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Using a recently established renormalization group approach [U. Ebert, J. Stat. Phys. (to be
published)], we analyze the center-of-mass motion of a polymer in a Gaussian disordered potential.
While in the long-time limit normal diffusion is found, we concentrate here on shorter times. We
discuss the general structure of the relevant crossover scaling function and evaluate it quantitatively
in three dimensions to one-loop order. We identify a universal short-time regime, where the chain
length dependence of the center-of-mass motion is Rouse-like, while the time dependence is nontriv-
ial. Motion in this regime can be interpreted in terms of a blob picture: A “time blob” defines an
additional intrinsic length scale of the problem. The short-time dependence of the center-of-mass
motion over several decades approximates a power law with an effective exponent that continuously
depends on disorder (and also weakly on the time interval). We furthermore present the results
of a simulation measuring the motion of a (pearl necklace) chain in Gaussian disorder in three di-
mensions. We find full agreement between theory and numerical experiment. The characteristic
behavior found in these simulations closely resembles the results of some previous simulations aimed
at seeing reptation. This suggests that such work was strongly influenced by energetic disorder or
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entropic traps.

PACS number(s): 36.20.Ey, 05.40.+j, 64.60.Ht

I. INTRODUCTION

Consider a very long polymer chain diffusing through
a swollen gel or a diffraction column. The spatial distri-
bution of matter in such a system is fairly random, but
essentially does not change with time, even though the
meshes of the gel fluctuate a little. We thus deal with
the properties of a polymer embedded in some fixed but
random environment (“quenched disorder”). The distri-
bution of the random medium may be taken to be homo-
geneous in space, but in general will show strong spatial
correlations. We concentrate here on an idealized model,
where the range of these correlations is comparable to
the size of the segments of our chain, while the size of
the polymer coil for long chains is much larger. We thus
will consider the segment size and the correlation length
of the random medium as microscopic scales, small com-
pared to the chain size. This allows us to derive universal
results in a renormalizable theory.

Investigating a dynamic problem, besides the polymer
size measured, e.g., as the radius of gyration Rg, there
is a second obvious large length scale, namely, the root
mean square diffusion length R(t). It gives the average
distance the center of mass of a polymer moves within
time ¢. The relation Rg = R(T,) defines a time scale
To, which discriminates the short-time from the long-
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time behavior. For short times t < Ty we expect an
anomaly of the time dependence due to disorder medi-
ated autocorrelation effects of the polymer with its pre-
vious configuration. For long times ¢ > Tp, the polymer
essentially can be considered as an extended Brownian
particle, which explores new parts of space with uncorre-
lated potentials. For space dimension d > 0 it then obeys
a normal diffusion law R2(t) o t with a disorder reduced
diffusion constant. (Note the difference of the lower crit-
ical dimension in this problem to random force models
with a lower critical dimension of 2.) Explicit results for
the renormalized diffusion constant in our special model
to be defined below are derived in [1,2].

Besides the asymptotic diffusion constant, the short-

time regime ¢ < T, is also of interest because it yields
additional information on the diffusion mechanism and
it is more easily accessible to both computer or real ex-
periments than the region ¢ > To. Two of us already
have published preliminary results [1] on the center-of-
mass motion R(t) for ¢t <« Tp. In the present paper we
reinvestigate this problem. We present detailed analyt-
ical and numerical evaluations of our analytical results
as well as Monte Carlo simulations. In the interplay of
analytics and simulations we found a less obvious third
length scale, which appears only in the short-time regime
and plays a decisive role there. We denote this time-
dependent scale as the root mean square radius £p(t) of
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a “time blob” to be defined below. It shows up in a care-
ful reinvestigation of the analytic expressions and allows
us to consistently evaluate analytics and simulations.

While it was the analytic structure that lead us to in-
troduce the concept of time blobs, on hindsight they are
the natural physical quantities to appear in the short-
time regime. Let us consider models in general, for which
the displacements of the individual segments are due to
local thermal fluctuations, i.e., let us consider models
without long-range interactions such as, e.g., the hydro-
dynamic one. The assumption of hydrodynamic screen-
ing seems to be well justified in a random medium, as we
conclude in analogy to the case of semidilute solutions
[3]. Also, as mentioned above, we assume that the dis-
order does not introduce long-range correlations, which
thus only are mediated by the extended structure of the
chain itself. Consider now not the center-of-mass motion
R(t), but the dynamics of the single segments as appear-
ing in the mean square distance of segments number 7
and j at times t' and t + ¢’

Dij(t) = ([ri(t +t') — r;(¢)]?). (L.1)
(The angular brackets denote the thermal average and
the overbar the ensemble average.) Since the center-of-
mass motion R(t) results from summing over the indi-
vidual displacements of the segments, it is rather D;;(t)
that traces the basic dynamics. For t = 0, D;;(t) is de-
termined by the static expectation value of the segment

" distance, while for ¢ 3> Ty, D;;(t) obviously can be ap-
proximated by R?(t), independent of i,j. For any given
finite time ¢, there is a segment distance |i — j| or a corre-
sponding root mean square distance £g(t) in embedding
space, at which the correlations cross over from being
statically to being dynamically dominated. That means
that for times t' < t, the behavior on the length scale
£p(t) is dominated by the static correlations and seg-
ments, which are £g(¢) apart from each other, undergo
independent thermal fluctuations. For ¢’ > ¢ in contrast,
the segment correlations on the length scale £p(t) are
dominated by joint diffusion. ¢p(t) thus defines the av-
erage size of the subchains that undergo correlated mo-
tion within the time ¢t. For £5(t) we use the term “time
blob” in analogy to the blob concept in semidilute static
polymer solutions, since in both cases the interactions
(in the one case due to the correlations induced by the
quenched random medium and in the other case due to
the excluded volume interaction) dominate the physics
up to the blob size. With ¢t growing, £g(t) grows contin-
uously until it saturates at the size of the whole chain.
£p(to) = Rg therefore defines another crossover time,
viz., the time at which the displacements of the first and
the last segment of the chain become correlated. T, in
contrast, is the time the chain needs to diffuse a distance
of the order of its own size. Obviously these two time
scales are of the same order of magnitude and specifi-
cally they have the same dependence on chain length N
in the whole class of models in which diffusion is driven
by the uncorrelated local thermal displacements of the
segments. We then can drop the notion of the indepen-
dent scales ty and Ty and use only Tj in the sequel. Note,

however, that for short times ¢t < Ty, the two functions
R(t) and £p(t) scale differently with N. R(t) is always a
monotonically decreasing function of V and will be found
to decay like N~1 for t < Ty in the whole class of local
thermal displacement models defined above, while £5(t),
by definition, does not depend on N at all. For times t
with £p(¢t) much larger than the microscopic length scales
but smaller than Rg, we expect some nontrivial short-
time behavior, which for a renormalizable model should
be universal. Since T, grows with N, while the micro-
scopic scales and £g(t) are independent of IV, there is a
considerable time range in which short-time universality
can be expected.

We now recall some general aspects of the problem and
describe our approach. From a theoretical point of view,
polymer diffusion in a quenched random medium is a
most challenging problem, which is not very well under-
stood. Only a few very simple results concerning static
properties of a dilute system of macromolecules have been
established rigorously: If a finite number of chains of fi-
nite length are free to move within an infinite volume and
if the distribution of the random medium is homogeneous
in space with finite correlation length, the partition func-
tion is self-averaging [4]. If, furthermore, the correlation
length of the randomness is microscopic, the disorder av-
erage can be carried out by standard means. Dynamic
properties in general, however, or even static expectation
values in quenched disorder with a finite segment concen-
tration still pose severe unsolved problems. They mainly
have been discussed in terms of plausible but somewhat
heuristic arguments.

The problems even start with searching for a good
and tractable model. This is a simple task only for the
polymer part. Being concerned with hopefully universal
properties of very long chains, we may ignore all chemi-
cal microstructure and model the chain as a sequence of
mutually repelling beads or even as a self-repelling space
curve (Edwards model). This approach has been most
successful in explaining the properties of normal poly-
mer solutions.

