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We recently have proposed that a reduced interfacial model for streamer propagation is able to explain
spontaneous branching. Such models require regularization. In the present paper we investigate how transversal
Fourier modes of a planar ionization front are regularized by the electric screening length. For a fixed value of
the electric field ahead of the front we calculate the dispersion relation numerically. These results guide the
derivation of analytical asymptotes for arbitrary fields: for small wave-vector k, the growth rate s(k) grows
linearly with k, for large k, it saturates at some positive plateau value. We give a physical interpretation of these
results.
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I. INTRODUCTION

Streamers generically appear in electric breakdown when
a sufficiently high voltage is suddenly applied to a medium
with low or vanishing conductivity. They consist of extend-
ing fingers of ionized matter and are ubiquitous in nature and
technology. Frequently they are observed to branch @1,2#.
There is a traditional qualitative concept for streamer branch-
ing based on rare photoionization events @3–7#. However,
our recent work @8–10# has shown that even the simplest,
fully deterministic streamer model without photoionization
can exhibit branching. In particular, we have proposed @8#
that a streamer approaching the Lozansky-Firsov limit of
ideal conductivity @11# can branch spontaneously due to a
Laplacian interfacial instability @12#. This mechanism is
quite different from the one proposed previously. It requires
less microscopic physical interaction mechanisms, but is
based on internal structure of the propagating streamer head
with a thin space charge layer. Analytical branching predic-
tions from the simplest type of interfacial approximation can
be found in Ref. @10#.

However, the simple interfacial model investigated in Ref.
@10# requires regularization to prevent the formation of
cusps. The nature of this regularization has to be derived
from the underlying gas discharge physics; it recently has
been a subject of debate @13,14#. We argue that one regular-
ization mechanism is generically inherent in any discharge
model, namely the thickness of the electric screening layer.
This is the subject of the present paper: we study how the
electric screening layer present in the partial differential
equations of the electric discharge influences the stability of
an ionization front, correcting the simple interfacial model
proposed in Refs. @8,11,12,15# and solved in Ref. @10#. To be
precise, we derive the dispersion relation for transversal Fou-
rier modes of a planar ionization front. We treat a negative
front in a model as in @8,9,12,15–17#, but with vanishing
electron diffusion and under the assumption that the state
ahead of the ionization front is completely nonionized. We
have shown previously that the analysis of the full model
@8,9,12,15–17# is mathematically nonstandard and challeng-
ing due to the ‘‘pulled’’ nature @18,19# of the front. Pulling is

a mode of front propagation where the spatially half-infinite
leading edge of a front dominates its behavior. However, for
vanishing electron diffusion and propagation into a nonion-
ized state, the leading edge of the ionization front is com-
pletely eliminated and replaced by a discontinuous jump of
the electron density to some finite value. This corresponds to
the fact that neglecting electron diffusion changes the equa-
tion of electron motion from parabolic to hyperbolic type.
Putting De50 in the present paper and considering propaga-
tion into a nonionized state, we get rid of leading edge and
pulling, but in turn we have to analyze discontinuous fronts.

Here we anticipate the result of the paper: if the field far
ahead of a planar negative ionization front is E` , then a
transversal Fourier perturbation with wave vector k grows
with rate

s~k !5H uE`uk for k!a~E`!/2,

uE`ua~E`!/2 for k@a~E`!/2,
~1!

where a(E) is the effective impact ionization coefficient
within a local field E. The parameter a sets the size of the
inverse electric screening length. The behavior for large k is
a correction to the interfacial model treated in Ref. @10#; in
that model we would have s(k)5uE`uk for all k. The asymp-
totes ~1! have been quoted already in Refs. @8,15#, however,
without derivation. Their derivation based on numerical re-
sults and asymptotic analysis together with a discussion of
the underlying physical mechanisms are the content of the
present paper.

In detail, the paper is organized as follows. In Sec. II we
summarize the minimal streamer model in the limit of van-
ishing diffusion and recall multiplicity, selection, and ana-
lytical form of uniformly translating planar front solutions;
we then derive the asymptotic behavior at the position of the
shock and far behind the shock, and we discuss two degen-
eracies of the problem. In Sec. III we set up the framework
of the linear perturbation analysis for transversal Fourier
modes, first the equation of motion and then the boundary
conditions and the solution strategy. In Sec. IV we present
numerical results for the dispersion relation for field E`

521, and we derive the asymptotes ~1! analytically for ar-
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bitrary E` . The small k limit is related to one of the degen-
eracies of the unperturbed problem, for the large k limit we
also present a physical interpretation. Section V contains
conclusions and outlook.

II. MINIMAL STREAMER MODEL AND PLANAR
FRONT SOLUTIONS

A. The minimal model

We investigate the minimal streamer model, i.e., a ‘‘fluid
approximation’’ with local field-dependent impact ionization
reaction in a nonattaching gas such as argon or nitrogen
@8,9,12,15–17,20#. For physical parameters and dimensional
analysis, we refer to our previous discussions in Refs.
@8,9,12,15#. When electron diffusion is neglected (De50),
the dimensionless model has the form

] ts2“•~s E!5s f ~E!, ~2!

] t r5s f ~E!, ~3!

