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Abstract Streamer ionization fronts are pulled fronts that propagate into a linearly
unstable state; the spatial decay of the initial condition of a planar front selects dy-
namically one specific long-time attractor out of a continuous family. A stability
analysis for perturbations in the transverse direction has to take these features into
account. In this paper we show how to apply the Evans function in a weighted space
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for this stability analysis. Zeros of the Evans function indicate the intersection of the
stable and unstable manifolds; they are used to determine the eigenvalues. Within this
Evans function framework, we define a numerical dynamical systems method for the
calculation of the dispersion relation as an eigenvalue problem. We also derive disper-
sion curves for different values of the electron diffusion constant and of the electric
field ahead of the front. Numerical solutions of the initial value problem confirm the
eigenvalue calculations. The numerical work is complemented with an analysis of
the Evans function leading to analytical expressions for the dispersion relation in the
limit of small and large wave numbers. The paper concludes with a fit formula for
intermediate wave numbers. This empirical fit supports the conjecture that the small-
est unstable wave length of the Laplacian instability is proportional to the diffusion
length that characterizes the leading edge of the pulled ionization front.

Keywords Pulled front · Stability analysis · Streamer ionization front · Dispersion
relation · Wave selection of Laplacian instability

Mathematics Subject Classification (2000) 37L15 · 34L16 · 35Q99

1 Introduction

1.1 The Streamer Phenomenon, Ionization Fronts and Laplacian Instability

A streamer is the first stage of electric breakdown in large volumes. It paves the way
for sparks and lightning, but also occurs without successive breakdown in phenomena
like sprite discharges above thunderclouds or in corona discharges used in numerous
technical applications. Recent reviews of relevant phenomena can be found in Ebert
et al. (2006) and Starikovskaia (2006). Considered as a nonlinear phenomenon, the
streamer is a finger-shaped ionized region that propagates by self-generated field en-
hancement at its tip into nonionized media. It has multiple scales as described in
Ebert et al. (2006); as a consequence one can investigate a hierarchy of models on
different levels of refinement that are reductions of each other. One can start from the
reduction from a particle to a continuum model (Li et al. 2007) to the reduction from
a continuum model to a moving boundary model (Brau et al. 2008) up to the for-
mulation of effective models for complete multiple-branched streamer trees without
inner structure. These trees are known as “dielectric breakdown models” (Niemeyer
et al. 1984, 1989; Pasko et al. 2001; Bawagan 1997). All these reductions are the
subject of current research; the present paper analyzes the stability of fronts in the
continuum model; the resulting dispersion relation provides a test case for moving
boundary approximations.

Specifically, simulations of the simplest continuum model for negative streamers
(Dhali and Williams 1985, 1987; Vitello et al. 1994) have established the formation
of a thin boundary layer around the streamer head. This layer is an ionization front
that also carries a net negative electric charge. (Positive streamers with positive net
charge occur as well, but are not the subject of the present study.) The configuration
of the charge in a thin layer leads to the above-mentioned field enhancement at the
streamer head that creates high ionization rates and electron drift velocities and hence
lets the streamer rapidly penetrate the nonionized region. More recent numerical in-
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vestigations show that the boundary layer or front can undergo a Laplacian instability
that lets the streamer branch (Arrayás et al. 2002; Rocco et al. 2002; Montijn et al.
2006a, 2006b). (We remark that an additional interaction mechanism in composite
gases like air somewhat modifies this picture (Luque et al. 2007) while the present
analysis applies to negative streamers in simple gases like pure nitrogen or argon.)

1.2 Moving Boundary Layers and the Transversal Instability of Pulled Fronts

The streamer can be considered as a phenomenon where an ionized phase is sepa-
rated from a nonionized phase by a moving thin front. This concept (Ebert et al. 1996;
Arrayás et al. 2002) implies that streamers show similar features as moving boundary
problems like viscous fingers, solidification fronts propagating into undercooled liq-
uids, growth of bacterial colonies or corals in a diffusive field of food etc. Quantitative
predictions within such models require a proper understanding of the front dynamics,
in particular, of their stability against perturbations in the transversal direction. This
stability determines whether perturbations of the front position will grow or shrink,
and in the long term whether the streamer will branch or not. As a first insight, one
would therefore like to analyze the stability of planar fronts against transversal per-
turbations, more specifically, the growth or shrinking rate s(k) of a linear perturbation
with transversal wavelength 2π/k.

The ionization front in the model for a negative streamer in a pure gas as treated
in Dhali and Williams (1985, 1987), Vitello et al. (1994), Ebert et al. (1996, 1997),
Arrayás et al. (2002), Rocco et al. (2002), Montijn et al. (2006a, 2006b), Brau et al.
(2008), including electron diffusion, creates a so-called pulled front that has a number
of peculiar mathematical properties: (i) for each velocity v ≥ v∗, there is a dynam-
ically stable front solution where the stability is conditional on the spatial decay of
the perturbation, hence the long time dynamics is selected by the spatial decay of
the initial front for z → ∞ (where z is the spatial variable along the front); (ii) the
convergence toward this front is algebraically slow in time (Ebert and van Saarloos
1998, 2000a); (iii) these slow dynamics are determined in the leading edge of the
front that, in principle, extends up to z → ∞ and in the dynamically relevant space
it will cause Fredholm integrals in the linear stability analysis to diverge, therefore
curvature corrections cannot be calculated in the established manner (Ebert and van
Saarloos 2000b); (iv) the unconventional location of the dynamically relevant region
ahead of the front also requires particular care in numerical solutions with adaptive
grid refinement (Montijn et al. 2006b). For the calculation of the dispersion relation,
which can be phrased as an eigenvalue problem for s(k), these features pose two chal-
lenges: first, the condition on the one-dimensional dynamical stability and algebraic
convergence properties, which are typical for pulled fronts, will lead to an apparently
degenerate eigenvalue problem. Second, in a neighborhood of the origin, the disper-
sion curve s(k) is near the continuous spectrum. Hence numerical calculations of the
eigenvalue problem with finite difference, collocation or spectral methods often lead
to spurious eigenvalues. A dynamical systems method involving stable and unstable
manifolds avoids this problem. The stable and unstable manifolds are at least two-
dimensional and an exterior algebra approach is employed to calculate the manifolds
accurately.
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In Ebert and Arrayás (2001), Arrayás et al. (2002), Arrayás and Ebert (2004),
the treatment of pulled fronts and more-dimensional stable/unstable manifolds was
circumvented by neglecting the electron diffusion that acts as a singular perturbation.
In this way, the leading edge of the front together with its mathematical challenges
is removed and the eigenvalue problem can be solved using shooting on the one-
dimensional stable/unstable manifolds. The resulting problem is characterized by two
length scales, namely the length scale 2π/k of the transversal perturbation, and the
longitudinal length scale of electric screening through the front that will be denoted
by �α . The dispersion relation in this case shows a quite unconventional behavior,
namely a short wavelength instability whose consequences are further investigated in
Meulenbroek et al. (2005) and Ebert et al. (2007). In the present paper, we analyze the
dispersion relation including diffusion, mastering the above challenges and deriving
quantitative results through a combination of analytical and numerical methods.

1.3 The Evans Function and Pulled Fronts

The Evans function is an analytic function whose zeros correspond to the eigenvalues
of a spectral problem, usually a linearization about a coherent structure like a front or
solitary wave. It was first introduced in Evans (1975) and generalized in Alexander
et al. (1990). In the last decade, the Evans function has been applied in the context
of many problems and various extensions and generalizations have been found, see
the review papers (Kapitula and Sandstede 2004; Sandstede 2002) and references
therein. One of the first uses of the Evans function in the analysis of a planar front
can be found in Terman (1990), which analyzes the stability of a planar wave in a
reaction diffusion system arising in a combustion model. In the current paper we
show how pulled fronts can be analyzed with the Evans function by using a definition
of the Evans function in a weighted space.

To define the Evans function, one writes the eigenvalue problem as a linear, first-
order, dynamical system with respect to the spatial variable z. Along the dispersion
curve s(k), the dynamical system has a solution that is bounded for all values of z.
This can be phrased in a more dynamical way as: the manifold of solutions that are
exponentially decaying for z → +∞ (stable manifold) and the manifold of solutions
that are exponentially decaying for z → −∞ (unstable manifold) have a nontrivial in-
tersection along the dispersion curve. The Evans function is a function of the spectral
parameters s and k, which vanishes if the stable and unstable manifolds have a non-
trivial intersection. Hence the Evans function can be viewed as a Melnikov function
or a Wronskian determinant, see also Kapitula (1999) or references in there.

In case of a pulled front, the definition of the stable manifold, and hence the Evans
function, is not straightforward. The temporal stability of the asymptotic state of the
pulled front at +∞ is conditional on the spatial decay of the perturbation. So this
decay condition should be included in the definition of the stable manifold, otherwise
the dimension of this manifold might be too large. We will show that this condition
can be built in the definition of the stable manifold by considering the stable manifold
in a weighted space. The Evans function is defined by using the weighted space for
the stable manifold. Hence the dispersion curve s(k) can be found as a curve of zeros
of this Evans function.



J Nonlinear Sci (2008) 18: 551–590 555

1.4 Organization of the Paper

In Sect. 2, we recall the model equations and the construction and properties of pla-
nar fronts. In particular, we summarize the multiplicity, stability, dynamical selection
and convergence rate of these pulled fronts. In Sect. 3, the stability of these fronts
is investigated as an eigenvalue problem for the dispersion relation s(k) of a linear
perturbation with wave number k. The dispersion relation depends on the far elec-
tric field E∞ and the electron diffusion D as external parameters. In the stability
analysis of the pulled ionization fronts, a constraint is imposed on the asymptotic
spatial decay rate of the perturbations. This constraint corresponds to the decay con-
dition for the one-dimensional stability, but has to be chosen quite subtly to avoid
problems with the algebraic decay of the front solution. A consequence of the decay
condition is that the eigenvalue problem (dispersion relation) is solved in a weighted
space. In this weighted space, the apparent degeneracies have disappeared, the sta-
ble and unstable manifolds of the ODE related to the eigenvalue problem are well
defined and intersections of those manifolds are determined by using the Evans func-
tion. In Sect. 3.4, dispersion relations for positive s are derived numerically for a
number of pairs of external parameters (E∞,D). The numerical implementation of
the Evans function uses exterior algebra to reliably solve for the higher dimensional
stable and unstable manifolds. In Sect. 4, the numerical dispersion relation is tested
thoroughly and confirmed with numerical simulations of the initial value problem
for the complete PDE model for the particular values (E∞,D) = (−1,0.1) where
D = 0.1 is typically used for nitrogen (Dhali and Williams 1985, 1987; Vitello et al.
1994; Ebert et al. 1996, 1997; Arrayás et al. 2002; Rocco et al. 2002; Montijn et al.
2006a, 2006b) and E∞ = −1 is a representative value for the electric field. The later
sections treat either general (E∞,D) analytically or a larger range of (E∞,D) nu-
merically.

In Sect. 5, explicit analytical asymptotic relations for the dispersion relation s(k)

are derived for the limits of small and large wave numbers k. For k = 0, two explicit
eigenfunctions are known (which are related to the translation and gauge symme-
try in the problem). These explicit solutions lead to expressions for the solutions on
the stable manifold for small wave numbers. The interaction between the slow and
fast behavior on this manifold leads to an asymptotic dispersion relation for small k.
For large wave numbers, the eigenvalue problem for the dispersion relation is dom-
inated by a constant coefficient eigenvalue problem. An eigenvalue exists only if
this constant coefficient system has no spectral gap. Using exponential dichotomies
and the roughness theorem, the asymptotics of the dispersion relation is derived by
a contradiction argument. In Sect. 6, these asymptotic limits are tested on the nu-
merical data derived in Sect. 3. It is found that the asymptotic limit for small k fits
the data very well, while the asymptotic limit for large k is not yet applicable in
the range where s(k) is positive. After a discussion of relevant physical scales, we
suggest a fit formula joining the analytical small k asymptotic limit with our phys-
ically motivated guess. This formula fits the numerical data well for practical pur-
poses and strongly supports the conjecture that the smallest unstable wavelength is
proportional to the diffusion length that determines the leading edge of the pulled
front.
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2 The Streamer Model and Its Ionization Fronts

In this section we describe the streamer model and summarize the features of planar
ionization fronts as solutions of the purely one-dimensional model as a preparation
for the stability analysis in the dimensions transversal to the front. In particular, we
recall the multiplicity of the front solutions that penetrate a linearly dynamically un-
stable state, and the dynamical selection of the pulled front.