To model the quenched disordered medium poses a
more complicated problem. Two complementary ap-
proaches have been suggested. On the one hand, we may
observe that mechanical stability of the medium needs
a connected structure of material, which the polymer
cannot cross. Its available space therefore is confined to
holes that will form a very complex geometrical pattern.
The first type of approach tries to deal with the random
medium in terms of such purely geometrical or “topolog-
ical” constraints. On the other hand, the energetic ef-
fects then are neglected. Such effects clearly result from
the interaction of the polymer with the random material.
Furthermore, larger holes allowing for more microscopic
configurations of (parts of) the macromolecule, act as en-
tropic traps [5,6]. In coarse graining from a microscopic
description of the polymer to the simple model described
above, such traps yield a contribution to the local free
energy of the effective segments that fluctuates in space.
Both the microscopic interactions as well as the entropic
traps may be modeled as a quenched random local po-
tential.
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It should be clear that a realistic description of the ran-
dom medium should combine both topological and ener-
getic effects. Unfortunately, at present no such realistic
model allowing also for an analytic treatment is known.
Static properties generally are discussed within the ran-
dom potential model. Dynamic properties mostly have
been analyzed for topologically defined disorder, which
leads to the reptation picture [7,3]. Recently, however,
one of us has presented an extensive study of polymer
dynamics in the random potential model [2] (this paper
will be refered to as I in the following), which will be
pursued in the present paper. Starting from a Langevin
description of the polymer dynamics and incorporating
a local Gaussian distributed random potential as the rel-
evant contribution in the renormalization group (RG)
sense, a systematic perturbation theory was formulated.
It takes the form of a simultaneous expansion in two cou-
plings, namely, in the excluded volume repulsion » among
the polymer segments and in the strength of the disor-
der, being measured in terms of the second moment v
of the Gaussian distribution. The theory was shown to
be renormalizable at least to one-loop order and to take
along all those short-range effects that are relevant under
renormalization and thus govern the large-scale proper-
ties. Within the class of random potential models and for
sufficiently long chains the results therefore are expected
to be universal. They should yield a valid description of
experiments, provided the “topological” correlations of
the realistic disorder do not play an essential role. As
pointed out below, this latter restriction in fact may not
be very strong.

Dealing with a renormalizable theory, however, does
not necessarily imply the results to take the form of sim-
ple power laws. In fact, the analysis has shown that the
disorder coupling v does not reach a stable fixed point
within the realm of perturbation theory. Our results
therefore are formulated as nonlinear crossover functions,
not reducing to power laws. The RG allows us to dis-
cuss the general nonlinear scaling forms and to determine
which combinations of the original parameters appear as
scaling variables. The explicit evaluation of our pertur-
bation theory to one-loop order, however, is restricted to
very weak disorder on the microscopic scale, which nev-
ertheless should yield the universal behavior in an appro-
priate parameter range.

Let us now briefly recall our earlier results for the
short- and long-time behavior of our model. For long
times t > T normal diffusion of the center-of-mass mo-
tion was found, i.e., R2(t) = D t. The N dependence of
the diffusion constant D was found to be N~ D(3(lgr)),
with #(lg) being the renormalized coupling on the scale
lr and lp being a scale of the order of the polymer size
Rg. Under the simplifying assumption of the effective
excluded volume interaction w = u — v being close to the
excluded volume fixed point, 7({g) is a unique function of
v N279” The N dependence of the diffusion constant is
very nonlinear and not of a power law type. The explicit
results of the evaluation of the one-loop perturbation the-
ory can be found in [1,2]. The special limit of ¢ > T, will
be put into the framework of a general scaling function
in the present paper.

The crossover time Tp in the free theory u = v = 0
scales like N?, leaving ample space for universal short-
time behavior dominated by the motion of time blobs
Lp(t) < ¢p(Ty) = O(\/N), but much larger than the mi-
croscopic scales. For this universal short-time behavior
t <« T, two of us had presented some earlier prediction
[1], suggesting that R(t) obeys some anomalous power
law in t with an exponent depending again on ¥(¢g) with
the same choice {p = O(Rg). This would imply some
nontrivial N dependence of the anomalous time expo-
nent. However, as pointed out above, the reinvestigation
of the analytic expressions in the short-time regime as
stimulated by the results of the Monte Carlo simulations
also presented in this paper has lead us to identify the
blob size £p(t) as another dynamic length scale. We now
find that the structure of the analytic results strongly
suggests the choice of the renormalized length scale ¢
as £p ~ £p(t). Then, in contrast to our earlier work, no
recourse to exponentiating logarithmic time divergencies
appearing in an € expansion is required. All singularities
are eliminated by the appropriate choice of £i. As a re-
sult, we now find analytically and in agreement with the
Monte Carlo simulations that in the universal short-time
regime the product of the chain length and the mean
square displacement of the center of mass NR2(¢) is in-
dependent of N. It shows a nontrivial time dependence
not in the form of a power law in ¢t. Choosing parame-
ters comparable to those of the Monte Carlo simulation,
the analytical results, however, can be numerically fitted
by an anomalous power law in t over many decades of
t with a surprising accuracy. They are in quantitative
agreement with the simulations.

In the long-time regime the same quantity NR2(t) is
linear in ¢t and depends on N only through v(¢g), where
here the choice of £g = O(N¥{) is the appropriate one.
It thus has a nontrivial and non-power-law dependence
on N as recalled above, while the t dependence is trivial.

Qualitatively our results strongly resemble results of
computer experiments [8] simulating the motion of a
polymer through a quenched random system of topolog-
ical constraints. This supports the idea [9,10] that ener-
getic disorder or entropic traps strongly can modify the
behavior predicted by the reptation model.

Our paper is organized as follows: In Sec. II we define
the model and we collect the results from paper I [2]
needed in the sequel. In Sec. III we present and analyze
in detail the blob picture. In Sec. IV we derive the general
form of the scaling laws and Sec. V presents the numerical
evaluation of our one-loop results. Section VI is devoted
to the Monte Carlo simulations. Section VII summarizes
our findings and discusses the range of validity of our
results. In the Appendix we derive, for completeness,
the renormalization group flow equations used here.

II. DEFINITION OF THE MODEL
AND COLLECTION OF SOME PERTURBATIVE
RESULTS

A. Model

We describe the configuration of the polymer chain em-
bedded in d-dimensional space by fixing the set {r;},
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j = 1,...,N, of vectors giving the positions of the
monomers. The potential energy (in units of kgT) is
written as

—T— 1) d d
e + uf Z 0%(r; — rj)

1<i<j<N

Hir;} = Z
+ZV(ri)

The first term identifies our model as a discrete Gaussian
chain of average segment size {(r; —r;_1)?%) ~ 2d¢?, £ set-
ting the microscopic scale. The second term introduces
an excluded volume repulsion among the monomers, of
dimensionless strength u > 0. The one-body potential of
the last term is assumed to be a random variable, dis-
tributed according to a Gaussian distribution

PoV] = N exp [_ [ a ngﬂ)]-

N is a normalization constant. The parameter v governs

the width of the distribution and will play the role of a

coupling constant measuring the strength of the disorder.
Dynamics is introduced via the Langevin equation

(2.1)

(2.2)

7]

Sri(t) =y VRO H RG], (23)
where V; denotes the gradient with respect to r;(¢). This
equation describes an overdamped motion under the in-
fluence of thermal forces f;(t) acting on the ith monomer.
For these forces the usual white noise distribution is taken

N
Pr{fi} zN'exp[—%;/dt ff(t)] .

As has been discussed in I, this model contains all
short-range terms that are relevant according to stan-
dard power counting. It further must be recalled that
Egs. (2.1)—(2.4) are formal, needing regularization in in-
termediate steps of the calculation. Specifically, in the
static part (2.1) and (2.2) both the §-function potential
and the local fluctuations of V(r) must be smoothened
and in the dynamic part we must discretize the time con-
tinuum and also must include some potential confining
the center-of-mass motion. Since these aspects do not
show up in the final results and since they carefully have
been discussed in I, here we do not consider such techni-
calities any more.