“•E5r2s , E52¹f , ~4!

where s is the electron density, r is the ion density, and E is
the electric field. Here the electron current is assumed to be
sE and the ion current is neglected. Electron-ion pairs are
assumed to be generated with rate s f (E)5suEu a(uEu),
where suEu is the absolute value of electron current and a~E!
the effective impact ionization cross section within a field E.
Hence f (E) is

f ~E!5uEu a~ uEu!. ~5!

For numerical calculations, we use the Townsend approxima-
tion

a~ uEu!5e21/uEu. ~6!

For analytical calculations, an arbitrary function a(E) can be
chosen where we only assume that

f ~E!5 f ~ uEu! and a~0 !50. ~7!

The last identity entails that f (0)505 f 8(0). For certain
results we also need that a~uEu! does not decrease when uEu
increases, hence that a8>0.

Note that the electrons are the only mobile species and the
source of additional ionization, while ion density r and elec-
tric potential f or field E follow the dynamics of the electron
density s, and couple back onto it.

B. Uniformly translating ionization fronts:
Analytical solutions and multiplicity

We now recall essential properties of uniformly translat-
ing planar front solutions of Eqs. ~2!–~5! and ~7!. First of all,
a constant mode of propagation requires a planar density
distribution that we assume to vary only in the z direction:
(s ,r)5@s(z ,t),r(z ,t)# , the particle densities for large posi-
tive z are assumed to vanish. The field far ahead of the front

in the nonionized region at z→` has to be constant in time
and as a consequence of Eq. ~4! also constant in space,

E5H E` ẑ , z→1` ,

0, z→2` ,
~8!

where ẑ is the unit vector in z direction. For the boundary
condition at z→2` we assumed that the ionized region be-
hind the front extends to 2`. This implies that a fixed
amount of charge *(r2s)dz5E` is traveling within the
front according to Eqs. ~4! and ~8!, and no currents flow far
behind the front in the ionized and electrically screened re-
gion.

For the further analysis, a coordinate system (x ,y ,j5z
2vt) moving with velocity v in the z direction is used. Then
Eqs. ~2!–~4! read

] ts2v]js2~r2s ! s1~“s !•~“f !2s f ~ u“fu!50,

] tr2v]jr2s f ~ u“fu!50,

r2s1¹2f50, ~9!

where we expressed all quantities by electron density s, ion
density r, and electric potential f.

A front propagating uniformly with velocity v is a solu-
tion of Eqs. ~8! and ~9!, where s, r, and f depend on j only.
With ¹f5]jf ẑ52E ẑ , such a front solves

~v1E !]js1~r2s !s1s f ~ uEu!50, ~10!

v]jr1s f ~ uEu!50, ~11!

r2s2]jE50. ~12!

For use in the later sections, we now briefly recall the ana-
lytical solutions @12# of these equations. Subtract Eq. ~11!
from Eq. ~10!, use Eq. ~12! to get a complete differential,
integrate and use Eq. ~12! again to get 2v]jE1sE
5const. The integration constant is fixed by the condition
E→0 at j→2` from Eq. ~8!, and we find

2v]jE1sE50. ~13!

The front equations then reduce to two ordinary differential
equations for s and E,

]j@~v1E !s#52s f ~E !, f ~E !5uEua~E !,

v]jlnuEu5s , ~14!

which can be solved analytically as

s@E#5

v

v1E
r@E# , ~15!

r@E#5E
uEu

uE`u f ~x !

x
dx5E

uEu

uE`u

a~x !dx , ~16!
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j22j15E
E(j1)

E(j2) v1x

r@x#

dx

x
. ~17!

This gives us s and r as functions of E, and the space de-
pendence E5E(j) implicitly as j5j(E) in the last equa-
tion. It follows immediately from Eq. ~17! that E(j) is a
monotonic function, and hence that the space charge q5r
2s5]jE has the same sign everywhere. According to Eq.
~16!, r(j) is a monotonic function, too.

Up to now, the front velocity v as a function of the
asymptotic field E` is not yet fixed. Indeed for any nonvan-
ishing far field E` , there is a continuous family of uniformly
translating front solutions parametrized by v @12,21#, since
the front propagates into an unstable state @18#. In particular,
for E`.0 there is a dynamically stable solution for any ve-
locity v>0, and for E`,0, there is a dynamically stable
solution for any v>uE`u. These bounds on v can be derived
directly from Eqs. ~15!–~17! with boundary condition ~8!
and the condition that the densities s and r are non-negative
for all j.

This continuous family of solutions parametrized by v is
associated with an exponentially decaying electron density
profile in the leading edge @12,18#: an electron profile that
asymptotically for large j decays like s(j)}e2lj with l>0,
will propagate with velocity

v52E`1

f ~E`!

l
in a field E`,0. ~18!

It will ‘‘pull’’ an ionization front along with the same
speed. @For E`.0, the same equation applies for all l
> f (E`)/E` , hence for v>0.#

C. Dynamical selection of the shock front solution
and its particular properties

In practice, not all these uniformly propagating solutions
are observed as asymptotic solutions of the full dynamical
problem Eqs. ~2!–~4!, but only a specific one that is called
the selected front. For a negative ionization front, it propa-
gates with the velocity @12#

v5uE`u for E`,0. ~19!

