positive fieldE. The
electron current is normalized by the total current.

In each plot, the profiles for the two smallest current v
ues are well described by the small current expansion f
Sec. III. This is in agreement with the range of validity
these expansions ofj /m&0.08 for L5eLg5Lcrit /e or of
j /m&1.331023 for L5eLcrit , respectively, estimated ac
cording to Eq.~52!.

For larger currents, a separation into resistive column
the left and cathode fall on the right becomes pronounc
While in the smaller system, both regions take about eq
parts, in the larger system, the cathode fall takes only a s

FIG. 2. u as a function ofj /m ~on log scale! andL for the small
secondary emission coefficientg51026. The parameter range i
331027/m< j /m<531023/m for m50.0035 and 17.3<L<160.

FIG. 3. Plot as in Fig. 2, but now forg51021. The parameter
range is 1026/m< j /m<731022/m for m50.0035 and 3<L
<28.
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part of the volume on the right hand side.

E. Comparison of numerical and analytical results

Let us now compare the current-voltage characteris
corresponding with these profiles with our analytical resu
from Sec. III. In Fig. 6, the numerical results foru( j ) are
plotted as a thick solid line, and the analytical expansio
~51! and~53! up to second or third order inj /m as thin solid
and dashed lines, respectively. For the calculation of the t
order, the procedure described in Appendix B has been
lowed. Figure 6 shows that in particular the expansion up
order (j /m)3 gives a very good agreement within the ran
of validity of j /m&0.08 or 1.331023, respectively, accord-
ing to Eq.~52!.

FIG. 4. Spatial profilesj e(x)/ j and E(x) for system sizeL
5eLg at the minimum of the Paschen curve. Plotted are curves
j /m50.01, 0.1, 0.3, 1, 3. Other parameters,g50.01, m50.0035.

FIG. 5. The same as in the previous figure, but now for
larger system sizeL5e3Lg . The current now explores the smalle
valuesj /m51024, 1023, 331023, 0.01, 0.03, 0.1, 0.3.
0-8
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F. Corrections to j Õµ scaling

Figure 7 shows the current-voltage characteristics for
same two systems, but now up to larger values of the cur
than in Fig. 6. Actually, the same current range is explored
each system as in the corresponding Figs. 4 and 5.

In addition, in Fig. 7 we test thej /m scaling by plottingu
as a function ofj /m within the physical range ofm values,
including the limit of m50. It can be noted that for shor
systems or small currents, them correction is negligible; this
means that (11m) can be replaced by 1 in Eq.~19! without

FIG. 6. u( j ) for the systems from Figs. 4 and 5 in the sm
current limit: upper plotL5eLg , lower plot L5e3Lg , both with
g50.01. Numerical result~thick solid line!, analytical result~51!
up to second order inj /m ~thin solid line! and analytical result~53!
up to third order inj /m ~dashed line!.

FIG. 7. Current-voltage characteristics for the same two syst
as in Figs. 4, 5, and 6~upper plotL5eLg , lower plot L5e3Lg),
but now for a larger current range than in Fig. 6. Furthermo
besides the curves for the nitrogen value for the mobility ratiom
50.0035, also the curves form50.0095 ~hydrogen!, m50.001,
and the limiting valuem50 are shown.
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visible consequences. In contrast, for large systems and l
currents, there is a small, but visiblem correction to the
dominantj /m scaling.

G. Discussion of bifurcation structures

We now set the final step in the quantitative understand
of the current-voltage characteristics at the transition fr
Townsend to glow discharge. We characterize the transiti
as subcritical, mixed, or supercritical and locate them in
rameter space.

Figure 8 gives an overview over the different behavio
for g50.01. It corresponds to differentL-sections of plots as
in Figs. 2 and 3, but now withj /m plotted on a linear rathe
than a logarithmic scale. For the terminology of subcritic
or supercritical bifurcations, it should be noted thatj /m50
is a solution for arbitraryu. So the completeu axis is a
solution, too.

In the case ofL50.85Lcrit , there is a pure forward o
supercritical bifurcation:u increases monotonically asj /m
increases. In contrast, forL51.05Lcrit , the bifurcation is
purely subcritical: with increasingj /m, the voltage first de-
creases, and eventually it increases again. This subcri
behavior continues down toL5Lcrit5Lge2, where a9
changes the sign. So indeed, the sign change ofa9 in the
small current expansion determines the transition from s
critical to some other behavior. However, forL,Lcrit , the
system does not immediately enter the supercritical regi
but some unexpected mixed behavior can be seen: for
creasingj /m, the voltageu first increases, then it decreas
and then it increases again. We distinguish ‘‘mixI’’ where the
voltage minimum at finitej /m is smaller than the Townsen
voltage, and ‘‘mixII ’’ where it is larger.