(2.4)

B. Results of unrenormalized perturbation theory

In I the model was evaluated by constructing a gen-
erating functional for the correlation functions. This
functional may be expanded about the Rouse limit, i.e.,
the noninteracting (u = 0) chain in homogeneous space
[V(r) = 0, i.e,, v = 0]. Here we are interested in the
motion of the center of mass

N
Re.m () = % Sorie) (2.5)

as represented by the mean square distance the polymer
moves within time ¢

Rz(t) = <[Rc.m.(t + tO) - Rc.m.(to)]2>-

Since we take the system to be in thermodynamic equi-
librium, R?(t) is independent of to. It furthermore is in-
dependent of the position of the starting value R . (¢o),
due to the translational invariance of the ensemble P,[V].

The first-order result for R%(t) (“one loop”) is found
in I, Eq. (7.26):

t ~
R*(t) = 2dI't [1 —% r/ d# (1 - %)
0
S . .
9 / dsfsg Dij(,f_)—3+e/2:| )
0

Here the ususal notation € = 4 — d is introduced and

(2.6)

(2.7)

s; = J fz,

2 2
F'=w%=5
Throughout this paper we take ¢t > 0. The result (2.7)
is written in dimensional regularization, i.e., assuming
d < 4(e > 0) and taking the continuous chain limit £ — 0
with S, s;,;,%,? (and with a similar variable 4 derived
from u) held fixed. This limit simplifies the calculations
and suppresses microstructure effects. In particular it
sets the microscopic time scale Ty ~ £2/v to zero. The
function D;;(7) is the counterpart of D;;(t) [Eq. (1.1)] in
a noninteracting theory and derives from the motion of
internal segments of a Rouse chain

y =7e2a

Di;(7) =

[I, Eq. (A.2)]. An explicit form of the one-loop integral
will be given below.

Some basic structural aspects of the result (2.7) easily
are understood. The leading term R2(t) = 2dI't just rep-
resents free diffusion. In the absence of the one-particle
potential V(r) this is the full result for R(t), since ex-
cluded volume forces do not ruin translational invariance
and therefore by themselves do not couple to the center-
of-mass motion. Any nontrivial effect is due to the pres-
ence of the fluctuating potential V(r) and in perturba-
tion theory therefore must involve at least one factor of
v. Thus to one-loop order only a term of order ¢ can oc-
cur. The random potential exerts forces on the individual
monomers. Along the chain the effect of these forces is
propagated by the function D;;(7), which correlates the
motion of a pair of monomers.

We now write down a more explicit form of the one-
loop result (2.7). We rescale the variables, introducing

3 (P + ) = %3(t0) Phumo

Y o4
T—ﬁ, ’T=§T,
m=3i+s’—1, y_sj——s,

S ST’
and we use the results of I, Sec. 7.3 and Appendix A, to
find after some algebra
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R2(t) = 2dT't[1 — S/?Ry(T)] ,

T 1 z/\/T
R.(T) = %/0 dr 7 1te/4 (1—%)/0 dw/o dy

X{y+v6 if

p=—o0

This form of the result is particularly useful for a discus-
sion of the short-time regime T < 1, which easily is seen
to be dominated by small values of |u| in the summation.
The limit T — 0 is given by the g = 0 contribution of
the first term in the square brackets of Eq. (2.9).

C. Renormalization

For ¢ > 0, Eq. (2.9) yields a finite result for all 0 <t <
oo and 0 < § < 0o. For € — 0 the one-loop correction
develops a pole, the divergence resulting from integration
over small distances and short times: (s; —s;)% ~ 7 — 0,
ie.,, 7 — 0,y finite. For any T # 0 we find [cf. I, Eq.
(4.30) and Appendix B]

_ I
S?R(T) =, -+ o(e%) (2.11)

I= /00o dy [y + g(y)] ™% = 3.587... (2.12)

Within dimensional regularization such poles are the re-
mainder of the microscopic structure of the chain. To
extract the universal physical behavior, which necessar-
ily is given by finite expressions also for d = 4, we must
absorb the € poles into a redefinition of the parameters
of the theory. We thus write

U = wWgZ,, 0 = g7, ,
S = nptdZ, T = Rz (2.13)
nR

Here fp is an arbitrary length scale introduced to make
the renormalized parameters 4,7, np dimensionless. yp
has dimensions (length)?/time. The renormalization fac-
tors Z,, etc., are written as power series in 4,7 with
coefficients depending only on € and chosen to cancel the
€ poles (“minimal subtraction”). The existence of such a
choice, which eliminates the poles from all physical cor-
relation functions, is the highly nontrivial property of
a renormalizable theory. Clearly, with the results given
here we only can determine Zr to first order, but con-
sidering other quantities also the other Z factors have

(2.8)
L) e(Fe D)) e
(2.10)

been determined and the one-loop renormalizability of
the theory has been established (see I).

The renormalized form of Eq. (2.7) is found by sub-
tracting the pole and replacing all variables by their
renormalized counterparts

I e
R%*(t) = 2d%§-t [1 +20 - o0 Ry (Tr) + O (v°, 40)

(2.14)

The variable

TR

Tg = ——
2 g2
ngln

t (2.15)

has a simple interpretation as Tp ~ t/Tp with Tp dis-
criminating between short- and long-time behavior, as
described in the Introduction. Indeed the leading-order
result can be written as

1
ﬁRz(t) = ngtiTr ~ RLTr ,

where RZ, ~ ngf% is the radius of gyration of the chain
evaluated to leading order of renormalized perturbation
theory. Note that the result of I, Eq. (7.28), is identical
to Eq. (2.14) above, but written in a form adequate for
discussing the long-time regime.

To evaluate renormalized results we need a manageable
form of the mapping from physical (unrenormalized) pa-
rameters to their renormalized counterparts. The formal
definition (2.13) cannot be used for that purpose since
it involves power series with singular coefficients. How-
ever, in renormalization theory one proves that deriva-
tives 0u/0Infgr, 80/0Inlg, 8lnng/dInlg, etc., taken
with fixed unrenormalized parameters, show a well be-
haved perturbation expansion in powers of @, ?. By con-
struction the resulting “renormalization group flow equa-
tions” relate renormalized theories defined on different
scales £g, but all equivalent to the same unrenormalized
theory. Integrating these equations, we find the relation
among the renormalized parameters defined on different
scales, which we may denote by £g or £g . We now take
£Rr.0 to be of microscopic size £g o = £. On that scale the
renormalized parameters can be assumed to be regular
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functions of the physical parameters since all the criti-
cal nonanalytic behavior is due to fluctuations on scales
large compared to ¢. The flow equations therefore yield
u, etc., as functions of

A={¢/tp (2.16)
with integration constants that are microstructure de-
pendent and are taken as fit parameters depending
smoothly on the microscopic physics (for examples see
below).

The final step in the evaluation of renormalized per-
turbation theory then consists in choosing fg. This is
a delicate problem, the solution offered in Sec. III being
the essential new theoretical contribution of the present
work.

With these general remarks we turn to the form of the
renormalization group equations for the problem at hand.
This in detail has been discussed in [4] (see also I, Secs.
2.2 and 7.2) and we quote the following results.

(i) The combination

W=8—7 (2.17)

of the interaction constants decouples from the other pa-
rameters, obeying an equation of the form

ow _
—£r 5‘[}; = ;Bw('w)
Also the flow of ng
/ Olnng 1
R "6tn ~ v(w)

depends on w only. Furthermore, these equations are
identical to those found in the theory of equilibrium
properties of normal polymer solutions. As a result,
the functions B, (w),v(w) are known to good precision
[11]. In particular, for € > 0 there exists a fixed point
w* = £ + O(€?), which for all starting values wo > 0 is
reached in the limit A = ¢/ — 0. (Ind = 3, w* ~ 0.364
is found from a higher-order calculation.) If we assume
that the starting value of w is already close to the fixed
point @ = w*, the equation for ng yields

ng = A/VYN N=cy N , (2.18)

where v = v(@*) = 0.588...in d = 3 and N is pro-
portional to the bare chain length V. The nonuniversal
proportionality constant cy absorbs the integration con-
stants and depends on the microscopic interactions. For
w = w* the polymer chain is said to have reached the
excluded volume limit, where, for instance, the equilib-
rium size of an isolated polymer coil in solution scales as
Rg ~ NY. In the following we for simplicity will assume
w to have reached its fixed point so that the flow of w
needs no further consideration.