The selection takes place through the initial conditions @18#:
If the electron density strictly vanishes beyond a certain
point j0 at time t50

s505r for j.j0 at t50, ~20!

then this stays true for all later times t in the comoving frame
j. Only initial conditions that decay exponentially like e2lj

for j→`, approach a solution with the larger velocity ~18!.
Such an exponential decay is a very specific initial condition,
furthermore, such a leading edge will generically be cut off
for very small densities by the physical breakdown of the
continuum approximation. Therefore the physically relevant
solution is the one with velocity ~19! and absent leading edge
as in Eq. ~20!. The complete absence of the leading edge
(l5`) is generic for the hyperbolic equation ~2!, i.e., for

vanishing electron diffusion. We will restrict the analysis of
fronts and their linear perturbations to propagation into a
completely nonionized state ~20! in the remainder of the pa-
per.

In contrast to all other uniformly translating fronts with
v.2E` , the selected front with v52E` exhibits a discon-
tinuity of the electron density at some point j which corre-
sponds to v1E(j)→0. We choose the coordinates such that
the discontinuity is located at j50. The situation is shown in
Fig. 1 for a uniformly translating front with velocity v51
within a far field E`521.

A discontinuity of s means that ]js is singular at this
position. On the other hand, the expression s„r2s1 f (E)…
in Eq. ~10! is finite or vanishing, therefore the product (v

1E)]js in Eq. ~10! may not diverge either. Hence (v1E)
has to vanish at the position of the discontinuity, and there-
fore E5E`52v at the position of the front. Furthermore,
since (v1E)→0 for j↑0, while ]js is bounded for j,0 @as
we will derive explicitly below in Eq. ~28!# we have

lim
j→0

@v1E~j !#]js50. ~21!

The fact that s(j) in Fig. 1 increases monotonically up to
the position of the shock is generic and can be seen as fol-
lows: according to Eq. ~10!, and since (v1E)>0 and s>0,
the sign of ]js is identical to the sign of s2r2 f (E). With
the help of the exact solutions ~15! and ~16!, with the defi-
nition of f (E) in Eq. ~5! and with identifying v5uE`u, we
find

s2r2 f ~E !5uEuE
uEu

v a~x !2a~E !

v2uEu
dx>0. ~22!

So s~j! increases monotonically for growing j up to j50 as
long as a(E) increases monotonically with E. This is the

FIG. 1. Electron density s ~solid line in first plot!, ion density r
~dotted line in first plot!, and electric field E ~second plot! for a
negative ionization shock front moving with v5uE`u in the comov-
ing frame j5z2vt . The far field is E`521.
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case for Townsend form Eq. ~6! or more generally for any
a(E) that is monotonically increasing with E.

D. Asymptotics near the shock front

We now derive explicit expressions for s~j! etc. near the
discontinuity. On approaching the position of the ionization
shock front from below j↑0, the quantity

e5v1E5uE`u2uEu ~23!

is a small parameter. The ion density Eq. ~16! at this point
can be expanded as

r@E#5r@v2e#5a~v !e2a8~v !
e2

2
1O~e3!. ~24!

As the electron density is related to the ion density through
s@E#5r@E#v/e according to Eq. ~15!, it is

s@E#5va~v !2va8~v !
e

2
1O~e2!. ~25!

Equation ~17! evaluated for E(j250)5E`,0 reads

2j5E
uE(j)u

v v2x

r@x#

dx

x
5E

0

e y

r@v2y #

dy

v2y
, ~26!

where in the last expression, the parameter e ~23! is intro-
duced. Insertion of Eq. ~24! now yields an explicit relation
between j and E,

2j5

e

va~v !
1O~e2!

or e52va~v !j1O~j2!. ~27!

Insertion of this approximately linear relation between e and
j into Eqs. ~24! and ~25! together with the notation f (v)
5va(v) results in

s~j !5u~2j !F f ~v !1

f ~v ! v a8~v !

2
j1O~j2!G , ~28!

r~j !5u~2j !@2 f ~v !a~v !j1O~j2!# , ~29!

2E~j !5v1u~2j !@ f ~v !j1O~j2!# , ~30!

where we used v5uE`u and the step function u(x), defined
as u(x)51 or 0 for x.0 or x,0, respectively.

E. Asymptotics far behind the shock front

Far behind the front in the ionized region j→2`, the
fields approach limj→2`(s ,r ,E)5(s2,r2,E2) with

s2
5r2

5E
0

v

a~x !dx , E2
50. ~31!

Expanding about this point as s(j)5s2
1s1(j) etc., we

derive in linear approximation

]jS s1

r1

2E1

D 5S l 2l 0

0 0 0

1 21 0
D S s1

r1

2E1

D , ~32!

with l given by

l5

s2

v

5E
0

v

a~x !
dx

v

. ~33!

Two eigenvalues of the matrix in Eq. ~32! vanish. The third
eigenvalue of the matrix is the positive parameter l, it pro-
duces the eigendirection

S s

r

2E
D ~j !5S s2

s2

0
D 1AS l

0

1
D elj

1O~e2lj! for j→2` ,

~34!

which describes the asymptotic solution deep in the ionized
region. The free parameter A.0 accounts for translation in-
variance.