Figure 9 shows a zoom into Fig. 8: a smaller range
current and of system sizes. The form of an upwards
rabola of the order (j /m)2 next to theu axis is well described

s

,

FIG. 8. The current-voltage characteristics for fixed parame
g50.01 andm50.0035 and different system sizes, measured
multiples ofLcrit5Lge2. Shown are all possible bifurcation struc
tures from supercritical up to the familiar subcritical case for va
ous values ofL.
0-9
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DANIJELA D. ŠIJAČIĆ AND UTE EBERT PHYSICAL REVIEW E66, 066410 ~2002!
by the analytical small current expansion of Sec. III. Ho
ever, in contrast to initial hopes, the turnover of the curve
j /m'0.02 is not covered by the small current expansion
to order (j /m)3 whose coefficient even changes sign with
the parameter range of Fig. 9. In fact, the range of validity
the expansion breaks down atj /m<0.017, just briefly before
the first interesting bending structure in the characteristic

Finally, in Fig. 10, the bifurcation behavior in the fu
parameter range ofg is explored. The transition from sub
critical to mixI always takes place whena9 changes the sign
i.e., at system sizeLcrit5Lge2. The transitions from mixI to
mixII and then further to supercritical occur at smaller re
tive system sizesL/Lcrit when the secondary emission coe
ficient g is smaller. All transitions occur on the right branc
of the Paschen curve, since its minimum is atL/Lcrit5e21

50.368.

FIG. 9. Zoom into Fig. 8 with smaller values ofj /m and system
sizesL. The range of validity of the analytical small current expa
sion ~53! is j /m<0.017.

FIG. 10. Complete overview over the bifurcation behavior
the current-voltage characteristics as a function of secondary e
sion coefficientg and system sizeL.
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V. SUMMARY AND OUTLOOK

We have studied the classical minimal model that crea
a Townsend or glow discharge, in one-dimensional appro
mation. The dimensionless current-voltage characteristicu
5u( j /m) depends on essentially only two parameters,
secondary emission coefficientg and the dimensionless sys
tem sizeL}pd. ~With j /m scaling, the further dependenc
on the small mobility ratiom5m1 /me is very weak and
becomes visible only for long systems in the normal a
abnormal glow regime.! Numerically, we have fully explored
the bifurcation structure as a function ofg andL. Besides the
familiar subcritical bifurcation structure of long systems, f
decreasing system sizeL, there is a sequence of curren
voltage characteristics, that we have called mixI and mixII ,
before the supercritical transition is reached. This gene
sequence is the same for all relevant values ofg while the
precise lengths where the transitions occur, depend ong, cf.
Fig. 10. Analytically, we have calculated the small curre
expansion about the Townsend limit in a systematic exp
sion. We found that the term of orderj /m is missing, and that
the term of order (j /m)2 indeed is proportional to the secon
derivative of the Townsend coefficienta9 according to the
old argument from von Engel and Steenbeck@13#, but with a
different, stronglyg-dependent proportionality constant. W
also have calculated the term of order (j /m)3. These analyti-
cal expansions are in very good agreement with our num
cal results within their predicted range of validity.

Of course, the study of this minimal model can only be
first step, and it has been suggested to include a numbe
additional features. First,g might not be constant; while the
dependenceg5g(I ,V) @18# on global parameters seems u
physical, the local dependenceg5g(E/p) has been sug-
gested@35# and experimentally tested@36#. Second, the par-
ticle mobilities might be field-dependentm65m6(E).
Third, diffusion was neglected, the approach was fully loc
and only one ion type was considered. However, our aim w
first to settle the predictions of the classical model in f
parameter space as a corner stone and starting point for
future extension that simultaneously also will increase
number of parameters.

The motivation for this work is the impressive variety
spatiotemporal patterns formed in short barrier dischar
@4–12#. The nonlinear element responsible for the sponta
ous pattern formation is believed to be a gas discharge in
parameter range of the present work. Parameter regions
negative differential conductivity~NDC! are generally be-
lieved to play a decisive role in the formation of the inst
bilities. Knowledge about NDC regions and the bifurcati
structure in the range of these experiments therefore a
condition for their future investigation, and conversely, pro
erties of the current-voltage characteristics might be dedu
from temporal oscillations or current constrictions. The
pattern formation processes will be the subject of our fut
studies.
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APPENDIX A: UNIQUENESS OF THE SOLUTION
OF THE BOUNDARY VALUE PROBLEM

Here we prove that the boundary value problem defin
by Eqs.~18!–~21! for fixed j, m, g, andL defines a unique
solution @ j e(x),E(x)# and hence a unique potentialu
5*0

LE(x)dx. This lays the ground for our analytical as we
as for our numerical procedure. We will keepj, m, and g
fixed within this appendix, and will discuss howE(x) is de-
termined byL and vice versa.