2.1 Model Equations

We investigate negative fronts within the minimal streamer model, i.e., within a “fluid
approximation” with local field-dependent impact ionization reaction in a nonattach-
ing gas like argon or nitrogen (Ebert et al. 1996, 1997; Ebert and Arrayás 2001; Ar-
rayás et al. 2002; Rocco et al. 2002). The equations for this model in dimensionless
quantities are

∂t σ − D∇2σ − ∇ · (σE) = σf
(|E|), (2.1)

∂t ρ = σf
(|E|), (2.2)

∇ · E = ρ − σ, E = −∇φ, (2.3)

where σ is the electron and ρ the ion density, E is the electric field and φ is the elec-
trostatic potential. For physical parameters and dimensional analysis, we refer to dis-
cussions in Ebert et al. (1996, 1997), Ebert and Arrayás (2001), Arrayás et al. (2002),
Rocco et al. (2002). The electron current is approximated by diffusion and advection
−D∇σ −σE. The ion current is neglected because the front dynamics takes place on
the fast time scale of the electrons and the ion mobility is much smaller. Electron–ion
pairs are assumed to be generated with rate σf (|E|) = σ |E|α(|E|), where σ |E| is
the absolute value of electron drift current and α(|E|) the effective impact ionization
cross-section within a field E. Hence f (|E|) is

f
(|E|) = |E|α(|E|). (2.4)

For numerical calculations, we use the Townsend approximation α(|E|) = e−1/|E|
(Ebert et al. 1996, 1997; Ebert and Arrayás 2001; Arrayás et al. 2002; Rocco et al.
2002). For analytical calculations, an arbitrary function α(|E|) ≥ 0 can be chosen
where we assume that α(0) = 0 and therefore f (0) = 0 = f ′(0). We will furthermore
assume that α(|E|) is monotonically increasing in |E|, this is a sufficient criterion for
the front to be a pulled one (Ebert and van Saarloos 2000a). The electric field can be
calculated in electrostatic approximation E = −∇φ.

Mathematically, the model (2.1)–(2.3) describes the dynamics of the three scalar
fields σ , ρ and φ. It is a set of reaction-advection-diffusion equations for the charged
species σ and ρ coupled nonlinearly to the Poisson equation of electrostatics.

2.2 Two Types of Stationary States

It follows immediately from (2.1)–(2.3) that there can be two types of stationary states
of the system, one characterized by σ ≡ 0 and the other by E ≡ 0 (as f (|E|) = 0
implies |E| = 0).
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The stationary state with σ ≡ 0 is the nonionized state. As the dynamics is only
carried by the electrons σ , there is no temporal evolution for σ ≡ 0 even if the ion
density ρ has an arbitrary spatial distribution. The electric field E = −∇φ then is
determined by the solution of the Poisson equation −∇2φ = ρ and by the boundary
conditions on φ. In certain ionization fronts in semiconductor devices (Rodin et al.
2002), it is essential that the equivalent of ρ does not vanish in the nonionized region.
In the gas discharges considered here, on the other hand, it is reasonable to assume
that the nonionized initial state with σ ≡ 0 also has a vanishing ion density ρ ≡ 0,
and therefore no space charges.

The stationary state with vanishing electric field E ≡ 0 describes the ionized, elec-
trically screened charge neutral plasma region behind an ionization front, the interior
of the streamer. From E ≡ 0 the identity ∇ · E = 0 follows immediately, and there-
fore electron and ion densities have to be equal σ = ρ. In the absence of a field,
the electrons diffuse ∂tσ = D∇2σ while the ions stay put ∂tρ = 0. Therefore, these
densities can stay equal only if ∇2ρ = 0. Simulations (Dhali and Williams 1985;
Dhali and Williams 1987; Vitello et al. 1994; Ebert et al. 1996; Ebert et al. 1997;
Arrayás et al. 2002; Rocco et al. 2002; Montijn et al. 2006a; Montijn et al. 2006b)
show that this occurs typically only if ρ is homogeneous (though counter examples
can be constructed).

2.3 Planar Ionization Front Solutions

An ionization front separates such different outer regions: an electron-free and non-
conducting state with an arbitrary electric field E∞ ahead of the front from an ionized
and electrically screened state with arbitrary, but equal density σ− = ρ− of electrons
and ions. In particular, we are interested in almost planar fronts propagating into a
particle-free region ρ = σ = 0 (where therefore ∇2φ = 0), and we study negative
fronts, i.e., fronts with an electron surplus that propagate into the electron drift direc-
tion towards an asymptotic electric field E∞ < 0. For a planar front, it follows from
∇2φ = −∇ · E = 0 that the electric field ahead of the front is homogeneous.

We assume that the front propagates into the positive z direction; the electric field
ahead of a negative front then is E → E∞ẑ, E∞ < 0, for z → ∞. (Here ẑ is the
unit vector in the z-direction.) It is convenient to introduce the coordinate system
(x, y, ξ = z − vt) moving with the front velocity v = vẑ. A planar, uniformly trans-
lating front is a stationary solution in this comoving frame, hence it depends only on
the comoving coordinate ξ , and will be denoted by a lower index 0. A front satisfies

D∂2
ξ σ0 + (v − ∂ξφ0)∂ξσ0 + σ0(ρ0 − σ0) + σ0f0 = 0,

v∂ξρ0 + σ0f0 = 0,

∂2
ξ φ0 + ρ0 − σ0 = 0,

(2.5)

where f0 = f (|E0|). This system can be reduced to three first-order ordinary dif-
ferential equations. First, due to electric gauge invariance, the system does not de-
pend on φ0 explicitly, but only on E0 = −∂ξφ0. Using the variable E0 instead of
φ0 reduces the number of derivatives by one. Second, electric charge conservation
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∂tq + ∇ · j = 0 can be rewritten in comoving coordinates for a uniformly translat-
ing front as −v∂ξq0 + ∂ξ j0 = 0. Therefore it can be integrated once −vq0 + j0 = c,
∂ξ c = 0. In the present problem, the space charge is q0 = ρ0 − σ0 and the electric
current is j0 = −D∂ξσ0 − σ0E0. Furthermore, as there is a region with vanishing
densities σ0 = 0 = ρ0 ahead of the front, the integration constant c vanishes in this
region, and therefore everywhere. Thus the planar front (2.5) can be written as

D∂ξσ0 = v(ρ0 − σ0) − E0σ0,

v∂ξρ0 = −σ0f
(|E0|

)
, (2.6)

∂ξE0 = ρ0 − σ0,

where ∂ξφ0 = −E0 decouples from the other equations. The planar front equations
imply that E0(ξ) < 0 for all ξ when E∞ < 0 (Ebert et al. 1997).

The fronts connect the states
⎛

⎝
σ0
ρ0
E0

⎞

⎠ ξ→+∞−→
⎛

⎝
0
0

E∞

⎞

⎠ and

⎛

⎝
σ0
ρ0
E0

⎞

⎠ ξ→−∞−→
⎛

⎝
σ−
σ−
0

⎞

⎠ , (2.7)

and the electrostatic potential φ0 connects φ− (for ξ → −∞) with −E∞ξ + φ+ (for
ξ → +∞). The ionization density σ− behind the front and the electrostatic potential
difference φ+ − φ− have to be determined for an arbitrarily chosen electric field E∞
ahead of the front and for an arbitrary, but sufficiently large, front velocity v. (We
remark that only the potential difference φ+ −φ− matters due to the gauge invariance
of the electrostatic potential as one easily verifies with the equations.) The fronts can
be constructed as heteroclinic orbits in a three-dimensional space as demonstrated in
Ebert et al. (1997).

The diffusion constant D is obviously a singular perturbation. For D = 0, the front
equations can be solved analytically (Ebert et al. 1997; Arrayás and Ebert 2004; Brau
et al. 2008), i.e., one can find explicit expressions for the particle densities σ0[E0],
ρ0[E0] and for the front coordinate ξ [E0] as a function of the electric field E0. For
the negative fronts treated here, the front is continuous as a function of D and the
limit D → 0 exists and equals the value of the front at D = 0, while for positive
fronts (E∞ > 0), it is singular (Ebert et al. 1997).

2.4 Multiplicity of Front Solutions, Pulled Fronts and Dynamical Selection

The nonionized state (σ,ρ,E) = (0,0,E∞) with a nonvanishing electric field E∞
is linearly unstable under the temporal dynamics of the PDE (2.1)–(2.3). In fact, this
spatial region ahead of the front dominates the dynamics, see the discussion in Ebert
et al. (1997), Ebert and van Saarloos (2000a). Therefore, for fixed E∞, there is a
continuous family of uniformly translating solutions, parameterized by the velocity
v ≥ v∗ (Ebert et al. 1996, 1997; Ebert and van Saarloos 1998, 2000a), where

v∗(E∞) = |E∞| + 2
√

Df
(|E∞|). (2.8)
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The dynamics of uniformly translating fronts with velocity v > v∗ are dominated by
a flat spatial profile in the leading edge of the front

σv(ξ)
ξ→∞∼ e−λξ with λ < �∗ =

√
f (|E∞|)

D
, (2.9)

where velocity v and decay rate λ are related through

v(E∞, λ) = |E∞| + Dλ + f (E∞)

λ
, (2.10)

and therefore v(E∞, λ) > v∗(E∞) ≡ v(E∞,�∗) for λ 
= �∗. The spatial profile (2.9)
with λ < �∗ cannot build up dynamically from some initial condition with larger λ;
and it will destabilize if perturbed with an initial condition with smaller λ, therefore
such flat and fast fronts can be approached dynamically only by initial conditions
with exactly the same profile (2.9) in the leading edge. For a thorough discussion of
this dynamics, we refer to Ebert and van Saarloos (2000a).

In practice, the continuum approximation for the electron density breaks down for
very small densities in the leading edge and the initial electron distribution satisfies a
decay condition of the form

lim
ξ→∞σ(x, y, ξ, t = 0)eλξ = 0 for all λ < �∗, (2.11)

if the penetrated state is really non-ionized. Therefore the velocity v∗ is called the
“selected” one, because it is the generic attractor for most physical initial conditions.
Mathematically speaking, the profile with velocity v∗ (the selected front) is the only
profile that can build up dynamically from steeper initial conditions.

Therefore the condition (2.11) on the spatial decay of the initial electron distrib-
ution excludes all front solutions with velocity v > v∗ as long time attractors of the
dynamics. If the criterion (2.11) is satisfied, then the selected front with speed v∗ is
dynamically stable and is approached with the universal algebraic convergence rate
in time (Ebert and van Saarloos 1998, 2000a)

v(t) = v∗ − 3

2�∗t
+ O

(
1

t3/2

)
. (2.12)

However, without the spatial decay condition on the initial condition, the selected
front is formally not stable (although this is physically irrelevant). This will lead to
specific problems and solutions in the transverse stability analysis presented in the
next section.

The spatial profile of the electron distribution in the selected front is

σv∗(ξ)
ξ→∞∼ (aξ + b)e−�∗ξ , a > 0. (2.13)

To summarize, if the analysis is restricted to initial conditions with a sufficiently rapid
spatial decay in the electron densities (2.11), then the fronts have only one free exter-
nal parameter, namely the field E∞; it determines the asymptotic front velocity (2.8)
and profile (2.13) after sufficiently long times. Furthermore, the equivariance in the
system gives that the position of the front and its electrostatic potential are free inter-
nal parameters.



560 J Nonlinear Sci (2008) 18: 551–590

2.5 Full Spatial Profiles of the Selected Pulled Planar Front

The spatial decay behind the front will be important in the analysis as well, therefore
we recall the basic behavior. For ξ → −∞, the electron density approaches

σv∗(ξ)
ξ→−∞= σ− + ceλ−ξ , c > 0, (2.14)

and the electric field decays with the same exponent E(ξ) = −(c/λ−)eλ−ξ . For
D = 0,

σ−(E∞,D = 0) =
∫ |E∞|

0
α(x)dx (2.15)

was derived in Ebert et al. (1997). For D > 0, σ− decreases by a correction of order
of D, more precisely,

σ−(E∞,D) = σ−(E∞,0) + O(D), σ−(E∞,D > 0) < σ−(E∞,0) (2.16)

was proved in the Appendix of Li et al. (2007). The eigenvalue λ− is given by

λ− =
√

v∗2 + 4Dσ− − v∗

2D
, (2.17)

where both v∗ and σ− depend on E∞ and D. For small D, λ− can be approximated
as

λ− = σ−

v∗ + O(D) =
∫ |E∞|

0

α(x)dx

|E∞| + O(
√

D). (2.18)

As an illustration, the spatial profiles of electron and ion density and the electric
field of the selected front solution for a range of fields E∞ and diffusion constants D

are plotted in Fig. 1.

3 Numerical Calculation of the Dispersion Relation

First we will introduce the transversal perturbation setting and discuss an apparent
degeneracy of the dispersion relation. However, it turns out that the constraint on
the spatial decay of the electron density “selects” a single dispersion relation for
every far field E∞. This relation then is calculated numerically based on dynamical
systems techniques involving intersections of stable and unstable manifolds. Results
for different fields E∞ and diffusion constants D are presented.