F. Two degeneracies of the shock front

We have fixed the initial condition ~20! and hence we
have selected the front speed v52E` . Therefore the degen-
eracy of solutions related to the profile of the leading edge is
removed. Still there are two degeneracies remaining in the
problem. The first one is the well-known mode of infinitesi-
mal translation that corresponds to the arbitrary position of
the front. The second one is specific for the present problem
and will play a central role in the derivation of the analytical
asymptote for small k in Sec. IV. It is the mode of infinitesi-
mal change of far field E` . It corresponds to the arbitrari-
ness of the field E` in the nonionized region with s505r
ahead of the front and to the corresponding arbitrariness of
the asymptotic ionization level s5s2

5r behind the front
where the field vanishes. To set the stage for the later analy-
sis, the necessary properties of the modes are given.

An infinitesimal translation of the front in space generates
the linear mode (s t ,r t ,E t)5(]js ,]jr ,]jE),

~v1E !]js t5~2s2r2 f !s t2sr t1~s f 82]js !E t ,

v]jr t52 f s t1s f 8E t ,

]jE t5r t2s t , ~35!

with the definition f 85]x f (uxu), so that f (E1E t)5 f
2 f 8E t1••• for E,0. With the notation c t52E t , the
equations can be written in matrix form as

]jS s t

r t

c t

D 5N0~j !•S s t

r t

c t

D , ~36!
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N0~j !5S 2s2 f 2r

v1E

2s

v1E

]js2s f 8

v1E

2 f

v

0
2s f 8

v

1 21 0

D . ~37!

Note that the matrix N0(j) reduces to the matrix in Eq. ~32!
for j→2`, since (2s2 f 2r)/(v1E)→s2/v5l , etc. The
limiting value of the vector (s t ,r t ,c t) for j→0 is according
to Eqs. ~28!–~30!,

S s t

r t

c t

D →

j↑0S f va8/2

2 f a

f
D . ~38!

The second mode is generated by an infinitesimal change
of the far field E` and consecutively by an infinitesimal
change of the velocity v . The discontinuity is taken at the
position j50. In linear order, this variation creates a mode

sE~j !5 lim
e→0

s [E`1e]~j !2s [E`]~j !

e
etc., ~39!

which solves the inhomogeneous equation

]jS sE

rE

cE

D 5N0~j !•S sE

rE

cE

D 2S ]js/~v1E !

]jr/v

0
D . ~40!

The inhomogeneity vanishes at j→2`. Hence like the front
solution itself and like the infinitesimal translation mode,
also this mode has the eigendirection (ds2,ds2,0)
1A(l ,0,1)elj

1••• asymptotically for j→2`. The value
of ds2 is given by ds2

5]s2/]uE`u5a(E`) according to
Eq. ~31!. For j↑0, the limiting values of the fields are

S sE

rE

cE

D →

j↑0S f 8

0

1
D , ~41!

which is the derivative of Eqs. ~28!–~30! with respect to v

5uE`u at j50.

III. SETUP OF LINEAR STABILITY ANALYSIS

We now can proceed to study the stability of a planar
ionization shock front. The front propagates into the z direc-
tion. The perturbations have an arbitrary dependence on the
transversal coordinates x and y. Within linear perturbation
theory, they can be decomposed into Fourier modes. There-
fore we need the growth rate s(k) of an arbitrary transversal
Fourier mode to predict the evolution of an arbitrary pertur-
bation. Because of isotropy within the transversal (x ,y)
plane, we can restrict the analysis to Fourier modes in the x
direction, so we study linear perturbations }est1ikx. ~The
notation anticipates the exponential temporal growth of such
modes.!

In general, there can be a degeneracy of the dispersion
relation s(k) for various profiles of the leading edge just as it
is found also for the uniformly translating solutions in Sec.
II B. The constraint of a nonionized initial condition ~20!
again will remove this degeneracy and fix s(k). In the
present section, we will derive the equations and the bound-
ary conditions for the Fourier modes. In Sec. IV, we will
solve them numerically and derive the analytical asymp-
totes ~1!.

A. Equation of motion

The linear perturbation theory could be set up within the
coordinate system (x ,j5z2vt) that moves with the unper-
turbed constant velocity v5uE`u. This would, of course,
lead to a set of equations that are linear in the perturbation.