First Eq. ~18! for j e is integrated with initial condition
j e(0)5 j ~20! and inserted into Eq.~19!,

mE]xE5 j @12~11m!e2*0
xa„E(x)…dx#. ~A1!

The boundary condition~20! at L amounts to

E
0

L

a„E~x!…dx5Lg , ~A2!

where we assume that

a~E!.0 and ]a/]E.0 for all E.0. ~A3!

An initial condition E(0) defines a unique solutionE(x) of
Eq. ~A1! and hence a unique system sizeL through Eq.~A2!.
We will show below thatL is a monotonically decreasin
function of E(0),

dL/dE~0!,0 for fixed j ,m,g. ~A4!

This statement has two immediate consequences:~i! it shows
that E(0) and therefore alsoE(x) and u are uniquely deter-
mined byL; and (i i ) it lays the ground for our numerica
iteration procedure whereE(0) is fixed, and the resultingL is
calculated and compared to the trueL.

Why is the statement~A4! true? Compare two solution
E1,2(x) and suppose thatE1(x8).E2(x8) on some interval
0<x8<x. Then for the difference, we get from Eq.~A1! that

m

2 j ~11m!
~]xE 1

22]xE 2
2!5e2*0

xa„E2(x)…dx2e2*0
xa„E1(x)…dx>0,

~A5!

where the bound•••>0 is a direct consequence of Eq.~A3!.
So whenE1 is aboveE2 on some interval 0<x8<x, then at
the end of the interval, we have]xE 1

2.]xE 2
2, andE1 stays

aboveE2. As a consequence

E1~x!.E2~x! for all x>0, if E1~0!.E2~0!. ~A6!

Inserting this into Eq.~A2! and using Eq.~A3!, statement
~A4! results.
06641
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APPENDIX B: THE CORRECTION OF O„ j 3
… ABOUT

THE TOWNSEND LIMIT

We here sketch the essential elements of the calculatio
the third termj 3 of the expansion about the Townsend lim
first Eq. ~38! is integrated. With Eq.~48! for i1, Eq. ~49! for
E1, and the boundary condition~42!, we get

i2~x!52
a8e2ax

a2mET
F ~ax!2

2
1~11m!~12e2ax!

2axS Lg

2
1~11m!

12e2ax

Lg
D G . ~B1!

This result allows us now to integrateE2(x) in Eq. ~41! with
the rather lengthy result

E2~x!5
1

2a2m2E T
3 F ~11m!

a8ET

a

3H 2~ax!2e2ax1~11m!~e22ax22e2ax!

12S Lg

2
211~11m!

12e2Lg

Lg
D ~ax11!e2axJ

2axS Lg2ax12~11m!
12e2Lg

Lg
D

12~11m!S Lg

2
1~11m!

12Lg

Lg
2axDe2ax

2~11m!2e22axG1C. ~B2!

The constant of integrationC is determined through Eq.~45!,

E
0

L

E2dx52
a9

2 a8

F~g,m!

a3m2E T
2

. ~B3!

Finally, *0
LE3 dx is determined byE1 and E2 through Eq.

~46! as

E
0

L

E3 dx52
a9

a8
E

0

L

E1E2 dx2
a-

3!a8
E

0

L

E 1
3dx. ~B4!

Insertion of the result in Eq.~47! yields the third order ex-
pansion~53! with an explicit expression for the functionf 3.

All integrals can be performed analytically. However, t
results are lengthy and exhibit no simplifying structur
Therefore, we rather have performed the remaining integ
by computer algebra. Results are shown in Fig. 6.
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DANIJELA D. ŠIJAČIĆ AND UTE EBERT PHYSICAL REVIEW E66, 066410 ~2002!
@1# Piet Jonas, Ph. D. thesis, http://www.physik.uni-greifswald.
;jonas/Thesis/index.html~in German!, Greifswald, 1998.

@2# B. Bruhn, B.-P. Koch, and P. Jonas, Phys. Rev. E58, 3793
~1998!.

@3# B. Bruhn and B.-P. Koch, Phys. Rev. E61, 3078~2000!.
@4# Yu.A. Astrov, E. Ammelt, and H.-G. Purwins, Phys. Rev. Le

78, 3129~1997!.
@5# Yu.A. Astrov and Y.A. Logvin, Phys. Rev. Lett.79, 2983

~1997!.
@6# E. Ammelt, Yu.A. Astrov, and H.-G. Purwins, Phys. Rev. E55,

6731 ~1997!.
@7# Y.A. Astrov, I. Müller, E. Ammelt, and H.-G. Purwins, Phys

Rev. Lett.80, 5341~1998!.
@8# E. Ammelt, Yu.A. Astrov, and H.-G. Purwins, Phys. Rev. E58,

7109 ~1998!.
@9# L.M. Portsel, Y.A. Astrov, I. Reimann, and H.-G. Purwins,

Appl. Phys.81, 1077~1997!.
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