(ii) The flow of the disorder strength ©# can be taken
from the theory of solutions containing two different poly-
mer species (“ternary solutions”). For @ = @* the inte-
grated flow of ¥ to a good approximation is found as

. 1\7!
(X)) = ((s,,)\)“’uY - E;) ) (2.19)
where wj, ~ 0.40 and
w? 1 1
12 = — . 2.20
=5 T o (2.20)

This result can be extracted from [12], but for complete-
ness we sketch a derivation in the Appendix. [Note a
slight change of notation. The couplings ¥(l) and ¥(lg)
from [1,2] and the Introduction are from here on denoted
as 9(1) and o(A).]

From Egs. (2.19) and (2.20) it is obvious that for
9(1) < 0 the coupling #(A) for A — 0, i.e., £g — oo, tends
to —w*. In the present problem, however, (1) is posi-
tive definite, being the second moment of a probability
distribution. For #(1) > 0 the fixed point is not reached,

but () with decreasing A leaves the region © < 1 where
perturbation theory may be trusted. This restricts our
explicit calculations to the limit of weak disorder. We

assume (1) to be so small that 5(A) ~ 1 holds for all
values of A encountered in our evaluation of renormal-
ized perturbation theory.

(iii) The flow of g is specific to the dynamical prob-
lem. It has been calculated to one-loop order and the
results of I yield (see also the Appendix of the present

paper)

() —o/wi, 5
Yr(A) = (s,A)Y/* (1 + %) ¥ o, (2.21)
where 4 is proportional to the microscopic segment dif-
fusion constant v, the proportionality factor being mi-
crostructure dependent. The exponent o takes the value

o= 21 +0(e?) ¥ 0.90 (2.22)
Since o is known only to leading order in €, its value
certainly is not very precise. We believe that this is the
main source of numerical uncertainty of our results. It
could be cured only by an extremely tedious higher-order
calculation of Zr.

Equations (2.18)—(2.22) define the renormalization
group mapping to be used in the following. It should
be noted that the simplifying assumption @ = w* is not
essential. It could be relaxed at the price of somewhat
more involved calculations. [The flow of 4(A) would be-
come quite complicated but has been worked out in the
Appendix of Ref. [12].] We finally should stress again
that all the results given in this section only recall or
rephrase previous work.

III. TIME BLOBS AND CHOICE
OF THE RENORMALIZED LENGTH SCALE

The renormalized theory is scale invariant, which
means that macroscopic quantities, if calculated to all
orders, are independent of the arbitrary scale £g. Ap-
proximations based on finite-order perturbation theory,
however, in general are not rigorously scale invariant. If,
based on low-order perturbation theory, we want to con-
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struct a good crossover function that interpolates among
qualitatively different behavior in various limits (¢ < Tp
or t > Ty, for instance), then the appropriate choice of
£p is an important question. Ideally £ should be chosen
such that the leading (zero-loop) order of perturbation
theory qualitatively yields the correct behavior, higher
orders contributing only finite (hopefully small) correc-
tions in all the physical parameter range. In struggling
for that goal an identification of the important length
scales is essential.

To analyze the problem for the center-of-mass motion
of the chain we first consider the long-time regime t > Ty,
where the chain has moved a distance large compared to
its radius Rg. In that region the only relevant scale is
the radius Rg itself. Identifying {gp =~ R¢ and taking
into account the zero-loop result R, ~ f% ng, we find
the condition

ng=1, (3.1)
which implicitly fixes £g. Underlying that choice is the
simple picture that in the long-time limit the polymer
coil moves like a Brownian particle. We thus can view it
as a single effective segment, showing normal diffusional
behavior. The internal structure determines the renor-
malized diffusion coefficient as a universal quantity. This
idea can be and should be checked with the perturbative
results. As has been worked out in I, Sec. 7.3, R%(t) in
the long-time limit can be written as

20y —og TR o1 o (2 _ 1)1
R(t).—Zant|:1 v((nR 1)€

+nl% A(oo, e))] , (3.2)

where A(oco,€) is a numerical constant of order 1. For

o < 1 the choice np = O(1) therefore guarantees that
the one-loop term just yields some finite correction, the
dominant behavior being given by the prefactor, which
just is the renormalized zero-loop term.

We now turn to the limit ¢ <« Tp. (Recall that the
microscopic time scale T}, has been set to zero by taking
the continuous chain limit. For a physical chain it must
be understood that T, <« t < Ty.) Now at such short
time differences the segments 7 and j far apart along the
chain move independently. As explained in the Introduc-
tion, we thus consider the chain after time ¢ as a sequence
of ngp = ng(t) “time blobs” of spatial size £ = £g(t),
defined such that the blobs can be taken as moving inde-
pendently up to time t. We determine £5 self-consistently
on the basis of the zero-loop approximation.

The number of segments in a time blob is N/ng. Con-
sidered as a free chain, such a blob moves according to

(REEY (1) ~ RELD O)) ~

~ YR t (33)

vyt
N/nR
The last equality follows from the relation v/N = yr/ngr

valid to leading order in the presence of the random po-
tential or rigorously true for free chains. Equation (3.3)

identifies ygr as the blob diffusion coefficient. Being of
size £p, this blob will start to “feel” the constraints tying
it to its neighbors after it has moved a distance of order

£p. Thus
LB =£R(t) = V')’R[ZR(t)] t

defines the size of the time blobs. For short times this is
the relevant scale, since we should not combine into a sin-
gle effective segment £ parts of the chain that essentially
move independently of each other.

Before checking this picture with the one-loop results,
we consider some consequences. In terms of the center of
mass R£’),, of the jth blob, the displacement of the total
chain can be written as

(3.4)

Rem ()~ Rem(0) = - 3 [RE), () ~ R, ()

i=1

According to the blob picture the displacements
RY). (1) — RY), (0) are independent random variables
obeying Eq. (3.3). This immediately yields

nk{Rem.(t) — Rem.(0)]%) ~ npyrt

or
t

R2(t) ~ 1B (3.5)
[

We thus recover the zero-loop result. From (3.4) we

know that fg is a function of ¢ independent of N, so
that ng = A(t)!/¥ N, by virtue of Eq. (2.18). In its range
of applicability ¢ <« T, the blob picture therefore predicts
a very simple chain length dependence:

R~ 1D (3.6)
where the function f depends on t, v, and disorder
strength v. In particular, the limit limy_, [N R?(2)]
should exist.

It also is of interest to note that the blob picture im-
mediately yields the well known behavior

D}/(t) = ([ra(2) — rs(0))2) "/ ~ /2, (3.7)

valid for interior segments of a noninteracting (Rouse)
chain in the short-time regime. Recall that this law eas-
ily is derived from dimensional analysis in the continuous
chain model, if we assume that D;;(t) for t <« Tj is inde-
pendent of the total chain length S, but depends only on
4 and ¢. Since 4 has dimensions (length)*/time, Eq. (3.7)
follows. To derive this result from the blob picture, we
consider segment ¢ as part of an appropriate time blob:

Dii(t) ~ £2B ~ e%(t) ~ YR t

For a noninteracting chain the relation yg = v ng/N
holds and the number N/ng of segments in the time blob
is related to £p via £4 = £2N/ng. Thus
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ez
0~y t
or
D/*(t) ~ (y £ )M/*

which is the desired result.