However, when the perturbation of a planar front grows,
the position of the actual discontinuity of the electron density
will deviate from the position of the discontinuity of the
unperturbed front. Within the coordinate system (x ,j), this
would lead to finite deviations within infinitesimal spatial
intervals instead of infinitesimal deviations within finite in-
tervals. This conceptual difficulty can be avoided by formu-
lating the perturbation theory within the coordinate system of
the position of the perturbed shock front (x ,z) with

z5j2Dk , j5z2vt , Dk5d e ikx1st, ~42!

where z is the rest frame, j is the frame moving with the
planar front, and z50 marks the line of electron discontinu-
ity of the actual front. Therefore we write the perturbation as

s~x ,z ,t !5s0~z !1s1~z !Dk~x ,t !,

r~x ,z ,t !5r0~z !1r1~z !Dk~x ,t !,

f~x ,z ,t !5f0~z !1f1~z !Dk~x ,t !, ~43!

where s0 , r0 , and f0 are the electron density, ion density,
and electric potential of the planar ionization shock front
from the preceding section. But these planar solutions here
are shifted to the position of the perturbed front z. Therefore
they do not move with their proper velocity v52] tj , but
with a slightly different velocity 2] tz5v2sDk . The price
to pay is that the equations of the perturbation analysis be-
come inhomogeneous, actually in a similar way as in Ref.
@18#. The gain is that the derivation of the boundary condi-
tions at the shock front becomes more comprehensible, and
that later in Sec. V B the identification of the analytical so-
lution for small k with the mode (sE ,rE ,cE) from the pre-
ceding section becomes quite obvious.

Substitution of the expressions ~43! into ~9! gives to lead-
ing order in the small parameter d,

~v1E0!]zs15~s12s02r02 f !s12s0 r1

1~]zs02s0 f 8!]zf12s]zs0 ,

v ]zr152 f s11s r12s0 f 8 ]zf12s]zr0 ,

~]z
2
2k2!f15s12r11k2E0 . ~44!
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Here f 5 f (E0), f 85] uEu f (uEu)uE0
, and E052]zf0(z) is the

electric field of the uniformly translating front. As explained
above, these equations are not completely linear in
(s1 ,r1 ,f1), but contain the inhomogeneities s]zs0 , s]zr0 ,
and k2E0.

To elucidate the structure of Eq. ~44!, we drop all indices
0 and introduce the matrix notation

]zS s1

r1

c1

f1

D 5Ms ,k•S s1

r1

c1

f1

D 2S s]zs/~v1E !

s]zr/v

2Ek2

0

D , ~45!

Ms ,k~z !5S s12s2 f 2r

v1E

2s

v1E

]zs2s f 8

v1E
0

2 f

v

s

v

2s f 8

v

0

1 21 0 k2

0 0 1 0

D .

~46!

Here we introduced the auxiliary field

c15]zf1 , ~47!

which corresponds to the perturbation E1 of the electric field,
but with reversed sign.

B. Boundary conditions at the discontinuity

Having obtained the perturbation equations, we are now
in the position to derive the boundary conditions. First we
consider the boundary conditions at z50 where we make
explicit use of the initial condition ~20!. The boundary con-
ditions arise from the boundedness of the electron density to
the left of the shock front at z↑0, and from the continuity of
all other fields across the position z50 of the shock front.

As discussed in Sec. II D, for the uniformly propagating
shock front, the quantity (v1E)]zs vanishes as z↑0, since
(v1E) vanishes and ]zs is bounded. Since this should hold
both for the full solution as well as for the unperturbed so-
lution, it also holds for the perturbation

lim
z↑0

@v1E~z !#]zs150. ~48!

Furthermore

@v1E~z !#]zs1[0 for z>0. ~49!

This identity is trivial for z.0, but nontrivial for z50. When
the explicit expressions ~28!–~30! are inserted into Eq. ~44!,
we find

~v1E !]zs15@s1 f ~v !#s12 f ~v !r12 f ~v ! f 8~v !c1

1~c12s !]zs1O~z !. ~50!

First of all, ]zs is singular at z50, since ]zs}]zu(2z)
52d(z). Therefore Eq. ~49! requires that the coefficient of
]zs must vanish

c1~0 !5s , ~51!

which gives the first boundary condition. Second, applying
now Eq. ~48! yields the second boundary condition

@s1 f ~v !#s1~0 !2 f ~v !r1~0 !2 f ~v ! f 8~v !c1~0 !50.
~52!

Due to the discontinuity, actually two boundary conditions
~51! and ~52! result from Eqs. ~48! and ~49!.

In a second step the continuity of the other fields across
z50 is evaluated. The continuity of r we get from Eq. ~11!
and the fact that s and uEu are bounded for all j. It immedi-
ately yields the third boundary condition

r1~0 !50, ~53!

just like for the unperturbed equation. Finally, for the bound-
ary conditions on field and potential, it is helpful that there is
an exact solution for the nonionized region at z.0 for a
boundary with the harmonic form ~42!. Since ahead of the
front there are no particles s505r, there are also no space
charges, and for the potential, one has to solve ¹2f50 with
the limit E52¹f→E`ẑ52v ẑ as z→`. The general so-
lution for z.0 is

f5vj1d c e2kj e ikx1st

5vz1d~v1c e2kz!e ikx1st
1O~d2!, ~54!

with the yet undetermined integration constant c. Here we
chose the gauge f0(j50)50 for the unperturbed electric
potential.

Now f always is continuous, and E52¹f is continuous,
because the charge density ur2su,` in Eq. ~4! everywhere.
The continuity of f at z50 implies

f1~0 !5v1c , ~55!

the continuity of ]xf yields the same condition, and the
continuity of ]zf implies

c1~0 !52ck . ~56!

The five boundary conditions ~51!–~53! and ~55!–~56! deter-
mine the value of the integration constant

c52

s

k
~57!

in Eq. ~54! and the values of the four fields at z50,

S s1

r1

c1

f1

D →

z↑0S f 8~v !s f ~v !/~s1 f ~v !!