3.1 Linear Transversal Perturbations of Planar Fronts

Suppose that there is a linear transversal perturbation of the uniformly translating
front

σ(x, y, ξ, t) = σ0(ξ) + δσ̄1(x, y, ξ, t) + O
(
δ2), ξ = z − v∗t, (3.1)
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Fig. 1 The pulled planar front solutions on the left for varying E∞ = −1, −5 and −10 and fixed
D = 0.1, and on the right for fixed E∞ = −1 and varying D = 0.1, 0.01 and 0. The upper pan-
els show scaled electron and ion densities σ0(ξ)/σ−(E∞,D) and ρ0(ξ)/σ−(E∞,D) and the lower
panels show the corresponding scaled electric fields E0(ξ)/|E∞| as a function of the spatial coordi-
nate ξ . The fronts are displayed in a staggered way. The normalization factors σ−(E∞,D) in the up-
per panels are σ−(−1,0) = 0.149, σ−(−1,0.01) = 0.148, σ−(−1,0.1) = 0.144, σ−(−5,0.1) = 2.832,
σ−(−10,0.1) = 7.169

and similarly for ρ and φ. The linearized equation for σ̄1, ρ̄1 and φ̄1 follows from
(2.1)–(2.3). By decomposing the perturbations into Fourier modes in the transversal
directions x and y, by using isotropy in the transversal (x, y) plane and by using a
Laplace transformation in t , the ansatz

(
σ̄1, ρ̄1, φ̄1

) = eikx+st (σk, ρk,φk)(ξ) (3.2)

can be used for each Fourier component. The resulting equation can be written as
a linear first-order system of ODEs, using the extra variables τk = ∂ξσk and Ek =
−∂ξφk . Introduce w = (τk, σk, ρk,Ek,φk) and the linear system is given by

∂ξ w = M(ξ ;E∞, k, s)w,

with M =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−E0+v∗
D

2σ0−ρ0−f0+s+Dk2

D
−σ0

D
− ∂ξ σ0−σ0f

′
0

D
0

1 0 0 0 0

0 − f0
v∗ s

v∗
σ0f

′
0

v∗ 0

0 −1 1 0 −k2

0 0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (3.3)



562 J Nonlinear Sci (2008) 18: 551–590

In the matrix M , the abbreviated notations f0 = f (|E0|) and f ′
0 = ∂ηf (η)|η=|E0| are

used. For the terms with f ′
0, we have used that E0 < 0, hence E0|E0| = −1.

As the matrix M depends on k2, but not on k itself, the matrix is invariant under
the transformation k → −k. Thus if s(k) = s∗, then also s(−k) = s∗ and vice versa.
Therefore it is sufficient to determine the dispersion relation for k > 0 and this will
imply the relation for k < 0. From now on, we will use the convention that k > 0.
Note that the invariance implies only that the dispersion relation will be a function
of |k|. As will be shown later, the dispersion relation is not an analytic function of k

near k = 0 and its expansion near k = 0 is linear in |k|.
For future use, we remark that the linearization matrix M does not involve any

ξ -dependent terms in the fourth and fifth row and implies that Ek and φk are related
by E′

k = −φk . Thus the Ek-component of any solution of the linearized system (3.3)
can be expressed as an integral

Ek(ξ) = c1e
kξ + c2e

−kξ + 1

2

∫ ξ

ξ0

[
ek(ξ−η) + e−k(ξ−η)

][
ρk(η) − σk(η)

]
dη, (3.4)

where the constants c1 and c2 are determined by the value of Ek and φk at ξ = ξ0.

3.2 Stable and Unstable Manifolds and Degeneracy of the Dispersion Relation

The linearized problem (3.3) is a spectral problem with the spectral parameters s

and k. If the asymptotic matrices M±(E∞, k, s) = limξ→±∞ M(ξ ;E∞, k, s) exist
and are hyperbolic (i.e., no eigenvalues on the imaginary axis), then the system (3.3)
has a bounded solution if and only if the unstable manifold from ξ = −∞ and the
stable manifold from ξ = ∞ have a nontrivial intersection. So we will focus in this
section on determining the stable and unstable manifolds.

The behavior of the unstable manifold at the back of the front is given by the
asymptotic matrix

M−(E∞, k, s) = lim
ξ→−∞ M(ξ ;E∞, k, s)

=

⎛

⎜⎜
⎜⎜⎜⎜
⎝

− v∗
D

σ−+s+Dk2

D
−σ−

D
0 0

1 0 0 0 0

0 0 s
v∗ 0 0

0 −1 1 0 −k2

0 0 0 −1 0

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

For s > 0 and k 
= 0, this matrix has two negative and three positive eigenvalues:

±k,
s

v∗ , μ−± = − v∗

2D
±

√
v∗2 + 4D(σ− + s + Dk2)

2D
. (3.5)

Thus the unstable manifold is three-dimensional. We remark that μ−+(s = 0 = k) is
identical to the spatial decay rate λ− (2.17) behind the unperturbed front.
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Finding the stable manifold ahead of the front is less straightforward. Nor-
mally the stable manifold ahead of the front would be characterized by the matrix
limξ→+∞ M(ξ ;E∞, k, s). For s > 0 and s + Dk2 < f (E∞) this matrix exists and
has two positive and three negative eigenvalues:

±k,
s

v∗ , −�∗ ±
√

s + Dk2

D
= −√

f (E∞) ± √
s + Dk2

√
D

. (3.6)

Thus the stable manifold is three-dimensional and a dimension count gives that the
intersection of stable and unstable manifold is generically one-dimensional. So for
small values of s and k, a continuous family of eigenvalues seems to exist. This
feature is related to the instability of the asymptotic state at +∞, to the continuous
family of uniformly translating solutions for all v ≥ v∗(E∞), and to the instability
of fronts against perturbations with smaller spatial decay rate λ, as discussed in the
previous section. The continuous family of eigenvalues s for fixed wave number k

is eliminated by applying the analysis only to fronts with a sufficiently rapid spatial
decay (2.11). This condition will be imposed in the definition of the stable manifold;
it will make the spectrum discrete.

Define the scaled vector

w̃ = Dw, D = diag
(
e(�∗−β)ξ , e(�∗−β)ξ ,1,1,1

)
, (3.7)

where β ∈ (0,�∗) will be fixed later and depend on k and �∗. The freedom in the
choice of β is reminiscent of the fact that the decay condition holds for any λ < �∗,
but not for λ = �∗. The system for w̃ is

w̃ξ = M̃(ξ ;E∞, k, s)w̃, (3.8)

with

M̃ = D · M · D−1 + (∂ξ D) · D−1

=

⎛

⎜⎜⎜⎜⎜
⎝

−E0+v∗
D

+ �∗ − β
2σ0−ρ0−f0+s+Dk2

D
− σ0

D
e(�∗−β)ξ − ∂ξ σ0−σ0f ′

0
D

e(�∗−β)ξ 0

1 �∗ − β 0 0 0

0 − f0
v∗ e−(�∗−β)ξ s

v∗ −−σ0f ′
0

v∗ 0

0 −e−(�∗−β)ξ 1 0 −k2

0 0 0 −1 0

⎞

⎟⎟⎟⎟⎟
⎠

.

Note that if β = 0, then the asymptotic matrix ahead of the front (at ξ = +∞)
does not exist because e�∗ξ σ0(ξ) grows linearly in ξ according to (2.13). To get an
asymptotic matrix ahead of the front, it is necessary that 0 < β < �∗. In this case,
the asymptotic matrix is

M̃+(E∞, k, s) = lim
ξ→∞ M̃(ξ ;E∞, k, s)
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=

⎛

⎜⎜⎜⎜⎜
⎜
⎝

−�∗ − β
−f∞+s+Dk2

D
0 0 0

1 �∗ − β 0 0 0

0 −f∞
v∗ s

v∗ 0 0

0 0 0 0 −k2

0 0 0 −1 0

⎞

⎟⎟⎟⎟⎟
⎟
⎠

,

where f∞ = f (|E∞|). The matrix M̃+ has the eigenvalues

±k,
s

v∗ , and μ+± = −β ±
√

s + Dk2

D
. (3.9)

Hence for s > 0 and 0 < β < min(�∗, k
√

1 + s/(Dk2)), there are two negative and
three positive eigenvalues. Thus the stable manifold of (3.8) is two-dimensional.

For the original unscaled system (3.3) this means that only the two-dimensional
submanifold given by D−1 acting on the stable manifold of (3.8) is relevant for
the transverse instability. This submanifold will be called the stable manifold
of (3.3) from now on. With this convention, the dispersion relation is a well-defined
curve s(k) and the curve is such that at s = s(k), the linearized system (3.3) has a
bounded solution which satisfies the spatial decay condition (2.11). Note that for both
asymptotic matrices M̃+ and M−, the eigenvalues ±k become a degenerate eigen-
value 0 at k = 0. This leads to square root singularities and it can be expected that
the dispersion relation s(k) will be a function of

√
k2 = |k| for k is small. This will

be confirmed in Sect. 5.

3.3 The Evans Function for the Transverse Stability Problem

The occurrence of an intersection of the stable and unstable manifolds will be mea-
sured with the Evans function. Our numerical method to determine the dispersion
curve as an eigenvalue problem is based on a definition of the Evans function in an
exterior algebra framework and uses similar ideas as in Allen and Bridges (2002),
Brin (2001), Brin and Zumbrun (2002), Blyuss et al. (2003), Bridges et al. (2003),
Derks and Gottwald (2005). The approach of following the stable/unstable manifolds
at ξ = ±∞ with a standard shooting method and checking their intersection using
the Evans function, works only if these manifolds are one-dimensional or have codi-
mension one; in the present model, this is the case in the singular limit D = 0 and a
shooting method was used in Arrayás and Ebert (2004). Otherwise, any integration
scheme will inevitably just be attracted by the eigendirection corresponding to the
most unstable (stable) eigenvalue. Exterior algebra can be used to avoid this problem
for higher dimensional manifolds and to preserve the analytic properties of the Evans
function. Recently, a different method to calculate the Evans function for higher di-
mensional manifolds has been proposed in Humpherys and Zumbrun (2006). This
method uses a polar coordinate approach and looks like a more suitable method for
very high-dimensional problems.

To calculate the evolution of the two-dimensional stable and three-dimensional
unstable manifold in a reliable numerical way, we will use the exterior algebra spaces
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∧2
(C5) and

∧3
(C5), respectively. The advantage of these spaces is that in

∧l
(Cn),

an l-dimensional linear subspace of C
n can be described as a one-dimensional object,

being the l-wedge product of a basis of this space. Also, the differential equation on
R5 (or C5) induces a differential equation on the spaces

∧l
(C5):

Wξ = M(l)(ξ ;E∞, k, s)W, W ∈ ∧l
(C5). (3.10)

Here the linear operator (matrix) M(l) is defined on a decomposable l-form w1 ∧· · ·∧
wl , wi ∈ C

5, as

M(l)(w1 ∧ · · · ∧ wl ) := (Mw1) ∧ · · · ∧ wl + · · · + w1 ∧ · · · ∧ (Mwl ), (3.11)

and it extends by linearity to the nondecomposable elements in
∧l

(C5). General
aspects of the numerical implementation of this theory can be found in Allen and
Bridges (2002). The general form of the matrices M(2) and M(3) can be found in the
Appendix.

To determine the three-dimensional unstable manifold for ξ ∈ (−∞,0], we will
use (3.10) with l = 3. Since the induced matrix M(3)(ξ ;E∞, k, s) inherits the differ-
entiability and analyticity of M(ξ ;E∞, k, s), the following limiting matrix exists:

M(3)
− (E∞, k, s) = lim

ξ→−∞ M(3)(ξ ;E∞, k, s).

The set of eigenvalues of the matrix M(3)
± (E∞, k, s) consists of all possible sums

of three eigenvalues of M±(E∞, k, s) (see Marcus 1975). Therefore, for s > 0 and
k 
= 0, there is an eigenvalue ν− of M(3)

− , which is the sum of the three positive
eigenvalues of M−, i.e.,

ν− = k + s

v∗ − v∗

2D
+

√
v∗2 + 4D(σ− + s + Dk2)

2D

(note that the subscript “−” in ν− refers to exponentially decaying behavior at −∞,
not to the sign of ν−, which is obviously positive). The eigenvalue ν− is simple and
has real part strictly greater than any other eigenvalue of M(3)

− (as M− is hyperbolic).

We denote the eigenvector associated with ν− as W−
e , i.e., M(3)

− W−
e = ν−W−

e . This
vector can always be constructed in an analytic way (see Kato 1984, pp. 99–101;
Bridges et al. 2003; Brin and Zumbrun 2002; Humpherys et al. 2006). In this case it is
easy to determine an explicit analytical expression for the eigenvector as M− is quite
sparse. The unstable manifold corresponds to the solution W−(ξ) of the linearized
system (3.10) (with l = 3) which satisfies limξ→−∞ e−ν−ξ W−(ξ) = W−

e .
The stable manifold can be determined in a similar way. As indicated in the pre-

vious section, the scaled system (3.8) will be used to determine the stable manifold.
For the stable manifold with ξ ∈ [0,∞), we will use (3.10) with l = 2 and the scaled
matrix M̃. As before, the asymptotic matrix

M(2)
+ (E∞, k, s) = lim

ξ→∞ M̃(2)(ξ ;E∞, k, s)
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exists. Now the eigenvalues of M(2)
+ (E∞, k, s) consist of all possible sums of two

eigenvalues of M̃±(E∞, k, s). Therefore, for s > 0, k 
= 0, M(2)
+ has an eigenvalue ν+,

which is the sum of the two negative eigenvalues of M̃+, i.e.,

ν+ = −
⎛

⎝

√
s + Dk2

D
+ k − β

⎞

⎠ .