These considerations qualitatively support the blob
idea. The crucial test now is the analysis of the one-
loop correction. For t « Ty, i.e., Tp < 1, we find from

Eq. (2.9)

1
Ri(Tr) T23° T‘/‘*/ dr T/ 41 - 1)
0

[

(3.8)

where we rescaled 7 — Tr7T before taking the limit T —
0. The integral yields a numerical coefficient singular for
€ — 0. Thus

R1(Tr) Ta—=0 ao(€) T§/4

! , (3.9)

where it is easily checked that ag(0) = I [cf. Eq. (2.12)].
Substituting this result into Eq. (2.14), we find

[1 +3 (% - (nszR)‘/"@é(e—))] i

(3.10)

R%(t) 23°% 24 Z—R t
R

Choosing now £g such that the one-loop corrections stay
small, we recover the physically motivated blob concept
once again, this time on purely mathematical grounds:
From Eq. (2.15) we note

n% Tp = lg—t , (3.11)
R
so that the identification of £g with the size of the time
blob [Eq. (3.4)] yields n% Tr = 1. As a result, the one-
loop correction does not seriously change the character of
R2%(t) as found in the zero-loop approximation. Indeed,
if 7 would attain a fixed point, the one-loop correction
just would numerically change the coefficient of the then

resulting anomalous power law. Even in the present case

the dominant behavior for o < 1 is given by the prefactor
in Eq. (3.10). (See Sec. V for the explicit evaluation.)
This demonstrates the validity of the blob concept.

Up to now we have considered the choice of fg in
the two limits ¢t/Tp > 1 and t/Ty < 1. To describe
the crossover as function of ¢, we need to interpolate
smoothly among the two prescriptions (3.4) or (3.1). We
use the obvious choice

1 1 1

- = — 3.12
P : (3.12)

ZR"R

reducing to the correct prescriptions in both limits.
Clearly we could multiply the terms with numerical fac-

tors of order 1, thus changing the relative weight of the
two important scales. Such modifications, however, do
not seriously influence the numerical results and certainly
are irrelevant at the present stage of the theory. Equa-
tion (3.12) is the last piece needed for the evaluation of
R2(t) for arbitrary t > Tj.

It should be noted that the discussion as given here
closely follows the (most successful) analysis of the
crossover from the dilute to the semidilute regime occur-
ring for static properties of polymer solutions [13]. For
that problem £ must be chosen to smoothly interpolate
among R (dilute limit) and the size of the concentration
blob (semidilute limit).

IV. GENERAL SCALING BEHAVIOR
AT THE EXCLUDED VOLUME FIXED POINT

Independent of the one-loop approximation, the renor-
malization group implies scaling laws, stating that ob-
servables can depend only on certain combinations of
their variables. We now first will discuss these laws be-
fore deriving them below.

Provided the system has reached the excluded volume
fixed point, the general scaling law for R?(t) reads

R2(t)

x _ R(N,{
2402 (W.1)

(4.1)

2 o

R(N,f) is a universal function, independent of the
strength of the disorder. The latter is absorbed into the
variables N, £, £, which are proportional to N = ¢y N, t, £,
respectively. It is only in the proportionality factors that
the starting value #(1) of the disorder coupling and thus
the microscopic disorder strength shows up. The general
form of these factors will be derived below. Specifically
in the limit of weak disorder (1) — 0 we find the simple
form

N = s() /@ &

= (1 )(2u+1)/(2 vd) ZZ’ t

£=5(1)"v/Cvdy (4.2)
(Note that, accordingly, N and { take very small and 7
takes very large numerical values.)

From the general scaling form (4.1) we can derive dif-
ferent limits for the short- or long-time regime.

(i) In the long-time regime of t = oo and N fixed, we
find normal diffusion, i.e., R2(t)/t becomes independent
of t. The so defined diffusion constant, which has been
discussed in more detail in I, Sec. 7.3, can be expressed
by the scaling function (4.1) as

2
R (~t) = R(NJ ) for
2d At N

t>>To (4.3)

(£t = At, see below). Choosing the time scale as 1/,
we thus get the diffusion constant as a universal func-
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tion of N only. N is in general given by (4.12) be-
low or specifically in the limit of #(1) — 0 (4.2) as
Ne =3(1) N*, a=2—dv.

(ii) The short-time limit is given by T ~ 1/n% — 0
or np — oco. Furthermore, as has been discussed in Sec.
IIT, the blob picture, as supported by our one-loop re-
sults, predicts that N R2(¢) exists in that limit. For this
expression the short-time limit is thus equivalent to tak-
ing N — oo for £ fixed. In terms of the scaling function
this implies that

N R%(t) . .
(ce = satH?  see below). This is the more precise ver-

sion of Eq. (3.6). Accordingly, if measuring the length
scale in units of cef, NR2(t) is a function of £ only.

(iii) Note, finally, that the crossover regimes t = T, for
different values of N in general cannot be shifted onto
each other. We thus find a one-parameter family of curve
shapes at t &~ To, which are parametrized by N.

We now sketch the derivation of the basic result (4.1).
From Sec. IT we take the general result
TRt

R2(t) 5 _
2d = _'I’I:; R(nR7TRaU) )

(4.5)

valid at the excluded volume fixed point. The integrated
RG equations can be written (cf. the Appendix) as im-
plicit equations for the renormalized disorder strength
T(A) on the scale £g = £/,

Fy(v(\) = sy A (4.6)
or for the renormalized blob diffusion constant
YR() = (50 NV Fy(5(0) 7 (4.7)
where
sy = Fy(3(1)) , (4.8)
¥ = yr(1) By (8(1)) 51" (4.9)

The functions F, and F, depend only on the “running
coupling” #(A). From Eq. (3.12) we conclude

mt_ na
Z%‘ - nr — 1
where ng — 1 yields the long-time limit Tp — oo,
whereas the short-time limit T — 0 is found for ngp —
0o. Now, from Eq. (4.6) #(A) depends only on s, A, a com-
bination that also can be introduced into the expression
for ng:

ny Tp = , (4.10)

nr(A) = (s )Y*N (4.11)

N =s;Y"N (4.12)

[Recall that N = eyN (2.18) with the nonuniver-
sal microstructure-dependent constant cy.] Combining
these results, we find the general form

R*(t)
2d

The variable s, A can be expressed in terms of £ and N
by combining Egs. (4.10), (4.7); and (4.11)

Ft g o
= L R(N, s, A 4.13
R, 8, 3) (4.13)

Sy A Vv v B -
((—;)ﬁ = (s VTR O E,  (4.14)
where
P vy

again absorbs some nonuniversal microstructure. We
thus can write Eq. (4.13) as

R2(t) t .
s = = R(N,t
2ds2¢? N (N.2)
which reduces to Eq. (4.1) upon introducing the notation
{=s,¢ (4.16)

In the limit of weak disorder we find (cf. the Appendix)
sy = 9(1)"%/(2=¥d) and s3/ 5 = ~, so that Egs. (4.12),
(4.15), and (4.16) reduce to Eq. (4.2).

The form (4.1) is most appropriate for our subsequent
discussion. We may note, however, that we can eliminate
£2 in favor of the radius of gyration R%. From Egs. (4.12)
and (4.16) we find

ZZNZV — [2]{7’21/
where the right-hand side can be shown to equal R%, up

to a constant coefficient. Thus the scaling law can also
be written as

¢ R
R R R (V1)

R%(t) _

a form that, however, is not very practical in the short-
time limit.

V. NUMERICAL EVALUATION
OF THE ONE-LOOP APPROXIMATION
IN THREE DIMENSIONS

We here evaluate our results directly in three dimen-
sions. Introducing a parameter

A=s,) , (5.1)

we write Eqs. (4.11) and (2.19) as
ngp = 5\1.70N (52)
7= (A% —2.747)71 | (5.3)

where we used 1/v = 1.70, wj, = 0.40, and 1/@* =
2.747. Furthermore from Eq. (4.10)

1 1

Tp= o —
B= nZ1-1/ng

(5.4)

The scaled time follows from Eqs. (4.14) and (A13)
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- AN
b= Sirom 1t @)
F,(9) = (1+ 2.7475) 225 5.5
Y

where we used o/w}, ~ 0.90/0.40. We finally rewrite
R2(t), Eq. (2.14), in terms of scaled variables

R2%(t) t - a2
Y ET F, () [1 + 1o — ony 'Rl(TR)]

Comparing to Eq. (4.1) we thus find the one-loop expres-
sion for the universal scaling function

R(N,i) = (1+ 2.7475)"2%%

x{1 + 5[3.587 — n¥*R1(Tr)]} (5.6)

R1(Tr) is given by Eq. (2.9), e = 1, an expression that
has to be evaluated numerically.