0

s

~vk2s !/k

D . ~58!
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Hence the explicit solution in the nonionized region z.0 is

s~x ,z.0, t !505r~x ,z.0, t !,

f~x ,z.0, t !5vz1d
vk2s e2kz

k
e ikx1st

1O~d2!.

~59!

C. Solution strategy and limits for z\À`

We aim to calculate the dispersion relation s5s(k) for
fixed k. For any s and k, the solution at z.0 is given explic-
itly by Eq. ~59!. This solution determines the value of the
fields ~58! at z50 as a unique function of s and k. The ex-
pression ~58! is the initial condition for the integration of Eq.
~45! towards z→2`. The requirement that the solution ap-
proaches a physical limit at z→2` has to determine s as a
function of k. According to a counting argument, this is in-
deed the case, as will be explained now.

First, the limiting values of the fields at z52` are com-
paratively easy: the total charge vanishes, hence s1 and r1

approach the same limiting value s1→s1
2 and r1→s1

2 , and
the electric field vanishes, hence c1→0 and f1→0. Here
the limiting values at z→2` again were denoted by the
upper index 2 as in Eq. ~34!.

Second, the eigendirections are determined by linearizing
the equations of motion ~45! about this asymptotics. In a
calculation similar to the one from Sec. II F, one derives for
z→2`,

S s1

r1

c1

f1

D '
z→2`S s1

2

s1
2

0

0

D 1a1 el1zS l1
2
2k2

0

l1

1

D 1a2 el2zS 1

1

0

0

D
1a3 ekzS 0

0

k

1

D 1a4 e2kzS 0

0

2k

1

D , ~60!

with the free parameters a1 ,a2 ,a3 ,a4, and s1
2 and the ei-

genvalues

l15

s2
1s

v

5l1l2 , l25

s

v

~61!

and l from Eq. ~33!.
For positive s and k, all eigenvalues l1 , l2, and k are

positive except for the fourth one 2k . Hence the first three
eigendirections approach the appropriate limit for z→2`,
while the fourth one does not. Therefore a solution can only
be constructed for

a450. ~62!

This condition determines the dispersion relation s5s(k)
when a solution of Eqs. ~45! and ~58! is integrated towards
z→2` .

IV. CALCULATION OF THE DISPERSION RELATION

Having set the stage, the dispersion relation is now first
evaluated numerically for E`521. Besides an expected re-
sult for small k, this investigation has delivered a previously
unexpected result for large k. Based on these numerical re-
sults for fixed E` , we were able to derive analytical asymp-
totes for small or large k and for arbitrary E`,0. We also
understood the physical mechanism driving this asymptotic
behavior. The section contains the derivation of our numeri-
cal results and of our analytical asymptotes and their physi-
cal interpretation.

A. Numerical results for arbitrary k and E`ÄÀ1

The problem is to integrate the equations for the transver-
sal perturbation ~45! for fixed k and guessed s from the initial
condition ~58! at z50 towards decreasing z. In general, the
boundary condition ~60! with Eq. ~62! will not be met, so s
has to be iterated until a4'0. When the condition is met, the
solution does not diverge for large negative z, otherwise it
does. When passing through the appropriate s5s(k), the
sign of the divergence changes. This is how the data points in
Fig. 2 with their error bars were derived.

For the numerical integration, the ODEPACK collection of
subroutines for solving initial value problems was used @22#
to solve the seven ordinary differential equations for the un-
perturbed problem ~10!–~12! and the perturbation ~45!–~46!
simultaneously. The unperturbed solution has to be calcu-
lated since it enters the matrix ~46!.

However, the numerics cannot directly be applied to the
problem in the form ~45!–~46! because the matrix contains
apparently diverging terms proportional to 1/@v1E(z)# for
z→0. Therefore the behavior of the solution for z→0 has to
be evaluated in a similar way as in Sec. II E. With the ansatz

s1~z !5s1~02!1C1z1O~z2!,

FIG. 2. Dispersion curve for E`521, hence v51. The big
figure shows the numerical data with error bars and the two analyti-
cal asymptotes for small and large k ~lines!. The inset shows the
same data ~squares! in double-logarithmic scale with the same two
analytical asymptotes.
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r1~z !5r1~02!1C2z1O~z2!,

c1~z !5c1~02!1C3z1O~z2!,

f1~z !5f1~02!1C4z1O~z2!, ~63!

where s1(02), etc. are given by Eq. ~58!, the parameters C i
become

C252saS f f 8

s1 f
1 f 1 f 8D ,

C35sS 2k1

f f 8

s1 f D , C45s ,

C15

C21~a1va8/2!C31s~va f 91va8 f 8/2!

21s/ f
. ~64!

In the numerical procedure, the explicit solutions ~28!–~30!
and ~63!–~64! are used until z51025, then the differential
equations are evaluated.

The numerical results for the dispersion relation in a field
E`521, i.e., for a shock front with velocity v51 are
shown in Fig. 2. It can be seen that the dispersion curve for
small k grows linearly, but then turns over and finally for
large k saturates at a constant value.