As before, this eigenvalue is simple and has real part strictly less than any other
eigenvalue of M(2)

+ . The eigenvector associated with ν+ will be denoted by W+
e , i.e.,

M(2)
+ W+

e = ν+W+
e . The stable manifold of the scaled system (3.8) corresponds to

the solution W+(ξ) of the linearized system (3.10) (with l = 2 and M = M̃) which
satisfies limξ→∞ e−ν+ξ W+(ξ) = W+

e . To get the stable manifold of the original un-
scaled system, the inverse scalings matrix D−1(ξ) has to be used. For arbitrary ξ ≥ 0,
the transformation in the wedge space

∧2
(C5) is quite complicated, but we will only

need the original stable manifold at ξ = 0. And at ξ = 0, the scalings matrix is the
identity matrix. Hence at ξ = 0, the scaled stable manifold and the original stable
manifold are the same and W+

e (0) describes the stable manifold of (3.3) at ξ = 0.
With the stable and unstable manifold as found above, the Evans function can be

defined as

�(E∞, k, s) = W−(0;E∞, k, s) ∧ W+(0;E∞, k, s), s > 0, k 
= 0. (3.12)

Thus the Evans function � is more or less the determinant of the matrix formed by a
basis of the unstable manifold at ξ = 0 and a basis of the stable manifold at ξ = 0. If
this function is zero, then the bases are linearly dependent, hence the two manifolds
have a nontrivial intersection.

We have focused on the case s > 0. For −Dk2 < s < 0, the system is still hyper-
bolic, but with a two-dimensional unstable manifold and a three-dimensional stable
manifold. The above method can be easily adapted to calculate the dispersion curve
in this region too.

3.4 Numerical Results on the Dispersion Relation with the Evans Function

To calculate the Evans function numerically, first the front solution has to be deter-
mined numerically as it appears explicitly in the linearization matrix M(ξ ;E∞, k, s).
The front is an invariant manifold connecting two fixed points of the ODE (2.6), so
it can be easily determined by invariant manifold techniques or shooting, using the
package DSTool (Back et al. 1992). Shooting works in this case as the front connects
a one-dimensional unstable manifold to a three-dimensional center-stable manifold
in the ODE (2.6).

After determining the fronts, the stable and unstable manifolds can be calculated
by numerical integration, see e.g. Allen and Bridges (2002), Bridges et al. (2003),
Brin and Zumbrun (2002). In the numerical calculation of the stable manifold, we will
use β = 1

2 min(�∗, k). For the stable manifold, the linearized equation on
∧2

(C5)

Ŵ+
ξ = [

M̃(2)(ξ ;E∞, k, s) − ν+(E∞, k, s)I
]
Ŵ+, Ŵ+(ξ)

∣∣
ξ=L∞ = W+

e (E∞, k, s)
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is integrated from x = L∞ to ξ = 0, using the second-order Gauss–Legendre
Runge–Kutta (GLRK) method, i.e., the implicit midpoint rule. Here the scaling
Ŵ+(ξ) = e−ν+ξ W+(ξ) ensures that any numerical errors due to the exponen-
tial growth are removed and Ŵ+(ξ)|ξ=0 = W+(ξ)|ξ=0 is bounded. The eigenvec-
tor W+

e (E∞, k, s) can be determined explicitly as wedge product of the relevant
eigenvectors of M+(E∞, s, k) thanks to the sparse nature of this matrix.

For the unstable manifold, the linearized equation on
∧3

(C5)

Ŵ−
ξ = [

M(3)(ξ ;E∞, k, s) − ν−(E∞, s, k)I
]
Ŵ−, Ŵ−(ξ)

∣∣
ξ=L∞ = W−

e (E∞, s, k)

is integrated from x = −L∞ to ξ = 0, also using the implicit midpoint rule and intro-
ducing the rescaling Ŵ−(ξ) = e−ν−ξ W−(ξ) to remove potential exponential growth.
Again, the eigenvector W−

e (E∞, k, s) can be determined explicitly as wedge product
of the relevant eigenvectors of M−(E∞, s, k).

At ξ = 0, the computed Evans function is (see (3.12))

�(E∞, k, s) = W−(0) ∧ W+(0) = Ŵ−(0) ∧ Ŵ+(0). (3.13)

For s = 0 = k, the center-stable and the center-unstable manifold have a two-
dimensional intersection, due to the translation and gauge invariance, see Sect. 5.1
for details. In order to determine the dispersion curve, we start near k = 0 and
s = 0 and then slowly increase k and determine for which s(k) the Evans function
�(E∞, k, s(k)) vanishes.

The numerical errors in the calculation of the Evans function are mainly influenced
by the step size used in the numerical integration with the GLRK method and errors
in the numerically determined front. The numerical integration uses the step size
δx = 0.01. We have performed various checks with a decreased step size, and these
checks show that the error in the value of s for fixed k is largest (order 10−4) if k

is small and decreases for larger k (order 10−6). The accuracy of the front has been
checked and is such that the error in the front gives a negligible error (compared to
the error due to the error in the step size) in the value of s(k). It turns out that the
scheme is not very sensitive to errors in the front (at least for the E∞ and D values
considered).

In the following sections, we present data for the dispersion curve for the varying
electric field E∞ and diffusion coefficient D. A more detailed discussion of the data,
its relation with analytical asymptotics and some empirical fitting can be found in
Sect. 6.

3.4.1 Varying the Electric Field ahead of the Front

First we consider how the dispersion curve depends on the electric field E∞ ahead of
the front, while the diffusion coefficient is fixed to D = 0.1. In Fig. 2a, the dispersion
curve is shown for E∞ = −1, E∞ = −5 and E∞ = −10. The figure shows that the
shape of the dispersion curve stays similar, but the scales of s and k increase when
E∞ increases. The dispersion curves can be characterized by the maximal growth
rate smax and the corresponding wave number kmax where s(kmax) = smax as well as
by the wave number k0 > 0 with s(k0) = 0 that limits the band 0 < k < k0 of wave
numbers with positive growth rates.
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Fig. 2 Dispersion curves s(k):
(a) for varying E∞ and fixed
D = 0.1, and (b) for fixed
E∞ = −1 and varying D. The
pairs (E∞,D) shown are the
same as in Fig. 1. The data for
the singular limit D = 0 are
taken from Arrayás and Ebert
(2004)

(a) E∞ = −1, −5 and −10 and fixed D = 0.1

(b) Fixed E∞ = −1 and D = 0.1, 0.01 and 0

3.4.2 Varying the Diffusion Coefficient

Next we consider the effect of varying the diffusion coefficient D, while keeping the
electric field ahead of the front fixed at E∞ = −1. In Arrayás and Ebert (2004) it is
shown that if diffusion is ignored (D = 0), the dispersion curve stays positive and is
monotonically increasing to the saturation value s(k) = f (|E∞|)/2 for k → ∞. Our
numerics show that if diffusion is present, this is not the case anymore. This is not
surprising as diffusion is a singular perturbation. In Fig. 2b, the dispersion curve is
shown for D = 0.1, D = 0.01 and D = 0; the data for D = 0 are taken from Arrayás
and Ebert (2004). It shows that the growth rate s(k) has a maximum smax if diffusion
is present and becomes negative for k larger than some k0. Furthermore, for decreas-
ing diffusion D, the maximal growth rate moves upward toward the saturation value
f (|E∞|)/2 for D = 0. This suggests that some features of the dispersion curve be-
have regularly in D, in spite of the fact that D is a singular perturbation. For example,
for a finite wave number interval, the limit of the dispersion curves for D → 0 exists
and is the curve for D = 0. However, the asymptotic profile for large values of the
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wave number is obviously singular in D. This duality can also be found in the front
itself: the velocity and the profile of the ionization density and the electric field of the
uniformly translating negative front depend regularly on D = 0, while the profile of
the ionization density is singular, as discussed in Sect. 2.4 and shown in Fig. 1.

4 Numerical Simulation of the Perturbed Initial Value Problem

In the previous section, we determined the dispersion relation s(k) for transversal
perturbations of ionization fronts as a temporal eigenvalue problem of the PDE sys-
tem linearized about the uniformly translating planar front. Since we are dealing with
pulled fronts (cf. Sects. 1 and 2.4), the problem is unconventional: both the velocity
v∗ of the uniformly translating planar front and the dispersion relation s(k) of its
transversal perturbations are unique only if the spatial decay constraint (2.11) is im-
posed. Furthermore a longitudinally perturbed planar front approaches its asymptotic
profile and velocity algebraically slowly in time (2.12). Therefore it is worthwhile
to test the predicted dispersion relation on direct numerical simulations of the corre-
sponding initial value problem.

In this section, we will therefore simulate the temporal evolution of a perturbed
planar front by numerically solving the full nonlinear PDEs (2.1)–(2.3), and we will
determine the dispersion curve from a number of simulations with perturbations with
different wave vectors k. This is done for far field E∞ = −1 and diffusion constant
D = 0.1.

To determine the instability curve with a simulation of the full PDE, we parame-
terize the evolution of a perturbed planar front with wave number k as

U(x, z, t) ≈ U0(ξ) + δU1(ξ, t)eikx+st , ξ = z − v∗t, U = (σ,ρ,φ). (4.1)

If δest is small enough, the solution is in the linear regime, and s(k) can be deter-
mined from the evolution of the perturbation after U1(ξ, t) has relaxed to some time
independent function. Therefore in the numerical simulations, we choose δ for each
wave number k in such a manner that t is large enough to extract meaningful growth
rates and that δest is small enough that the dynamics at the final time is still well
approximated by the linearization about the planar front.

Furthermore, an appropriate choice of the initial condition reduces the initial tran-
sient time during which U1(ξ, t) in the comoving frame still explicitly depends
on time t . Ideally, such an initial condition is of the form U(x, z,0) = U0(ξ) +
δU1(ξ) coskx etc., where U1 is a solution of the linearized system (3.3). To find an
approximation for U1(ξ), we use that the instability acts on the position of the front,
i.e., we write the perturbed front as U0(ξ + δeikx+st ) ≈ U0(ξ) + δeikx+st ∂ξ U0(ξ).
Therefore we choose U1(ξ) = ∂ξ U0(ξ) and the initial condition as

U(x, z,0) = U0(z) + δ∂zU0(z) cos kx. (4.2)

As ∂ξ U0(ξ) is a solution of the linearized system for k = 0 = s, this choice will be
very efficient for small values of k and require longer transient times for larger k.
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To solve the full 2D PDE, the algorithm as described in Arrayás et al. (2002),
Rocco et al. (2002) is used, while adaptive grid refinement as introduced in Montijn
et al. (2006b) is not required. For fixed k, the PDE with initial condition (4.2) is solved
on the spatial rectangle (x, z) ∈ [0,Lx] × [0,Lz]. The length of the domain in the
transversal x-direction, Lx , is such that exactly five wavelengths fit into the domain,
i.e., Lx = 10π

k
, and periodic boundary conditions are imposed in this direction by

identifying x = 0 with x = Lx . On the boundaries in the longitudinal z-direction,
Neumann conditions for the electron density are imposed. The potential is constant
behind the front and the electric field is constant ahead of the front; therefore for
the potential φ, the Dirichlet condition φ = 0 is imposed at z = 0, and the Neumann
condition ∂zφ = −E∞ at z = Lz accounts for the far field ahead of the front.

The amplitude of the perturbation is conveniently traced by the maximum of the
electron density

σmax(x, t) = max
z∈[0,Lz]

σ(x, z, t) (4.3)

evaluated across the front. The reason is as follows. First, Fig. 1 shows the spatial pro-
files of planar fronts for different electric fields E∞ and illustrates that, for fixed D,
the maximum of the electron density σmax as well as the asymptotic density σ− be-
hind the front strongly depend on the field E+ immediately ahead of the front; see
also (2.15) and (2.16). Here we consider a planar front, thus the close and the far
field are identical: E+ = E∞. Second, the modulation of the front position leads to
a modulation of the electric field E+ immediately before the front (cf. discussion in
Sect. 5.2); therefore σmax as a function of E+ is modulated as well.

An example of σmax(x, t) as a function of the transversal coordinate x for a fixed
time t is plotted in Fig. 3a. The amplitude of the wave modulation is determined by
the Fourier integral

A(t, k) = k

5π

∫ 10π
k

0
σmax(x, t) coskx dx.

In Fig. 3b we plot logA against time t for k = 0.45. Note that k = 0.45 is close
to k0 = 0.482 (see Fig. 2a and Table 1) where the growth rate vanishes, s(k0) = 0,
therefore the growth rate in the present example is small and particularly sensitive to
numerical errors.