The results considerably simplify in the short-time
limit Tp — 0, i.e., N = oco. Then R(N,t) — R(c0,{),
where

R(oo,t) = (1 + 2.7475) %25 [1 + 0.569 7] (5.7)

This result has to be evaluated with Eq. (5.3) and with

f=X7370 (1 4 2.747 )2 (5.8)

Figures 1 and 2 show the results in the short-time limit.
We plotted the scaling function R(co,t) or the “effective
exponent”

81n R2(t)

Olnt (5.9)

X =
against log,, £ in the renormalized zero-loop (broken line)
or the one-loop (full and dotted line) approximation for
the scaling function, i.e., neglecting or taking along the
contribution 0.569 ¥ in Eq. (5.7). It is clearly seen that
the dominant effect is due to the RG mapping. The an-

FIG. 1. Scaling function R(N,f) in the short-time limit
N = oo as function of log,, . The full line gives the one-loop
result, evaluated up to 7(A) = 1. The dotted extension covers
the interval 1 < #(A) < 10. The broken line is the renormal-
ized zero-loop result for 5(A) < 1.

-14 -12 -10 -8 -6 -4 -2 0

log ©

FIG. 2. Effective exponent x from Eq. (5.9) as a function
of log,,t. The full, dotted, and broken lines are as in Fig. 1.

alytic corrections of the renormalized loop expansion for
the scaling function do not introduce dramatic changes.
Thus the blob picture seems to be a valid concept also
with regard to quantitative calculations. As Fig. 1 shows,
R (00, ) smoothly decreases with increasing t. For £ — oo
it certainly will approach R (oo, — o) = 0, but the pre-
cise behavior in that limit cannot be deduced from the
present weak coupling approximation. The effective ex-
ponent x in the range o < 1 decreases from 1 to about
0.7. The strength of that decrease is somewhat sensitive
to the exponent o, Eq. (2.22). If for 0 we would use the

FIG. 3. Scaling function R(N,%) as a function of log,, .
Full curve, short-time limit (N = o0); broken curves,
N = 0.01 and 0.005 (from below). The dotted extensions
represent the region 1 < #(A) < 10. Only the range where
the curves split visibly is shown.
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log

FIG. 4. Effective exponent (N, 1) as function of logy, t.
Full curve, N = oo; broken curves, N = 0.01, 0.005, and
0.001 (from below). The arrows give the points Tr = 1.

approximation o =~ w*I, Eq. (A14), with @* = 0.364,
then the effective exponent would reach a value 0.5 at
v =~ 1. As we mentioned before, this uncertainty of o
seems to be the most serious feature limiting the quan-
titative accuracy of our results. This is in keeping with
experience from other crossover calculations where it is
found that a good representation of the RG mapping is
the most important ingredient.

Going away from the short-time limit, in Figs. 3 and
4 we have plotted R(NV,%) or the effective exponents for
some values N < oo in the one-loop approximation. For

.-

X Ve -
Ve ;
0.95 / /
/
\\ // ,ll
0.9 X~ ,
\t\‘_// ,‘I
\ ’
0.85 Ny /
AN
0.8 \\ //
AN
0.75 \\//
0.7 - o3 vy -2 0

log t

FIG. 5. Effective exponent in renormalized zero-loop ap-
proximation as a function of log;o¢. N = 0.005 and 0.001
(from below).

finite N, R(INV,%) tends to a finite value 0 < R(NV,00) <
1, which determines the asymptotic diffusion coefficient.
Consequently, the effective time exponent of R2(t), after
passing through a minimum, has to approach the value
of 1 again. These effects clearly are seen. The minima in
Fig. 4 are close to Tg = 1, which thus sets the scale of
the crossover. For smaller times the curves approach the
limiting short-time behavior. For large times the curves
N = 0.001 and 0.005 are cut off at Tp = 9, since for
purely technical reasons we did not evaluate R (Tr) for
Tr > 9. [The expression (2.9) is not appropriate for large
Tr, where we should switch to another representation
of the summation over the Rouse modes; see 1.] Figure
5 shows the effective exponent evaluated in zero loop,
where the only restriction is on the size of . Taking into
account the scales of Figs. 4 and 5, it is clear that an
experiment over a restricted ¢ range (three decades, for
instance) will closely simulate an anomalous power law.
We finally recall that T = 1 roughly corresponds to
R%(t) = R%, i.e., t = Typ. This relation is not strict, how-
ever, and furthermore the asymptotic diffusional regime
only sets in for ¢t > T,. Clearly, the chain after leaving its
original volume occasionally may return, so that it loses
memory of its original position only for ¢t > T,. These
memory effects will increase with increasing disorder.

VI. MONTE CARLO SIMULATIONS
A. Model and simulation techniques

The Gaussian distributed random media has been con-
structed as follows. Consider a cube of linear dimen-
sion L. A simple cubic lattice of lattice spacing a is
constructed out of this cube such that L = 80a. The
random medium is introduced by attributing to each of
the 803 cells a potential V;, where n = (ny,nz,n3) €
{1,2,...,80}3 denotes the position of the cell. V;, is cho-
sen according to a Gaussian distribution  Pmc[Va] =
N exp [—3VZ/viic), e, v§e o v, with v introduced
in Eq. (2.2).

Numerically, the Gaussian distribution is generated in
the following way. First a cut-off |V,| < C, C =
v/2 v%,5 In108, is introduced. It is chosen such that the
weight of the neglected tails of the Gaussian distribu-
tion is 2[5 dVa Pumc[Va] = O(1077). This is to be
compared with the number of independent potentials in
the sample 803 ~ 5 x 10°. The cutoff C, therefore, in
our finite volume is negligible. The distribution is then
further generated from random numbers 7, which are
equally distributed on the interval [0, 1]: In the first step,
Va is chosen equally distributed on the interval [0, C] by
Va = C n1. Then this value V,, is tested against a second
random number 72, and if exp [—%Vf/vﬁdc] > 19, it is
admitted. Otherwise, a new V;, is generated from a new
m and the process is repeated. In a last step the admit-
ted V,’s become —V,, if n3 < 1/2, i.e., with probability
1/2. (An alternative way to generate the positive branch
of the Gaussian distribution without introducing a cutoff
would be to solve erf[V,/1/2 v ] = n numerically for
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Va, where 7 is equally distributed in [0,1] and erf is the
error function. The negative values of V,, then again are
generated by reversing the sign of V;, with probability
1/2. This latter prescription is found by mapping inter-
vals of n or V;, of the same probability weight of the two
distributions onto each other.) Discussing these details,
it should be noted that we finally aim at seeing univer-
sal properties, which should not depend on the specific
potential distribution. ‘
The polymer chain is introduced off lattice and self-
repelling. It is modeled as the “pearl-necklace” chain
[14] of N hard spheres of diameter A = 0.8a, which are
jointed together by N — 1 rigid links of length | = a.
Chain lengths N = 40, 80, and 160 are used in the fi-
nal evaluation. The chain conformations are generated
by using the conventional kink-jump technique: A chain
configuration is changed locally by trying rotations of
two successive links around the axis joining their end
spheres by an angle ¢ chosen randomly from the interval
(—A¢,A¢). The parameter A¢ is chosen arbitrarily. If
an end sphere of the chain is chosen, the terminal link is
rotated to a nearby position by specifying two randomly
chosen angles (¢, %) in three dimensions, with cos 6 being
equally distributed in the interval —1 < cosf < 1. All
rotations that lead to an overlap with any other sphere
of the chain (self-excluded volume) have been rejected.
When such a rejection takes place, we follow the proce-
dure of the dynamical Monte Carlo method by retaining

the old conformation and counting it as the new confor-
mation. We also reject in the same manner configurations
where the centers of two beads come to sit in the same
cell and thus experience the same potential. This has
been done because the disorder on one hand effects the
dynamics, Eq. (2.21), and, on the other hand, modifies
the starting value of the effective coupling constant, Eq.
(2.17), eventually leading to the collapse of the chain for
v > u. In order to suppress the latter effect, we do not al-
low occupancy of the same potential by two beads at the
same time. This procedure increases the effective hard
core volume of the beads. The effect on the simulation
data evaluated in the present paper is a simple shift of
the time scale.