B. Asymptotics for small k and arbitrary E`Ë0

We first derive the asymptotic behavior for small k for an
arbitrary far field E`,0.

When the equations of motion ~45! and ~46! are evaluated
up to first order in k, f1 decouples, and we get

]zS s1

r1

c1

D 5Ns•S s1

r1

c1

D 2S s]zs/~v1E !

s]zr/v

0
D 1O~k2!,

~65!

where

Ns~z !5S
s12s2 f 2r

v1E

2s

v1E

]zs2s f 8

v1E

2 f

v

s

v

2s f 8

v

1 21 0
D 1O~k2!

~66!

is the truncated matrix Ms ,k(z) ~46!. The matrix Ns for s
50 reduces to the matrix N0 from Eq. ~37!; this fact will be
instrumental below. The fourth decoupled equation reads

]zf15c1 . ~67!

The boundary condition ~58! reduces to

S s1

r1

c1

D →

z↑0S f 8 s f /~s1 f !

0

s
D 1O~k2! ~68!

and

f1~0 !5

vk2s

k
. ~69!

Now compare the mode (sE ,rE ,cE) of infinitesimal
change of far field E` from Eqs. ~39!–~41! to the present
perturbation mode in the limit of small k. After identifying

~s1 ,r1 ,c1!5~ssE ,srE ,scE!, ~70!

the equations and boundary conditions for the modes are
identical in leading order of the small parameter s. Therefore
the two modes have to become identical in the limit s
! f (v),v . Integration over cE yields for the electric poten-
tial fE(0)2fE(2`)5*

2`
0 dx cE(x). This expression has

to be of order unity since all other quantities are of order
unity. But this implies that f1(0) due to Eq. ~70! has to be of
the order of s. Now compare the result for f1(0) in Eq. ~69!
which appears to depend in a singular way like 1/k on the
small parameter k. But for small k and s the expression (vk
2s)/k indeed can be of the order of s, namely if

s5vk1O~k3! for k!a~v !. ~71!

This fixes the dispersion relation s5s(k) in the limit of
small k. The asymptote ~71! is included as a solid line in
Fig. 2.

C. Physical interpretation of the small k asymptote

This result has an immediate physical interpretation: for
small k, the wavelength of the transversal perturbation 2p/k
is the largest length scale of the problem. It is much larger
than the thickness of the screening charge layer that is shown
in Fig. 1. Therefore on the scale 1/k , the charged front layer
is very thin and has the character of a surface charge rather
than of a volume charge. This surface is equipotential ac-
cording to Eq. ~59! in linear approximation in the perturba-
tion d, since

f~x ,z50,t !5d
vk2s

k
e ikx1st

1O~d2!5O~dk !1O~d2!,

~72!

if we insert the dispersion relation s5vk from Eq. ~71!. The
corresponding electric field ahead of the interface is

E~x ,z501,t !52~v1d vk e ikx1st!ẑ1O~d2! ~73!

in the same approximation. The small k limit of the ioniza-
tion front therefore is equivalent to an equipotential interface
at position z50, i.e., at a position

z~x ,t !5vt1d e ikx1st ~74!
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in the rest frame z ~42!. Its velocity in the z direction is
therefore

v~x ,t !5] tz~x ,t !5v1d vk e ikx1st, ~75!

where s5vk was inserted. Comparison of Eqs. ~73! and ~75!
shows that the interface moves precisely with the electron
drift velocity v52E within the local field E.

We conclude that a linear perturbation of the ionization
front whose wavelength is much larger than all other lengths,
has the same evolution as an equipotential interface ~f
5const.! whose velocity is the local electron drift velocity
v5¹f . It exhibits the familiar Laplacian interfacial instabil-
ity s}k .

D. Asymptotics for large k and arbitrary E`Ë0

For large wave vector k, the numerical results for the dis-
persion relation s(k) in a field E`521 approach a positive
saturation value. We will now argue that the saturation value
is given by s(k)5 f (E`)/2. This asymptotic value, which for
uE`u51 equals e21/250.184, is included as a solid
asymptotic line in Fig. 2.

When the electron and ion densities remain bounded, the
equations with the most rapid variation in Eqs. ~45!–~46! for
k@1 are given by

]zc15k2f11k2 E~z !1O~k0!,

]zf15c1 . ~76!

On the short length scale 2p/k , the unperturbed electric field
for z,0 can be approximated as in Eq. ~30! by

E~z !52v2 f ~v !z1O~z2!, ~77!

so the equation for f1 becomes

]z
2f15k2@f12v2 f ~v !z# . ~78!

The boundary condition ~58! fixes f1(0)5(vk2s)/k and
c1(0)5]zf15s . The unique solution of Eq. ~78! with these
initial conditions is

f1~z !5v1 f ~v !z2

f ~v !

2k
ekz

1

f ~v !22s

2k
e2kz ~79!

for z,0. Now the mode e2kz would increase rapidly towards
decreasing z, create diverging electric fields in the ionized
region and could not be balanced by any other terms in the
equations. Therefore it has to be absent. The demand that its
coefficient @ f (v)22s#/2k vanishes, fixes the dispersion rela-
tion

s~k !5

f ~v !