Figure 3b shows an initial temporal transient before steady exponential growth is
reached (where exponential growth manifests itself as a straight line in the logarith-
mic plot). This is typically observed for the larger k-values (k > 0.1); as said before,
this is related to the fact that the function U1(z) in the initial condition (4.2) is not
optimal. For k < 0.1, there are less transients as U1(z) ≈ ∂zU0(z) for small values
of k.

To determine the growth rate s(k), a least squares algorithm is used to fit the best
line through the data points (t, logA), and the initial transient time is ignored for
larger values of k. For each value of k, the growth rate is determined with various
choices of δ. The resulting growth rate s(k) is indicated in Fig. 4 with crosses × and
the error bars are related to the various choices of δ.
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Fig. 3 Examples of data of the
initial value simulation from
which the growth rate s(k)

shown in Fig. 4 are determined

(a) The maximal value of the electron density
σmax(x, t) for t = 50 as a function of the transver-
sal coordinate x. The perturbation has wave number
k = 0.45, the transversal length Lx = 10π/k leaves
space for five wavelengths that are clearly visible

(b) The logarithm of the amplitude of the front modu-
lation logA as a function of time t for the same k

Figure 4 also shows the dispersion relation for (E∞,D) = (−1,0.1) determined
with the dynamical systems method in the previous Sect. 3.4; these numerical results
are denoted with + and can now be compared with the results of the initial value
problem from the present section. Around the maximum of the curve, the agreement
between the numerical results of the two very distinct methods is convincing. For
larger values of k, the differences increase, but the error bars of the initial value
problem results increase as well. Furthermore, the plotted error bars are an underes-
timation, as they only account for the errors discussed earlier. These errors emerge
from the choice of the initial condition and from the time interval of evaluation and
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Fig. 4 The dispersion curve s(k) for E∞ = −1 and D = 0.1. The crosses × with error bars indicate
results of simulations of the full initial value problem as discussed in Sect. 4 and demonstrated in Fig. 3a.
For comparison, the results of the dynamical systems method from Sect. 3.4 are indicated with + symbols

therefore from possible initial transients and from a possible transition to nonlinear
behavior. Additional errors can be due to the numerical discretization and time step-
ping of the PDEs themselves. We therefore conclude that the two results agree within
the numerical error range of the initial value simulations over the whole curve.

5 Analytical Derivation of Asymptotic Limits for k � 1 and k � 1

Having determined the dispersion relation numerically for different values of electric
field E∞ and diffusion constant D in Sect. 3, and having tested the correctness of
the eigenvalue calculation against numerical solutions of the initial value problem in
Sect. 4, we now analytically derive asymptotic expressions for the dispersion relation
for small and large values of the wave modes k. It will be shown that these asymptotic
limits are

s(k) =
{

kE∞ dv∗
dE∞ , k � 1,

−Dk2, k � 1.

In doing so, we mathematically formalize and generalize the derivation of the small k

asymptotic limit that was presented in Arrayás and Ebert (2004) for the singular limit
D = 0, and we correct the result proposed in Arrayás et al. (2005); we also rigorously
derive the large k asymptotic limit, in agreement with the form proposed in Arrayás
et al. (2005).
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5.1 Analysis for the Asymptotic Limit k � 1

Translation invariance and electrostatic gauge invariance give two explicitly known
bounded solutions of the linearized system (3.3) at k = 0 and s = 0. These are

u′
0(ξ) = (

σ ′′
0 (ξ), σ ′

0(ξ), ρ′
0(ξ),E′

0(ξ),−E0(ξ)
)T and e5 = (0,0,0,0,1)T .

Note that e5 is a solution of the linearized system (3.3) for k = 0 and s arbitrary.
From the asymptotics of (3.3) for k = 0 = s at ξ = −∞, we see that the only

exponentially decaying solution at ξ = −∞ is given by u′
0(ξ). This solution is related

to the only positive eigenvalue μ−+ (see (3.5)). For ξ → +∞, the solution u′
0(ξ) →

−E∞e5, hence this solution is not exponentially decaying for ξ = +∞. However,
it is easy to obtain an explicit exponentially decaying solution at ξ = +∞, this is
u′

0(ξ) + E∞e5.
From the eigenvalues in (3.5) it follows that for 0 < k � 1 and 0 < s � 1,

the three-dimensional unstable manifold at ξ → −∞ involves one eigenfunction
with a fast exponential decay (related to the eigenvalue μ−+) and two eigenfunc-
tions with a slow exponential decay (related to the eigenvalues k and s

v∗ ). Similarly,
from the eigenvalues in (3.9), it follows that the two-dimensional stable manifold at
ξ → +∞ involves one eigenfunction with a fast exponential decay (related to the
eigenvalue −�∗ + β + μ+−) and one eigenfunction with a slow exponential decay
(related to the eigenvalue −k). Recall that the stable manifold is defined as a subset
of the full stable manifold to account for the spatial decay condition (2.11).

We focus on approximating an exponentially decaying solution on the stable man-
ifold. As we have seen above, in lowest order, this solution is

ws(ξ ;E∞,0,0) = u′
0(ξ) + E∞e5 + O(k + s).

To determine the next order, we will use the slow behavior of the asymptotic system
and write

ws(ξ ;E∞, k, s) = u′
0(ξ) + E∞(0,0,0, k,1)e−kξ + kUs

1,k(ξ)

+ sUs
1,s(ξ) + O

(
(s + k)2).

The second term on the right-hand side (E∞(0,0,0, k,1)e−kξ ) is an approximation
of the slow behavior on the stable manifold, while the other three terms are related to
the fast decay. Because of the slow decay, the expansion is only valid on a ξ -interval
with kξ = o(1), hence ξ should not be too large.

Substitution of these expressions into the linearized system (3.3) gives that Us
1,s

and Us
1,k have to satisfy

(
Dξ − M(ξ ;E∞,0,0)

)
Us

1,s =
(

σ ′
0

D
,0,

ρ′
0

v∗ ,0,0

)
,

(
Dξ − M(ξ ;E∞,0,0)

)
Us

1,k

= −E∞
(

−τ0 − σ0f
′
0

D
e−kξ ,0,

σ0f
′
0

v∗ e−kξ ,0,1 − e−kξ

)
.
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By analyzing the unperturbed system, we can find a particular solution of the first
equation. The front solution u0 = (τ0, σ0, ρ0,E0, φ0) satisfies

τ ′
0 = −v∗ + E0

D
τ0 + (σ0 − ρ0)

σ0

D
− σ0f0

D
,

σ ′
0 = τ0,

ρ′
0 = −σ0f0

v∗ ,

E′
0 = −(σ0 − ρ0),

φ′
0 = −E0.

Differentiating this system with respect to E∞ gives

(
Dξ − M(ξ ;E∞,0,0)

) ∂u0

∂E∞
= dv∗

dE∞

(
−τ0

D
,0,

σ0f0

(v∗)2
,0,0

)

= − dv∗

dE∞

(
σ ′

0

D
,0,

ρ′
0

v∗ ,0,0

)
.

Hence

Us
1,s = −

(
dv∗

dE∞

)−1
∂u0

∂E∞
+ a homogeneous solution.

The asymptotic behavior of ∂u0
∂E∞ is

∂u0

∂E∞
∼ (0,0,0,1,−ξ), ξ → ∞. (5.1)

The polynomial growth in the φk-component will need to be canceled by the behavior
of the other terms which involve k and hence will give a relation between s and k.

In fact, the Ek-components of the linearized system (3.3) for any s or k can be
expressed by the integral equation (3.4). For all solutions on the stable manifold, the
limit Ek(∞) = limξ→∞ Ek(ξ) is well defined, so we can write the Ek-components
on the stable manifold as

Es
k(ξ) = c2e

−kξ − 1

2

∫ ∞

ξ

[
ek(ξ−η) + e−k(ξ−η)

][
ρk(η) − σk(η)

]
dη.

In the integral, σk must satisfy the decay condition (2.11) on the stable manifold
and hence will have fast exponential decay. Furthermore, from (3.3), it can be seen

that ρk(ξ) = c3e
sξ

v∗ + 1
v∗

∫ ξ

ξ0
e− s(ξ−η)

v∗ [σ0(η)f ′
0(η)Ek(η) − f0(η)σk(η)]dη. As the term

inside the integral has fast exponential decay, we get that on the stable manifold
c3 = 0 and ρk has fast exponential decay too. Thus the integral in the expression for
Es

k has fast exponential decay for large ξ . Since φk = −E′
k , we get on the stable

manifold for small k and ξ -values not too large, say ξ ∼ k− 1
4 (hence kξ ∼ k

3
4 )

(
Es

k,φ
s
k

)
(ξ) = (k,1)e−kξ + O

(
e−�∗ξ )

= (k,1)
(
1 − kξ + O

(
k
√

k
)) = (k,1 − kξ) + O

(
k
√

k
)
.
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The exponentially decaying solution on the stable manifold is given by

ws(ξ ;E∞, k, s) = u′
0(ξ) − s

(
dv∗

dE∞

)−1
∂u0

∂E∞
(ξ) + E∞(0,0,0, k,1)e−kξ

+ kUs
1,k(ξ) + O

(
(s + k)2),

and the arguments above show that the order k contribution in the (Ek,φk)-
components is given fully by E∞(0,0,0, k,1)e−kξ and that kUs

1,k(ξ) does not con-
tribute to those components at this order. So it follows that the polynomial growth
in the φk-component of ∂u0

∂E∞ (ξ) as given by (5.1) has to be canceled by the φk-

component in E∞(0,0,0, k,1)e−kξ , i.e., s( dv∗
dE∞ )−1 = kE∞ or

s = c∗k + O(k2), with c∗ = E∞
dv∗

dE∞
, (5.2)

and v∗ given in (2.8). Equation (5.2) establishes the small k limit of the dispersion
relation s(k).

5.2 A Physical Argument for the k � 1 Asymptotic Limit

There is also a physical argument for the asymptotic limit (5.2) that generalizes
the calculation in Arrayás and Ebert (2004, Sect. IV.C) to nonvanishing D > 0. For
k � 1, the wavelength of the transversal perturbation 2π/k is the largest length scale
of the problem. It is much larger than the inner longitudinal structure of the ionization
front. On the length scale 2π/k, the front can therefore be approximated by a moving
boundary between the ionized and nonionized regions at the position

zf (x, t) = z0 + v∗(E∞)t + δeikx+st , (5.3)

and the local velocity of this perturbed front is

v(x, t) = ∂t zf (x, t) = v∗(E∞) + sδeikx+st . (5.4)

The electric field in the nonionized region is determined by E = −∇φ, where φ is
the solution of the Laplace equation ∇2φ = 0 together with the boundary condi-
tions; these are E → E∞ẑ for z → ∞ fixing the field far ahead of the front and
φ(x, zf , t) = 0 making the ionization front equipotential. (Due to gauge invariance
the constant potential can be set to zero.) The solution of this problem is

φ(x, z, t) = −E∞(z − z0 − v∗t)

+ E∞e−k(z−zf )δeikx+st + O(δ2), for z ≥ zf , (5.5)

E+(x, t) = E∞ + kE∞δeikx+st + O
(
δ2), for z = zf ,

here E+(x, t) = limε↓0 E(x, zf + ε, t) is the electric field extrapolated onto the
boundary from the nonionized side.
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As the perturbation is linear, the front is almost planar δ � 2π/k. Therefore it will
propagate with the velocity v∗(E+) = |E+| + 2

√
Df (|E+|) (2.8) of the planar front

in the local field E+. Inserting E+ from (5.5) and expanding about E∞, we get

v(x, t) = v∗(E+(x, t)
) = v∗(E∞) + ∂Ev∗|E∞kE∞δeikx+st + O

(
δ2). (5.6)

Comparison of (5.6) and (5.4) immediately gives the dispersion relation s = c∗k +
O(k2) (5.2), that generalizes the result s(k) = |E∞|k + O(k2) that was derived in
Arrayás and Ebert (2004) for the singular limit D = 0.

5.3 Analysis for the Asymptotic Limit k � 1

The asymptotic limit for k � 1 is derived by a contradiction argument. We will sup-
pose that k is large and that s + Dk2 is positive, but not small, i.e.,

k � 1, s + Dk2 > 0, and s + Dk2 
= o(1) (5.7)

and show that this does not allow for bounded solutions. With the assumptions above
on s and k, the dominant contributions in the matrix M on the whole axis ξ are

M∞ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 s+Dk2

D
0 0 0

1 0 0 0 0

0 0 s
v∗ 0 0

0 0 0 0 −k2

0 0 0 −1 0

⎞

⎟
⎟⎟⎟⎟⎟
⎠

+ O(1). (5.8)

Here the three entries −1, 1 and s
v∗ are necessary for a nonvanishing determinant.