The interaction of the polymer with the random Gauss-
ian potential has been included in the Monte Carlo sim-
ulations using the standard Metropolis criterion. The
local displacement of bead 7 of the polymer chain from
position r; to position r} is accepted if

exp[Va — Varl >, (6.1)

where 7 is equally distributed in [0,1], and where the
center of polymer bead ¢ has moved from r; in the local
cell n to r} in another or the same cell n'.

We have simulated the mean-square displacement of
the center of mass R2(¢) and also

9(t) = {Irn/2(t) — Rem (2)]

a standard function of such simulations. g(t) measures
the internal relaxation of the chain, more specifically, the
temporal decay of the orientation of the vector between
the middle bead and the center of mass. In addition,
we have measured the radius of gyration. The time ¢ is
measured in units of the Monte Carlo time unit, which
corresponds to N attempted moves.

The averaging over the quenched potential has been
performed by ensemble averaging as well as by trajectory
averaging. Given a potential V, the trajectory average is
performed as

(R*(t))y, = o [Rem (t+7)v — Rem (T)v]?

doa

T>T0

, (6.3)

after a sufficient equilibration time 7¢ from the (nonequi-
librium) start configuration. Averaging over a sufficiently
long trajectory in a given potential, V', reduces the need
of ensemble averaging to three to eight different realiza-
tions of V', depending on the value of vpc. As a result,
for small ¢ the trajectory averaging is quite efficient, while
for large t both poor trajectory averaging and the peri-
odic boundary conditions lead to a larger scatter of the
data.

- [I'N/Z(O) - Rcm(O)]}2> )

(6.2)

B. Typical results

For vppc = 0.8 and N = 40 the data covering a particu-
larly large range of time are shown in Fig. 6. Considering
first g(t), we note that after some initial increase it sat-
urates at a value g(t) ~ R%. This is the generic behav-
ior, found also in the absence of the disorder potential.
g(t) levels off at ¢t ~ 10%, which coincides with the time
To the chain needs for moving a distance of order Rg.
We conclude that the presence of the disorder does not
qualitatively change the internal relaxation of the chain,
except for the change of the overall time scale.

We now turn to the center-of-mass motion. Measuring
time in Monte Carlo (MC) time units, we find that af-

ter some initial regime ¢t = T < 5 of free diffusion, the
motion of the chain slows down, simulating a power law
R%(t) ~ tX, x =~ 0.8, over several decades of t. Crossover

to the diffusional long-time behavior occurs for ¢t < 105,
i.e., much later than Ty. These results look most simi-
lar to those of Ref. [6], where a quite different type of
disorder has been used. We will discuss this observation
further in Sec. VII.

More results taken in the intermediate time regime

Ty < t < 10 Ty are shown in Fig. 7. Again, we note
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FIG. 6. Doubly logarithmic plot of Monte Carlo data for
R?(t) and g(t). N = 40 and vmc = 0.8. The arrow points to
the value of R%. t is measured in units of MC time. Lengths
are measured in units of the size of the disorder cells.

that for at least three decades the data seem to follow
a power law RZ(t) ~ tX, where the exponent clearly de-
creases with increasing disorder: wpc = 0.4, x = 0.96
and vmc = 0.6, x =~ 0.88. However, no N dependence
of x is visible except that with increasing N the curves
simply are shifted downward. Sizeable fluctuations are
visible in these curves. This is an artifact due to insuffi-
cient averaging over the disorder. It could be suppressed
only by averaging over more samples. With our aver-
aging procedure these sample-dependent fluctuations be-
come more pronounced with increasing t. This ultimately
restricts the time range of our measurements.

We also measured the radius of gyration to check
whether we are close to the excluded volume limit. We
found values N = 40, R% =~ 15.5; N = 80, R% ~ 37.0;
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FIG. 7. Doubly logarithmic plot of Monte Carlo data for
R?*(t). Dotted lines, vmc = 0.4; full lines, vmc = 0.6. For
each set of lines N = 40, 80, and 160 (from above). Units are
as in Fig. 6.

and N = 160, R%Z =~ 91.7, with no significant varia-
tion with disorder strength. This feature may reflect
the fact that we did not allow for multiple occupancy of
the same potential cell by polymer beads, as discussed
above. Extracting from these data an effective expo-
nent veg = 0 In Rg/0 In N, we find veg =~ 0.63, some-
what larger than the asymptotic excluded volume value
v = 0.59. This indicates that for our model chain the
excluded volume is somewhat large. Indeed, it is known
[15] that in the absence of the random potential a pearl-
necklace chain most rapidly approaches the excluded vol-
ume limit for /¢ = 0.5 (h is the diameter of the beads,
£ the length of the links). Since we have compensated
the effective attraction generated by the potential fluctu-
ations (2.17) by choosing hA/¢ = 0.8 and by not allowing
two beads to be subjected to the same potential at the
same time, we have overcompensated the effect and work
now on the “strong coupling” side of the excluded volume
problem. The measured value veg =~ 0.63 suggests that
the renormalized excluded volume coupling w exceeds its
fixed point value by about 20-30% [16]. In view of the
other uncertainties both in theory and in the simulations
this seems tolerable.

C. Comparison among theory and data

According to our theory, see (4.4), the product N R%(t)
in the short-time regime should be independent of N. To
test this prediction, in Fig. 8 we show a doubly logarith-
mic plot of NR?(t) against ¢, for three values of vyc.
For each vpc the data for three chain lengths N = 40,
80, and 160 are included. Within their fluctuations, data
for given vy but different N trace out the same curve,
thus confirming the blob picture. Indeed, no statistically
significant splitting of the curves is found even for times
somewhat larger than 7o, which for all cases considered

here falls into the range 3 x 103 < Ty < 5 x 10%. To
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FIG. 8. Doubly logarithmic plot of the Monte Carlo data
for NR?(t). vmc = 0.4, 0.6, and 0.8 (from above). For each
vmMc the results for N = 40, 80, and 160 are superimposed.
The dotted line represents normal diffusion [NR*(t) oc t].
Units are as in Fig. 6.
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clearly detect the effect of changing N, we would need
much improved statistics in the disorder average and we
would have to measure for much longer times.

We next show that the theory is consistent with these
findings also on the quantitative level. Figure 9 shows
log,o[N R(N,%)] as function of log,yf in the one-loop
approximation, where 2dfR(N,t) = NR2(t)/?; cf. Eq.
(4.1). We chose two values N = 0.02 and 0.08, spanning
a range of a factor 4, in accordance with the computer
experiment. We included the data for vmc = 0.6 and
N = 80, shifted to bring them close to the theoretical
curve. As is clearly illustrated, we can choose N such
that the theory simulates the observed effective power
law, the splitting according to N being clearly detectable
only beyond the range covered by the experiment. Thus
both experiment and theory agree that the scaling behav-
ior NR2(t) ~ f(t), which should rigorously be valid for
t < Tp, to a good approximation extends to t ~ Ty. Sim-
ilar plots for the other values of vy are not reproduced
here.