2
1OS 1

k D for k@a~v !, ~80!

which convincingly fits the numerical results for large k in
Fig. 2.

E. Physical interpretation of the large k asymptote

Also for this result a physical interpretation can be given.
First note that the z component of the electric field on the
discontinuity is

Ez~x ,z50,t !52@v1d s e ikx1st
1O~d2!# ~81!

with s5 f (v)/2. This is easily determined from either Eq.
~59! or Eq. ~43!. Reasoning as in Eqs. ~73!–~75!, we again
find that the shock line of the electron density moves with
the local electron drift velocity—as it should.

Second, one needs to understand why the electric field on
the shock line takes the particular form ~81!. In the frame j
5z2vt of the unperturbed front ~42!, the electric field at the
discontinuity is

Ez~x ,j5D ,t !52S v1

f ~v !

2
D1O~D2! D , ~82!

where its position deviates with D(x ,t)5d e ikx1st from the
planar front.

In linear perturbation theory, the amplitude d of the per-
turbation has to be much smaller than its wave length 2p/k .
Since this wave length 2p/k now is much smaller than the
width of the front, the linear perturbation D explores only a
small region around the position of the shock front. In this
region, the electric field of the unperturbed front is according
to Eq. ~30! approximated by

Ez 0~j !5H 2@v1 f ~v !j1O~j2!# for j,0.

2v for j.0
~83!

Therefore the electric field ~82! is just the average over the
behavior Eq. ~83! for j.0 and j,0. This spatial averaging is
enforced by the harmonic analysis of linear perturbation
theory that will suppress different growth rates of positive or
negative half-waves of the perturbation.

F. A conjecture for the large k asymptote

We therefore conjecture: if the electric field of an unper-
turbed front is

E0~j !5H 2~v1aj1O~j2!! for j,0,

2~v1bj1O~j2!! for j.0
~84!

near the position of the discontinuity j50, then a linear per-
turbation of this discontinuity with large k will grow with
rate

s5

a1b

2
. ~85!

If true, this behavior would have a stabilizing effect on large
k perturbations with growing curvature of the fronts, since
the electric field decays in the nonionized region ahead of a
curved front, therefore b,0.
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V. CONCLUSIONS AND OUTLOOK

We have studied the ~in!stability of planar negative ion-
ization fronts against linear perturbations. Such perturbations
can be decomposed into transversal Fourier modes. We have
determined the dispersion relation s5s(k) shown in Fig. 2
numerically for a fixed field E`521 far ahead of the front,
and we have derived the analytical asymptotes

s5H uE`uk for k!a~ uE`u!/2,

uE`ua~ uE`u!/2 for k@a~ uE`u!/2
~86!

for arbitrary E`,0. Since we have studied the minimal
model, there is only one inherent length scale, namely the
thickness of the charged layer as shown in Fig. 1. This thick-
ness is approximated by 1/a(E`). The wavelength 1/k of the
Fourier perturbation therefore has to be compared with this
single intrinsic length scale 1/a(E`) of the problem.

A specific property of our calculation is the expansion
about a discontinuity of the electron density. Therefore we
work in a coordinate system z5z2vt2de ikx1st ~42! that
precisely follows the position of the discontinuity, and we
explicitly distinguish in all calculations the nonionized re-
gion z.0 from the ionized region z,0. For the nonionized
region z.0, there is an exact analytical solution ~59! for any
s and k which determines the values of the fields at z50 as
given in Eq. ~58!. Equation ~58! serves as an initial condition
for the integration towards z,0. The approach towards
z→2` according to Eqs. ~60! and ~62! determines the
growth rate s as a function of k. In general, this calculation
has to be performed numerically with results as shown in
Fig. 2. The limits of small and large k can be derived ana-
lytically. For small k, we can identify the perturbation mode
with the mode of infinitesimal change of E` . For large k, the

growth rate corresponds to the evolution of the discontinuity
in the unperturbed electric field averaged across the discon-
tinuity. Both limits therefore have a simple physical interpre-
tation.

The aim of the work was to identify a regularization for
the interfacial model as suggested in Refs. @8,11# and treated
in Ref. @10#. Indeed, we have found that a Fourier mode for
large k in a far field E`52v does not continue to increase
with rate s5vk , but saturates at a value s5 f (v)/2. Still this
is a positive value, and whether this suffices to regularize the
moving boundary problem, remains an open question.

Besides this one, future work will have to investigate two
more questions. First of all, there is the ‘‘simple’’ possibility
to extend the model by diffusion. Diffusion is certainly going
to suppress the growth rate of Fourier modes with large k as
our preliminary numerical work indicates. But there is also a
second more subtle and interesting possibility: the growth
rate of Fourier perturbations with large k could change for a
curved front, as we have conjectured in Sec. IV F. There we
have argued that the saturating growth rate s5 f (v)/2 results
from the average over the slope 2 f (v) of the field in the
ionized region and the slope 0 of the field in the nonionized
region. For a curved front, the electric field in the nonionized
region will have a slope of opposite sign that is proportional
to the local curvature. We therefore expect the growth rate of
a perturbation to decrease with growing curvature. These
questions require future investigation.
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