We want to use the Roughness Theorem (Coppel 1978) for exponential di-
chotomies to show that for k large and s not close to −Dk2, the exponential di-
chotomy of the constant coefficient ODE is close to the exponential dichotomy of the
full system. So first we recall the definition of an exponential dichotomy, which gives
projections on stable or unstable manifolds.

Definition 1 (Coppel 1978) Let A be a matrix in R
n×n, u ∈ R

n, and J = R−, R+,
or R. Let �(y) be a solution matrix of the linear system

du

dy
= A(y)u, y ∈ J. (5.9)

The linear system (5.9) is said to possess an exponential dichotomy on the interval J

if there exist a projection P and constants K and κs < 0 < κu with the following
properties:

∣∣�(y)P�−1(y0)
∣∣ ≤ Keκs(y−y0), for y ≥ y0, y, y0 ∈ J ,

∣∣�(y)(I − P)�−1(y0)
∣∣ ≤ Keκu(y−y0), for y0 ≥ y, y, y0 ∈ J .

An extension for PDEs of this definition can be found in Peterhof et al. (1997).
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The Roughness Theorem for exponential dichotomies states the following.

Theorem 2 (Roughness Theorem, Coppel 1978) Consider the system

du

dy
= [

A0 + A1(y)
]
u, (5.10)

with A0 ∈ R
n×n a hyperbolic matrix and u ∈ R

n. Then for all δ0 > 0 there exists a
δ1 > 0 such that for all matrix functions A1 : R → R

n×n with ‖A1‖L∞(R+,Rn×n) < δ1,
the system (5.10) has an exponential dichotomy on R

+ (and R
−) with its dichotomy

exponents and projections δ0-close to those of du
dy

= A0u (in the L∞(R+,R
n×n)

norm).

A constant coefficient linear system does not have bounded solutions. So if the
exponential dichotomy of the linearized system (3.3) is close to the dichotomy of
the constant coefficient system with the matrix M∞ as in (5.8), the linearized sys-
tem (3.3) does not have bounded solutions either. We will show that this is the case
if s and k satisfy the assumptions (5.7).

First, we introduce some scaling and coordinate transformations. Define the small
parameter ε = 1

k
and the scaled spatial variable, the transformation matrix and trans-

formed vector

η = kξ = ξ

ε
, T(ε) = diag(ε,1, ε, ε,1) and ŵ(η) = T(ε)w(εη).

Now (3.3) can be written as

∂ηŵ = [
M̂0(ε, s) + εM̂1(η;E∞, ε)

]
ŵ, (5.11)

with

M̂0(ε, s) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1 + ε2s
D

0 0 0

1 0 0 0 0

0 0 sε
v

0 0

0 0 0 0 −1

0 0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

and

M̂1(η;E∞, ε) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

−E0+v∗
D

ε
2σ0−ρ0−f0

D
−σ0

D
− ∂ξ σ0−σ0f

′
0

D
0

0 0 0 0 0

0 −ε
f0
v∗ 0 −σ0f

′
0

v∗ 0

0 −ε 1 0 0

0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

where ξ = εη.
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The eigenvalues and eigenvectors of the constant coefficient matrix M̂0 are

±1, with eigenvectors w±1 = (0,0,0,∓1,1),

±
√

1 + ε2s

D
, with eigenvectors w±2 =

⎛

⎝±
√

1 + ε2s

D
,1,0,0,0

⎞

⎠ ,

εs

v∗ , with eigenvector w3 = (0,0,1,0,0).

If |s| � 1
ε

, then the matrix M̂0(ε, s) is not hyperbolic at ε = 0. However, this prob-
lem is not fundamental as it is known that there is a hyperbolic splitting in the full
problem (see Sect. 3.2) and there is a spectral gap between the positive and nega-
tive eigenvalues, even if ε is close to zero. The spectral gap disappears if s ≈ −Dk2

(or ε2s ≈ −D) and in this case the following arguments will not work. The spectral
gap allows us to define a weight function which moves the spectrum away from the
imaginary axis. To be specific, define

w̃(η) = eνη ŵ(η), with ν =
{

1
2 sgn(s), if |εs| < v∗,
0, if |εs| ≥ v∗.

Then w̃(η) satisfies the ODE

∂ηw̃ = ([
M̂0(ε, s) + νI

] + εM̂1(η;E∞, ε)
)
w̃, (5.12)

and the spectrum of M̂0(ε, s)+ νI is bounded away from zero for all ε small (as long
as s + Dk2 is not small). The system

∂ηw̃ = [
M̂0(ε, s) + νI

]
w̃ (5.13)

has an exponential dichotomy with projection P0 such that the range of P0 is the span
of all eigenvectors of the negative eigenvalues and the kernel of P0 is the span of
all eigenvectors of the positive eigenvalues. Then P0 is the projection on the stable
subspace of the linear system (5.13) and I − P0 is the projection on the unstable
subspace.

Clearly the matrix M̂1(η;E∞, ε) is uniformly bounded for all η and ε small. Thus
applying the Roughness Theorem 2 gives that, for small ε, there is an exponential di-
chotomy for the system (5.12) on R

+ with projection Ps
ε(η) onto the stable subspace

such that Ps
ε(η) is ε-close to P0 for all η ≥ 0. And similarly, there is an exponential

dichotomy for the system (5.12) on R
− with projection Pu

ε (η) onto the unstable sub-
space such that Pu

ε (η) is ε-close to I − P0 for all η ≤ 0. Thus the range of Ps
ε(0) is

ε-close to the range of P0 and the range of Pu
ε (0) is ε-close to the range of I − P0, so

the range of Ps
ε(0) and the range of Pu

ε (0) have only a trivial intersection for ε small.
As the weight function eνη has been chosen such that no eigenvalue crosses the

imaginary axis, it affects only the value of the dichotomy exponentials, not their
sign, nor the stable and unstable manifolds. Hence the stable and unstable manifolds
of (5.11) have a trivial intersection only. And the same holds for the stable and un-
stable manifolds of (3.3), as the only difference between the systems (5.11) and (3.3)
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is a scaling. So it can be concluded that the linear system (3.3) does not have any
bounded solutions for ε small (k large) and s not close to −Dk2.

If s is close to −Dk2, i.e., s = − D

ε2 (1 + o(1)), then the matrix Â0(ε, s) has a
positive and negative eigenvalue of order o(1) and the spectral gap will disappear
in the limit ε → 0. So the roughness theorem cannot be applied anymore and no
conclusion about bounded solutions can be drawn.

The arguments above show that only if s = −Dk2(1 + o(1)) is there a possibility
for bounded solutions to exist. As the dispersion curve indicates a bounded solution of
the ODE (3.3), this implies that for ε near zero, hence k large, the dispersion curve is

s(k) = −Dk2(1 + o(1)
)
, k → ∞. (5.14)

So far we have used that s + Dk2 > 0. If one considers the linear system (3.3),
an edge of the continuous spectrum is given by the curve s = −Dk2 + f (|E∞|).
However, one should include the decay condition (2.11), i.e., the scaling (3.7). For
any 0 < β < �∗ the edge becomes s = −Dk2 +β . By taking the limit for β → 0, we
see that the curve s = −Dk2 is an edge of the continuous spectrum. Thus with the
decay condition, either the dispersion curve satisfies s(k) ≥ −Dk2 or it ends at the
continuous spectrum.

6 Physically Guided Fits to the Numerical Dispersion Relations

In Sect. 3 we derived dispersion relations for a number of fields E∞ and diffusion
constants D by numerically solving an eigenvalue problem. We confirmed these cal-
culations through numerical solutions of the initial value problem in Sect. 4, and
we derived analytical asymptotic limits to these dispersion relations in Sect. 5. This
sets the stage for comparing the numerical results to the analytical asymptotic limits
and for deriving physically guided empirical fits to the numerical dispersion curves
where the analytical asymptotic limits are not applicable. The small k-data derived
in Sect. 3.4 and the analysis of Sect. 5.1 are shown to be consistent in Sect. 6.1. After
showing in Sect. 6.2 that a simple cross-over formula joining the asymptotic behavior
of the small wave numbers with the asymptotic behavior of the large wave numbers
is not satisfactory, we give a data collapse, empirical fits and arguments on relevant
scales in Sect. 6.3.

6.1 Testing the Small k Asymptotic Limits

First the asymptotic relation (5.2) for small k is tested on the numerical results. Be-
yond the results visible in the plots of Fig. 2, the numerical dispersion relation for
E∞ = −1 and D = 0.1 was evaluated carefully for small values of k, and the re-
sult is shown in a double logarithmic plot in Fig. 5 that zooms in on the small k

behavior. Also plotted is the analytical asymptotic limit (5.2). The comparison be-
tween numerical data and analytical asymptotic limit is convincing in the range of
small k.

For the other values of E∞ and D presented in Fig. 2, the dispersion relation s(k)

again is fitted very well by the asymptotic limit (5.2) for small values of k. This will
be illustrated in Fig. 6.
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Fig. 5 A log–log plot of the
dispersion curve s(k) for
E = −1 and D = 0.1 illustrates
the behavior for small k. Solid
line with squares: Data from the
numerical evaluation of the
eigenvalue problem. Dashed
line: Analytical asymptotic limit
log s = log c∗ + logk according
to (5.2)

Fig. 6 Labeled curves: The
numerical dispersion curves
from Fig. 2 plotted as
S = Ds/c∗2 over κ = Dk/c∗.
Dotted line on the left: the
parabola κ − κ2 that would be
predicted by (6.1) as far as it fits
into the plotted region

6.2 Testing Both Asymptotic Limits

It is quite suggestive to join the small k asymptotic limit (5.2) with the large k as-
ymptotic limit (5.14) into one cross-over formula

s(k) = c∗k −Dk2, c∗(E∞,D) = E
dv∗

dE

∣∣∣∣
E∞

= |E∞|
(

1 + f ′(|E∞|)
√

D

f (|E∞|
)

.

(6.1)

A formula similar to s(k) = c∗k − Dk2 was suggested in Arrayás et al. (2005), but
with a different prefactor instead of c∗. However, we now confirm once more the
correctness of the prefactor c∗, and show that the large k asymptotic limit is not yet
applicable in the range of positive growth rates s(k).

If (6.1) holds, then the dispersion relation for the rescaled variable S = Ds/c∗2 as
a function of the rescaled wave number κ = Dk/c∗ becomes S = κ − κ2. Therefore
the formula (6.1) can easily be tested on the numerical data from Fig. 2 by plotting
them in rescaled variables S and κ with appropriate values for D and c∗(E∞,D)
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Fig. 7 The numerical
dispersion curves from Fig. 2
plotted as s/smax over k/k0;
here smax = maxk s(k) and
k0 > 0 with s(k0) = 0 are
determined from the respective
curve

for each curve. The result is shown in Fig. 6, together with the parabola κ − κ2. The
plot illustrates that the asymptotic limit (5.2) indeed is a very good fit to all data for
small k.

For larger k, the curves differ quantitatively. In particular, S vanishes for κ be-
tween 0.014 and 0.035 for the numerical dispersion curves while the formula (6.1)
predicts this to happen for κ = 1. Also the maximum of the dispersion curve Smax is
never higher than 0.0027 for the numerical data while formula (6.1) predicts 0.25. Of
course, this is not in contradiction with the analytical results in Sect. 5.3 for large k.
Rather it says that the positive part of the dispersion curve lies completely in the range
of small k, where the asymptotic limit for large k is not applicable. We conclude that
cross-over formula (6.1) is not an appropriate fit for the numerically derived disper-
sion relations.

6.3 Data Collapse, Relevant Length Scales, Empirical Fits and Conjectures

We finish this section with a data collapse and arguments on relevant scales that guide
empirical fits.

6.3.1 Data Collapse

First, we investigate whether the numerical data for different E∞ and D can be col-
lapsed onto one curve. This is done by determining the maximum of the dispersion
curve smax and the wave number k0 where the growth rate vanishes, s(k0) = 0, from
the numerical data for each pair (E∞,D). In Fig. 7 all curves are plotted as s/smax
and k/k0 with their respective smax and k0. The plot shows that the curve shapes are
very similar, but they do not coincide completely. For example, there seems to be a
small drift in the position of the maximum.

6.3.2 Relevant Length Scales and the D = 0 Case

In a second step, we investigate which physical or mathematical mechanisms
can suppress the growth rate s(k) for much smaller values of k than suggested
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by the large k asymptotic limit (5.14). In a first overview, there are three length
scales in the problem. The transversal perturbation is characterized by its
wavelength 2π/k. In the longitudinal direction, the front is characterized by two
length scales, the electric screening length �α and the diffusion length �D , cf. Fig. 1,

�α = 1

α(E∞)
and �D = 1

�∗ =
√

D

f (E∞)
. (6.2)

For vanishing diffusion D, the diffusion length vanishes and the screening length
�α has to be compared to the wavelength of the perturbation; in Arrayás and Ebert
(2004) it was shown that it determines the cross-over from the small to the large k

asymptotic limit of the dispersion relation:

s(k) =
{ |E∞||k|, for |k| � kα ,

|E∞|kα, for |k| � kα;
for D = 0, where kα = 1

2�α

. (6.3)

The actual curve for D = 0 and E∞ = −1 is given in Fig. 2b, where we remark that
the form

s(k) = |E∞|k
[1 + ( k

kα
)p]1/p

(6.4)

for positive real p reproduces the asymptotic limits (6.3), but does not fit the full
numerical curve for E∞ = −1 satisfactorily for any power p. The functional form of
(6.4) will serve below as an inspiration for our empirical fits for D > 0.