We finally consider the effective exponent x(t) =
O1n R?(t)/81nt, as measured in the computer experiment
vmc = 0.8 and NV = 40, which covers a particularly large
time interval. Figure 10 shows the result. Numerically
differentiating the data we clearly magnify. the scatter
and in Fig. 10 we see large fluctuations related to the poor
disorder average: The chain occasionally gets trapped by
large disorder fluctuations. The general trend, however,
nicely agrees with the theory. In particular, the depth

-10

-10t

FIG. 9. log,;, N R(N,{) as a function of log,, . Full lines,
theory, N = 0.002 (upper curve) and N = 0.008 (lower curve);
broken line, normal diffusion. The MC data for vmc = 0.06
and N = 80 are brought on top of the theoretical curve by
adjusting the nonuniversal scales of N R*(t) and ¢. No special
effort was made to search for an optimal fit.

FIG. 10. Effective exponent x as function of log,, . Data
for vmc = 0.8 and N = 40. The points are connected by lines
to guide the eye. Theory, N = 0.006 (thick curve), N = 0.004
(upper broken curve), and N = 0.009 (lower broken curve).

and the width of the valley are well reproduced. It must
be noted, however, that we have plotted data starting
with very short times. So we cannot exclude the possi-
bility that the data for the first decade of values  are
influenced by nonuniversal short-time effects.

VII. DISCUSSION AND CONCLUSIONS

Some qualitative features of the present results are to
be expected generally without recourse to any specific
model: For microscopic times O(T;) the chain does not
feel the disordered environment and moves freely. As
time increases, the motion is slowed down, and for ¢ >
To, it again shows normal diffusion, but with a reduced
diffusion coeflicient. In terms of the effective exponent
x(t) = 0IlnR2?(t)/01nt this implies that x tends to 1
for t — 0 or ¢ — oo, but passes through a (positive)
minimum at intermediate times.

The present work adds a number of important specifi-
cations to this general picture. We first of all note the law
R?%(t) ~ f(t)/N, holding for macroscopic but short times
T, € t < Ty, i.e., in the universal short-time regime.
Though this law is a result of the analysis within our spe-
cific model, we may invoke the blob picture to argue that
it is of general validity. The upper bound of that regime
is given by Ty, as long as the correlations of the disor-
der do not introduce another macroscopic length scale.
If such a scale is present, it might induce a time scale
Ty < Ty, which sets another upper limit to the region of
validity of the blob concept.

As a further, more specific consequence of our model
we note the extreme slowness of the crossover from
microscopic to macroscopic diffusional behavior. Even
for fairly small disorder and not very long chains, this
crossover needs more than five decades of time, and this
time interval rapidly increases with increasing disorder
or chain length. As a consequence, both the numerical
and the theoretical results over several decades of ¢ can
be represented as effective power laws. In this respect
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we recovered our previous prediction [1]. The exponent,
however, does not depend on chain length and disorder,
but on the time interval and disorder. Indeed, it is a
purely effective quantity, not to be mixed up with asymp-
totic exponents as resulting from a fixed point under the
renormalization group. This observation raises strong
doubts whether the search for asymptotic exponents, so
common in work on the present or closely related topics,
really is appropriate.

Renormalizability of our model leads to a universal
nonlinear scaling law (4.1). Strictly speaking, our simula-
tions do not check this full law since we did not systemati-
cally explore the region of larger time, where the nontriv-
ial N dependence can be seen. In their more restricted
range, the data, however, are fully consistent with the
theory.

Universality implies that our results should hold also
for other distributions of the disorder. In this context
the results of [6] are particularly interesting. The Monte
Carlo simulation described in that work uses the same
type of a pearl-necklace chain as employed here. The dis-
order, however, is modeled by randomly occupying cells
with impenetrable obstacles (i.e., V3 = 0 or oo0). Even
though for d = 3 this does not introduce truly topo-
logical disorder, this model is closer to reptation, since
the chain cannot penetrate the obstacles. As judged by
comparing Fig. 1 of Ref. [6] with Fig. 6 of the present
paper, the results nevertheless are most similar to those
presented here. Specifically, the asymptotic diffusional
regimes are connected by a large interval of very smooth
crossover. The asymptotic long-time diffusion sets in

only for ¢ R 10Ty and a large part of the crossover re-
gion could well be represented by a power law. Further-
more, the blob model law R2(t) ~ f(t)/N clearly holds
until the curves finally bend over to the asymptotic dif-
fusional behavior. This strongly suggests that our re-
sults, and in particular our description of the crossover
towards asymptotic diffusion, indeed are universal, valid
for a large class of models.

We finally should compare our results to those of the
reptation model [7,3]. This model introduces another
important time scale T, defined such that the size of the
time blobs for t ~ T, reaches the size of the tube built
up by the topological constraints. The time T,, where
the chain has moved a distance of the order of its size,
becomes the reptation time, increasing proportional to
N3. For R?(t) the model predicts the diffusional behav-
ior  R2%(t) ~ Dyept for t > T1, Dyep o 1/N?, which
should set in long before the chain has moved a distance
of order R%. Indeed, from the arguments of [3] we would
estimate T to lie in the interval T, < T7 < To/N. This
indeed is seen in the work of [17], where the polymer
chains move through a regular lattice of obstacles. For
the more commonly employed irregular distribution of
obstacles, asymptotic diffusion seems to set in much later.
The curves of Ref. [8], Fig. 1, for instance, show a be-
havior of R?(t) most similar to that found here, though
there the reptationlike motion of a chain through a two-
dimensional disordered system of obstacles has been sim-

ulated. Normal diffusion sets in for T < 10 To, Tp scaling

like N3. This suggests that disorder in the distribution of
obstacles strongly influences the motion of the chains, a
conclusion also reached in a recent Letter [10]. We might
hope that the present theory is helpful in understanding
that behavior, concentrating on the universal effects of
the disorder.
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APPENDIX: RENORMALIZATION GROUP
FLOW

The general form of the flow equation for the disorder
strength o(A), A = € /¢, reads
d _ _ _
x Lo = W o(3), w() (A1)
Assuming that w()\) takes its fixed point value w()\) =

w*, we easily can integrate this equation to find the for-
mal result

_ F,(m(N)
Y= RGE) (42)
where
In F,(3) = / —W—(‘f—w—) . (A3)

To three-loop order the result for W, may be found in
the appendix of Ref. [12]. [W,(v,@w) = Wiy(w,w, —d)
in the notation of that paper, Eq. (A17).] Specializing
the analysis given there to W, (v, w*), we introduce the
derivatives

0] 2

0 — % —

w&z)z%wv(v,w )1_):0 = d—; , (A4)
* g e ——

Wiz = % W,,('U,’w ) e (AS)
where the last identity in Eq (A4) has been proven in [18].
@ = —w* is the nontrivial zero of W, (v, w*). For d = 3
we find wg) = —0.40 = —w],, where by pure accident

wﬁg) ~ —wj,. This simplifies the further analysis. We

then write

<

W, (0, 0%) = —wi, D (1 + w) (A6)
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This relation reproduces the two-loop result and is a good
approximation to the three-loop result. Equations (A3)
and (A6) yield

Fy(0) = oY% (1 4 5/w*) "/ (A7)
Introducing s, = F,(%(1)), we then may solve Eq. (A2)
to find

5(A) = ((svx)wiz _ i) - (A8)

;lI)*

We now turn to the equation for yg/ngr. From [1,2]
we take the result

d . Yr(}) -
A—1 =W. A
dA nTLR()\) ‘Y(U( ),’LU(A))
= I5()) + O(92,9w), I = 3.587
(A9)
Specializing to w(A) = w*, we may use the standard

procedure of eliminating Ad/d\ in favor of d/dv to find,
after a simple integration,

(A _ Fy(3(})) yr(1)

ner(A) ~ Fy(5(1)) nr(1) ’ (A10)
In F,(v) = /v dz 1%‘%‘% (A11)

With  ng()) = (8uM)Y*N  and %
= s,jl/uF,Y_l(fz(l)) vr(1), Eq. (A10) is written as

TR(N) = (8.0) Y7 Fy (5(N)F (A12)

Inserting approximations (A6) and (A9), Eq. (A1ll)
yields

Fy(8) = (1 + v/w*) "7/ (A13)

o=wI = 21 +0(e?) (A14)
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