Searching for why (6.4) does not properly fit the data, one realizes that there are
actually two different definitions of the screening length possible:

1

�+
α

= α(E∞) and
1

�−
α

= λ− =
∫ |E∞|

0

α(x)dx

|E∞| + O(
√

D), (6.5)

with λ− from (2.17). The dimensions of both quantities are the same, and they ap-
proach each other if α is constant in a large part of the integration interval [0, |E∞|];
this is the case with the Townsend approximation α(x) = e−1/x for |E∞| � 1.
Otherwise, �+

α characterizes the slopes of the fields near the discontinuity of σ

(Arrayás and Ebert 2004), while �−
α characterizes the decay (2.14) of the fields far

behind the front for ξ → −∞. The analysis in Arrayás and Ebert (2004) shows that
linear perturbations with wave numbers k � 1 couple to the inner local structure of
the front and are dominated by �+

α , while smaller k could couple to the larger spatial
structure characterized by �−

α . In the following, this conjecture will be tested on the
numerical data and the results show a need for future analysis.

6.3.3 Scales and Fits for D > 0

When diffusion is included, the diffusion length �D emerges as another length scale
in the front. As illustrated in Fig. 1, instead of the discontinuous electron density
in the front for D = 0, a diffusive layer of width �D = 1/�∗ (2.13) builds up in
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Fig. 8 The data of Fig. 2
plotted as s = s/(�∗c∗) over
K = k/�∗ . The lines are given
by the empirical formula (6.8)

(a) Using a = 3/α(|E∞|) in formula (6.8)

(b) Using a = 3c∗/f (|E∞|) in formula (6.8)

the leading edge. While D increases, the dispersion relation decreases as shown in
Fig. 2b. As the diffusive layer is the main new feature of the front for D > 0, it
is plausible that the different behavior of s is created within this boundary layer.
The physical mechanism is that diffusion can smear perturbations of short wave-
length out, hence suppressing their growth. This process mainly takes place in the
diffusive layer because gradients are largest in this region. This idea inspired an at-
tempt in Arrayás et al. (2005) to calculate s(k) by local analysis within the diffu-
sion layer. In principle, such an approach combined with proper matched asymptotic
expansions could work. However, the calculation in Arrayás et al. (2005) was in-
trinsically inconsistent (Ebert and Derks 2008), disagrees with our asymptotic limit
for small k and therefore fits the numerical results even worse than formula (6.1),
cf. Fig. 6.

We tested whether the diffusion length �D = 1/�∗ plays a role in the dispersion
relation by plotting the numerical data from Fig. 2; this time for the rescaled vari-
ables s = s/(c∗�∗) over K = k/�∗. The result is shown in Fig. 8. It shows that the
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numerical dispersion curves are well approximated by

s(k) ≈ c∗k + O(k2), for k → 0, (6.6)

k0 ≈ �∗/4, where s(k0) = 0. (6.7)

The numerical evidence from Fig. 8 summarized in (6.7) together with the physical
explanation above suggest the following conjecture.

Conjecture 1 The largest unstable wave number of the Laplacian instability is pro-
portional to the inverse diffusion length.

We remark that the data give k0 ≈ 1/(4�D), while the cross-over formula (6.1)
would suggest that k0 ≈ �α/�2

D , highlighting again its inadequacy for intermediate k

values. Figure 8 also shows that the value of the wave number for which the maximum
of the dispersion curve is attained is in the range of kmax = 0.22k0 to 0.30k0.

The data in Fig. 8 suggest an empirical formula of the form (for s ≥ 0)

s(k) = c∗k
1 + a k

(
1 − 4 k

�∗

)
or s = K

1 + a�∗K
(1 − 4K), (6.8)

where the parameter a will depend on the external parameters D and E∞. The fac-
tor c∗k creates the correct asymptotic limit (6.6) for k � 1. The factor (1 − 4k/�∗)
creates the nontrivial zero of the dispersion relation at k0 (6.7). The form of the nu-
merator is inspired by (6.4), and the proper asymptotic limit (6.3) for large k and
D = 0 would be reached for a = 2�+

α + O(
√

D). Obviously, the empirical formula
(6.8) is not valid in the asymptotic range k � 1 where s < 0 and where the asymptotic
behavior is given by s ≈ −Dk2.

The functional form of formula (6.8) is supported by the following observation. If
one calculates the maximum (Kmax, smax) of (6.8), it follows that K2

max/smax = 1/4,
independently of the value of a. (The number 1/4 directly stems from the factor 4
in (1 − 4K).) This relation indeed fits the numerical curves quite well, therefore the
factor 4 is supported twice independently. Relevant numerical data for this and other
fits is collected in Table 1.

The value for a is less obvious. The empirical formula (6.8) gives the following
relation between a�∗ and the maximum of curve

1 − 8Kmax

4K2
max

= a�∗ = 1 − 4
√

smax

smax
.

The empirical values for those quotients are given in Table 1.
The limit of D = 0 and k � 1 suggests a = 2�+

α + O(
√

D), but the fit is uncon-
vincing (cf. also the earlier discussion for D = 0). However, we found that a = 3�+

α

fits the data reasonably well. Formula (6.8) with this value of a together with the nu-
merical data are visualized in Fig. 8a. The fit is quite good for the lower two curves,
but the upper two display some discrepancies. The main problem is the value of smax
with a relative error between 2% and 24%, while the position of Kmax has a relative
error as low as 0.5% to 7%. As f (|E∞|)/c∗ = α(|E∞|) + O(

√
D), another possible
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Table 1 Upper block: characteristic numerical data of the dispersion relations in Fig. 2 with errors. Mid-
dle block: characteristic scales of the planar front according to analysis. Lower block: relevant ratios of
numerical and analytical scales as used for the derivation of the empirical formula

(E∞, D) (−1, 0.01) (−1, 0.1) (−2, 0.1) (−5, 0.1) (−10, 0.1)

smax 0.080(1) 0.05190(2) 0.1695(15) 0.647(1) 1.6305(15)

kmax 0.35(4) 0.144(1) 0.25(4) 0.45(4) 0.60(4)

k0 1.575(15) 0.4825(5) 0.875(25) 1.595(1) 2.397(1)

k0/kmax 4.56(56) 3.35(3) 3.60(65) 3.57(33) 4.01(27)

v∗ 1.12 1.38 2.70 6.28 11.9

c∗ 1.12 1.38 2.52 5.77 11.0

�∗ = √
f (|E∞|)/D 6.07 1.92 3.48 6.40 9.51

α(|E∞|) = 1/�+
α 0.37 0.37 0.61 0.82 0.90

σ− 0.148 0.144 0.638 2.832 7.169

λ− = 1/�−
α 0.13 0.10 0.23 0.45 0.60

3�∗/α(|E∞|) 49.5 15.6 17.2 23.4 31.5

3�∗c∗/f (|E∞|) 55.5 21.6 21.7 27.0 34.8

K0 = k0/�∗ 0.260(3) 0.252(1) 0.251(5) 0.249(1) 0.252(1)

smax = smax/(c∗�∗) 0.0118(2) 0.0196(1) 0.0193(2) 0.0175(1) 0.0155(1)

kmax/kα 1.9(2) 0.78(1) 0.8(2) 1.1(1) 1.3(1)

K2
max/smax 0.28(7) 0.288(4) 0.27(9) 0.28(5) 0.26(4)

(1 − 8Kmax)/(4K2
max) 40(6) 17.7(1) 21(2) 22(2) 31(2)

(1 − 4
√

smax)/smax 48.1(4) 22.5(1) 23.0(1) 26.8(1) 32.3(1)

fit is a = 3c∗/f (|E∞|); it is displayed in Fig. 8b. The fit is quite good for the upper
two curves, but now the fit has some discrepancies for the lower two curves. And the
value of Kmax has a larger error between 2% and 10% while the position of smax has a
much smaller error of only 1% to 10%. Obviously, these observations require further
analytical investigation. Note finally the striking relation between λ− = 1/�−

α and the
value of kmax for larger values of the electric field in Table 1. As a basis for future
work, all characteristic numerical data are collected in this table.

7 Conclusion and Outlook

In this paper, we found dispersion curves for negative streamer ionization fronts by
numerically solving an eigenvalue problem. We verified this prediction on the nu-
merical solution of an initial value problem, we derived analytical expressions for the
asymptotics of the curve for large and small wavelengths, and we presented a physi-
cally motivated fit formula to the numerical curves for intermediate wavelengths. The
investigation is of interest for two reasons: because pulled fronts like these are math-
ematically challenging to investigate, and because explicit predictions on the linear
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stability of ionization fronts help to interpret numerical and experimental observa-
tions of propagating and branching streamer discharges.

The ionization front is a pulled front, i.e., the front is part of a family of travel-
ing waves that propagate into a temporally unstable steady state. For the dynamics
with one spatial variable, most traveling waves in this family are attractors only for
waves with exactly the same asymptotic decay profile. The exception is the pulled
front, which has the steepest decay of all waves in the family and is an attractor for
waves with a sufficiently fast decay (therefore excluding the slower decay rates for
the other traveling waves in the family). The instability of the state ahead of the front
and the related spatial decay condition imply that only a submanifold of the stable
manifold in the transverse instability problem is relevant for the transverse instability
analysis. This submanifold is identified by introducing a weighted solution space that
excludes solutions with a decay rate that is too slow. We integrated the relevant stable
submanifold and unstable manifold numerically with a dynamical systems method to
calculate the dispersion curve. This method of finding the dispersion curve does not
use any details of the streamer model, except that it has a pulled front. The definition
of a submanifold of the stable manifold and the subsequent numerical integration of
this stable submanifold and the unstable manifold are ideas that can be applied to
pulled fronts in other systems, too.

It is interesting to see that the band of unstable wave numbers seems to be limited
by a multiple of the decay rate �∗ that characterizes the leading edge of the pulled
ionization front; though the evidence up to now is only numerical. As such behavior is
physically reasonable, the next step would be to derive it analytically, e.g., by a local
analysis in the diffusive layer and matched asymptotic expansions. Such an expansion
could be based on the limiting case where the diffusion length �D = 1/�∗ is much
smaller than the screening length �α .

The calculated dispersion curves also contribute to understanding the stability
of actual streamers. Two- and three-dimensional time-dependent simulations (Ar-
rayás et al. 2002; Rocco et al. 2002; Montijn et al. 2006a, 2006b; Luque et al.
2007) of the streamer model introduced in Sect. 2 show them to become unsta-
ble and branch. Can the unstable wavelengths of this branching be related to the
unstable band of wavelengths of the present calculation? Furthermore, if the inner
front structure is approximated by a moving boundary (Meulenbroek et al. 2005;
Ebert et al. 2007), how is the calculated dispersionrelation of transversal perturba-
tions to be taken into account? It will also be interesting to see whether the dispersion
relation calculated for the present fluid model is also applicable to the corresponding
particle model (Li et al. 2007).

Finally, we mention that the extension of the streamer model with photo-ionization
as an additional reaction term (Luque et al. 2007) in composed gases like air requires
an extension of the present analysis as nonlocal interaction terms play a role.

Appendix: Matrices in Exterior Algebra Spaces

In this appendix, we give explicit expressions for the matrices M(l) acting on the
exterior algebra space

∧l
(C5) for l = 2,3. Let e1, . . . , e5 be the standard basis for C

5.
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Then an induced basis on
∧2

(C5) is given by

a1 = e1 ∧ e2, a2 = e1 ∧ e3, a3 = e1 ∧ e4, a4 = e1 ∧ e5, a5 = e2 ∧ e3,

a6 = e2 ∧ e4, a7 = e2 ∧ e5, a8 = e3 ∧ e4, a9 = e3 ∧ e5, a10 = e4 ∧ e5.

The matrix M(2) : ∧2
(C5) → ∧2

(C5) can be associated with a complex 10 × 10
matrix with entries such that

M(2)ai =
10∑

j=1

M(2)
ij aj , i, j = 1, . . . ,10, (8.1)

where, for any decomposable x = x1 ∧x2 ∈ ∧2
(C5), M(2)x := Mx1 ∧x2 +x1 ∧Mx2.

Let M be an arbitrary 5 × 5 matrix with complex entries,

M =

⎛

⎜⎜⎜⎜
⎜
⎝

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55

⎞

⎟⎟⎟⎟
⎟
⎠

, (8.2)

then M(2) takes the explicit form

M(2) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d12 m23 m24 m25 −m13 −m14 −m15 0 0 0

m32 d13 m34 m35 m12 0 0 −m14 −m15 0

m42 m43 d14 m45 0 m12 0 m13 0 −m15

m52 m53 m54 d15 0 0 m12 0 m13 m14

−m31 m21 0 0 d23 m34 m35 −m24 −m25 0

−m41 0 m21 0 m43 d24 m45 m23 0 −m25

−m51 0 0 m21 m53 m54 d25 0 m23 m24

0 −m41 m31 0 −m42 m32 0 d34 m45 −m35

0 −m51 0 m31 −m52 0 m32 m54 d35 m34

0 0 −m51 m41 0 −m52 m42 −m53 m43 d45

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

where dij = mii +mjj .
In a similar way, the matrix M(3) : ∧3

(C5) → ∧3
(C5) can be associated with a

complex 10 × 10 matrix. First we define an induced basis on
∧3

(C5) by

b1 = e1 ∧ e2 ∧ e3, b2 = e1 ∧ e2 ∧ e4, b3 = e1 ∧ e2 ∧ e5, b4 = e1 ∧ e3 ∧ e4,

b5 = e1 ∧ e3 ∧ e5, b6 = e1 ∧ e4 ∧ e5, b7 = e2 ∧ e3 ∧ e4, b8 = e2 ∧ e3 ∧ e5,

b9 = e2 ∧ e4 ∧ e5, b10 = e3 ∧ e4 ∧ e5.

The matrix for M(3) ∈ C
10×10 has entries such that

M(3)bi =
10∑

j=1

M(3)
ij bj , i, j = 1, . . . ,10, (8.3)
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where, for any decomposable x = x1 ∧ x2 ∧ x3 ∈ ∧3
(C5), M(3)x := Mx1 ∧ x2 ∧ x3 +

x1 ∧ Mx2 ∧ x3 + x1 ∧ x2 ∧ Mx3. If M is given by (8.2), then M(3) takes the explicit
form

M(3) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

d123 m43 m53 −m42 −m52 0 m41 m51 0 0

m34 d124 m54 m32 0 −m52 −m31 0 m51 0

m35 m45 d125 0 m32 m42 0 −m31 −m41 0

−m24 m23 0 d134 m54 −m53 m21 0 0 m51

−m25 0 m23 m45 d135 m43 0 m21 0 −m41

0 −m25 m24 −m35 m34 d145 0 0 m21 m31

m14 −m13 0 m12 0 0 d234 m54 −m53 m52

m15 0 −m13 0 m12 0 m45 d235 m43 −m42

0 m15 −m14 0 0 m12 −m35 m34 d245 m32

0 0 0 m15 −m14 m13 m25 −m24 m23 d345

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

,

where dijk = mii + mjj + mkk .

Acknowledgements We thank Björn Sandstede for helpful discussions on the Roughness Theorem. We
thank Willem Hundsdorfer and René Reimer for advice and help with the simulations in Sect. 4.

References

Alexander, J., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of
traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

Allen, L., Bridges, T.J.: Numerical exterior algebra and the compound matrix method. Numer. Math. 92,
197–232 (2002)

Arrayás, M., Ebert, U.: Stability of negative ionization fronts: Regularization by electric screening? Phys.
Rev. E 69, 036214 (2004), 10 p.

Arrayás, M., Ebert, U., Hundsdorfer, W.: Spontaneous branching of anode-directed streamers between
planar electrodes. Phys. Rev. Lett. 88, 174502 (2002), 4 p.

Arrayás, M., Fontelos, M.A., Trueba, J.L.: Mechanism of branching in negative ionization fronts. Phys.
Rev. Lett. 95, 165001 (2005), 4 p.

Back, A., Guckenheimer, J., Myers, M.R., Wicklin, F.J., Worfolk, P.A.: DsTool: Computer assisted explo-
ration of dynamical systems. Not. Amer. Math. Soc. 39, 303–309 (1992)

Bawagan, A.D.O.: A stochastic model of gaseous dielectric breakdown. Chem. Phys. Lett. 281, 325–331
(1997)

Blyuss, K.B., Bridges, T.J., Derks, G.: Transverse instability and its long-term development for solitary
waves of the (2+1)-dimensional Boussinesq equation. Phys. Rev. E 67, 056626 (2003), 9 p.

Brau, F., Luque, A., Meulenbroek, B., Ebert, U., Schäfer, L.: Construction and test of a moving boundary
model for negative streamer discharges. Phys. Rev. E 77, 026219 (2008)

Bridges, T., Derks, G., Gottwald, G.A.: Stability and instability of solitary waves of the fifth-order KdV
equation: a numerical framework. Physica D 172, 190–216 (2003)

Brin, L.Q.: Numerical testing of the stability of viscous shock waves. Math. Comput. 70, 1071–1088
(2001)

Brin, L.Q., Zumbrun, K.: Analytically varying eigenvectors and the stability of viscous shock waves. In:
Seventh Workshop on Partial Differential Equations, Part I, Rio de Janeiro, 2001. Mat. Contemp.,
vol. 22, pp. 19–32. Instituto de Matematica Pura e Aplicada, Rio de Janeiro (2002)

Coppel, W.: Dichotomies in Stability Theory, Lecture Notes in Mathematics. Springer, Berlin (1978)



J Nonlinear Sci (2008) 18: 551–590 589

Derks, G., Gottwald, G.A.: A robust numerical method to study oscillatory instability of gap solitary
waves. SIAM J. Appl. Dyn. Sys. 4, 140–158 (2005)

Dhali, S.K., Williams, P.F.: Numerical simulation of streamer propagation in nitrogen at atmospheric pres-
sure. Phys. Rev. A 31, 1219–1221 (1985)

Dhali, S.K., Williams, P.F.: Two-dimensional studies of streamers in gases. J. Appl. Phys. 62, 4696–4707
(1987)

Ebert, U., Arrayás, M.: Pattern formation in electric discharges. In: Reguera, D., et al. (eds.) Coherent
Structures in Complex Systems. Lecture Notes in Physics, vol. 567, pp. 270–282. Springer, Berlin
(2001)

Ebert, U., Derks, G.: Comment on Arrayás et al. (2005). Phys. Rev. Lett. (2008, submitted), 1 p.
Ebert, U., Meulenbroek, B., Schäfer, L.: Rigorous stability results for a Laplacian moving boundary prob-

lem with kinetic undercooling. SIAM J. Appl. Math. 69, 292–310 (2007)
Ebert, U., Montijn, C., Briels, T.M.P., Hundsdorfer, W., Meulenbroek, B., Rocco, A., van Veldhuizen,

E.M.: The multiscale nature of streamers. Plasma Sources Sci. Technol. 15, S118–S129 (2006)
Ebert, U., van Saarloos, W.: Universal algebraic relaxation of fronts propagating into an unstable state and

implications for moving boundary approximations. Phys. Rev. Lett. 80, 1650–1653 (1998)
Ebert, U., van Saarloos, W.: Front propagation into unstable states: Universal algebraic convergence to-

wards uniformly translating pulled fronts. Physica D 146, 1–99 (2000a)
Ebert, U., van Saarloos, W.: Breakdown of the standard perturbation theory and moving boundary approx-

imation for “pulled” fronts. Phys. Rep. 337, 139–156 (2000b)
Ebert, U., van Saarloos, W., Caroli, C.: Streamer propagation as a pattern formation problem: planar fronts.

Phys. Rev. Lett. 77, 4178–4181 (1996)
Ebert, U., van Saarloos, W., Caroli, C.: Propagation and structure of planar streamer fronts. Phys. Rev. E

55, 1530–1594 (1997)
Evans, J.W.: Nerve axon equations IV. The stable and unstable impulse. Indiana Univ. Math. J. 24, 1169–

1190 (1975)
Humpherys, J., Zumbrun, K.: An efficient shooting algorithm for Evans function calculations in large

systems. Physica D 220, 116–126 (2006)
Humpherys, J., Sandstede, B., Zumbrun, K.: Efficient computation of analytic bases in Evans function

analysis of large systems. Numer. Math. 103, 631–642 (2006)
Kapitula, T.: The Evans function and generalized Melnikov integrals. SIAM J. Math. Anal. 30, 273–297

(1999)
Kapitula, T., Sandstede, B.: Eigenvalues and resonances using the Evans function. Discrete Contin. Dyn.

Syst. 10, 857–869 (2004)
Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Heidelberg (1984)
Li, C., Brok, W.J.M., Ebert, U., van der Mullen, J.J.A.M.: Deviations from the local field approximation

in negative streamer heads. J. Appl. Phys. 101, 123305 (2007), 14 p.
Luque, A., Ebert, U., Montijn, C., Hundsdorfer, W.: Photoionisation in negative streamers: fast computa-

tions and two propagation modes. Appl. Phys. Lett. 90, 081501 (2007), 3 p.
Marcus, M.: Finite Dimensional Multilinear Algebra, Part II. Dekker, New York (1975)
Meulenbroek, B., Ebert, U., Schäfer, L.: Regularization of moving boundaries in a Laplacian field

by a mixed Dirichlet–Neumann boundary condition: exact results. Phys. Rev. Lett. 95, 195004
(2005), 4 p.

Montijn, C., Ebert, U., Hundsdorfer, W.: Numerical convergence of the branching time of negative stream-
ers. Phys. Rev. E 73, 065401 (2006a), 4 p.

Montijn, C., Hundsdorfer, W., Ebert, U.: An adaptive grid refinement strategy for the simulation of negative
streamers. J. Comput. Phys. 219, 801–835 (2006b)

Niemeyer, L., Pietronero, L., Wiesman, H.J.: Fractal dimension of dielectric breakdown. Phys. Rev. Lett.
52, 1033–1036 (1984)

Niemeyer, L., Ullrich, L., Wiegart, N.: The mechanism of leader breakdown in electronegative gases. IEEE
Trans. Electr. Insul. 24, 309–324 (1989)

Pasko, V.P., Inan, U.S., Bell, T.F.: Mesosphere–troposphere coupling due to sprites. Geophys. Res. Lett.
28, 3821–3824 (2001)

Peterhof, D., Sandstede, B., Scheel, A.: Exponential dichotomies for solitary-wave solutions of semilinear
elliptic equations on infinite cylinders. J. Differ. Equ. 140, 266–308 (1997)

Rocco, A., Ebert, U., Hundsdorfer, W.: Branching of negative streamers in free flight. Phys. Rev. E 66,
035102(R) (2002), 4 p.

Rodin, P., Ebert, U., Hundsdorfer, W., Grekhov, I.V.: Superfast fronts of impact ionization in initially
unbiased layered semiconductor structures. J. Appl. Phys. 92, 1971–1980 (2002)



590 J Nonlinear Sci (2008) 18: 551–590

Sandstede, B.: Stability of travelling waves. In: Fiedler, B. (ed.) Handbook of Dynamical Systems II,
pp. 983–1055. North-Holland, Amsterdam (2002)

Starikovskaia, S.M.: Plasma assisted ignition and combustion. J. Phys. D: Appl. Phys. 39, R265–R299
(2006)

Terman, D.: Stability of planar wave solutions to a combustion model. SIAM J. Math. Anal. 21,
1139–1171 (1990)

Vitello, P.A., Penetrante, B.M., Bardsley, J.N.: Simulation of negative streamer dynamics in nitrogen. Phys.
Rev. E 49, 5574–5598 (1994)


	Laplacian Instability of Planar Streamer Ionization Fronts-An Example of Pulled Front Analysis
	Abstract
	Introduction
	The Streamer Phenomenon, Ionization Fronts and Laplacian Instability
	Moving Boundary Layers and the Transversal Instability of Pulled Fronts
	The Evans Function and Pulled Fronts
	Organization of the Paper

	The Streamer Model and Its Ionization Fronts
	Model Equations
	Two Types of Stationary States
	Planar Ionization Front Solutions
	Multiplicity of Front Solutions, Pulled Fronts and Dynamical Selection
	Full Spatial Profiles of the Selected Pulled Planar Front

	Numerical Calculation of the Dispersion Relation
	Linear Transversal Perturbations of Planar Fronts
	Stable and Unstable Manifolds and Degeneracy of the Dispersion Relation
	The Evans Function for the Transverse Stability Problem
	Numerical Results on the Dispersion Relation with the Evans Function
	Varying the Electric Field ahead of the Front
	Varying the Diffusion Coefficient


	Numerical Simulation of the Perturbed Initial Value Problem
	Analytical Derivation of Asymptotic Limits for k«1 and k»1
	Analysis for the Asymptotic Limit k«1
	A Physical Argument for the k«1 Asymptotic Limit
	Analysis for the Asymptotic Limit k»1

	Physically Guided Fits to the Numerical Dispersion Relations
	Testing the Small k Asymptotic Limits
	Testing Both Asymptotic Limits
	Data Collapse, Relevant Length Scales, Empirical Fits and Conjectures
	Data Collapse
	Relevant Length Scales and the D=0 Case
	Scales and Fits for D>0


	Conclusion and Outlook
	Appendix: Matrices in Exterior Algebra Spaces
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


