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Coherent scattering function in the reptation model: Analysis beyond asymptotic limits
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We calculate the coherent dynamical scattering func8dg,t;N) of a flexible chain of lengttN, diffusing
through an ordered background of topological obstacles. As an instructive generalization, we also calculate the
scattering functiorS.(q,t;M,N) for the central piece of lengtM <N of the chain. Using the full reptation
model, we treat global creep, tube length fluctuations, and internal relaxation within a consistent and unified
approach. Our theory concentrates on the universal aspects of reptational motion, and our results in all details
show excellent agreement with our simulations of the Evans-Edwards model, provided we allow for a phe-
nomenological prefactor which accounts for nonuniversal effects of the microstructure of the Monte Carlo
chain, present for short times. Previous approaches to the coherent structure function can be analyzed as special
limits of our theory. First, the effects of internal relaxation can be isolated by studying theNimit, M
fixed. The results do not support the model of a “Rouse chain in a tube.” We trace this back to the nonequi-
librium initial conditions of the latter model. Second, in the limit of long chaikb<{N— ) and times large
compared to the internal relaxation timgN2— ), our theory reproduces the results of the primitive chain
model. This limiting form applies only to extremely long chains, and for chain lengths accessible in practice,
effects of, e.g., tube length fluctuations are not negligible.
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[. INTRODUCTION or specific interaction effects into asymptotic reptation
theory. However, the evaluation of the pure reptation model
The equilibrium dynamics of a dense polymer systempoutside asymptotic limits has found only little attention. In
i.e., a melt, a solution of high concentration, or a free chairrecent work|[7,8], we presented such a calculation for the
moving through a gel, is an important topic of polymer phys-motion of individual segments of the chain. We found that
ics. It has been investigated for many years, but is still noesymptotic results, which for the quantities considered take
fully understood. The problem is quite complex, even if wethe form of specific power laws, apply only to surprisingly
concentrate on the motion of a single chain. Clearly, its molong chains. Large time intervals are covered by crossover
tion is strongly hindered by the surrounding chains, whichregions. Our crossover functions compare very well to simu-
the chain considered cannot cross. This has led to thdidea lations[9] of the pure reptation model, i.e., to the motion of
that the motion of the chain is confined to a tube roughlya flexible chain through a fixed regular lattice of impen-
defined by its instantaneous configuration. Thus the tube istrable obstacles. Furthermore, also results of simulations of
assumed to have a random walk configuration, whichmelts look quite similar to our analytical results for short
changes only by the motion of the chain ends. The ends caghains. This is consistent with the observation that the tube
retract into the tube which thus is effectively shortened, andliameter, i.e., the average distance among effective obstacles
they can creep out of the original tube, thus creating a nevextracted from the simulations, is fairly large. Since in the
tube segment in some random direction. The interior parts ofure reptation model, the tube width is of the order of the
the tube are assumed to be fixed in space until they areffective segment size of the reptating chain, this implies that
reached by the diffusive motion of the chain ends. This conto map melt dynamics on the reptation model, we have to
cept of a tube is one basic ingredient of the “reptatiph;2]  consider a coarse grained chain of effective segment number
scenario, which certainly is valid provided the obstacles conN/Ng. HereN is the chain lengtfipolymerization index of
fining the chain motion form a rigid, time independent net-the physical macromolecule, whereas the “entanglement
work. In a realistic system the surrounding chains are molength” Ng is the length of a subchain that shows a coil
bile, which sheds some doubt on the postulated existence sédius of the order of the obstacle spacing. In recent simula-
a well defined tube. Indeed, there exist other approachet®ons[10] of melts, a valudN/N.~14 was reached, far below
[3,4], more in line with standard many body theory, which the value N/N.=50 needed according to our theory to
are not based on the tube concept. clearly identify asymptotic power laws. Other recent simula-
Most work on the reptation model concentrates ontions[11] reach a valué&/N.~ 300, but for this chain length
asymptotic results expected to hold for long chains in speciahey cover only times short compared to the characteristic
time regiongsee Sec. Il A In comparison to experiments or time scales of the reptation model. Still, the onset of a first
simulations, these results often fail at a quantitative IEggl  power law regime is seen, again consistent with our theory.
and partly other theories seem to be more satisfad®#. ~ Thus, concerning the motion of individual chain segments
Thus some worK6] has been invested to incorporate addi-within a melt, there at present seems to be no need to invoke
tional physical effects such as relaxation of the surroundingpther mechanisms than pure reptation.
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The motion of specific segments is easily accessible only x| x| x x| x| x| x
to computer experiments. Physical experiments often mea-
sure dynamic scattering functions. Asymptotic results of the x| x ol el e ol )

reptation model for the coherent scattering function have IxUx x| 7 x|x|x|x
been worked out previously12,13,3, but our analysis of
segment motion suggests that an evaluation of the scattering X | x| XX
function outside asymptotic limits is needed. This is the topic

X | X | X | X

of the present work. We use the same analytical reptation /
model as in our previous analy$]. We also measured the

coherent structure function in Monte Carlo simulations, x| x| x| x
again using the same implementation of the model as previ-

ously [9]. This allows for a comparison among theory and x| xpx
data, where all parameters are fixed by our previous work. w x| x| x
Some results of the simulations will be presented here, but a

detailed comparison of our simulation results to the present X XXX

and previous theories will be presented in a separate, less

technical pape[:14]. . . . ) FIG. 1. A realization of reptational dynamics in the Evans-
In the following section, we briefly review the basic fea- ggyards lattice modeftwo-dimensional illustration The crosses
tures of the reptation model and recall previous results fogenote impenetrable obstacles which allow only for “hairpin”

the coherent structure function. In Sec. Ill, we introduce oUmoves as shown by the sequence of pictures. The hairpins represent
analytical model and outline the structure of our approach. Ifhe wiggles of spared length.
Sec. IV, we consider those contributions to the coherent

structure function in which the initial tube is not yet com- the interior of the tube only little wiggles of “spared length”
pletely destroyed by the stochastic motion. A rigorous analyzre mobile, as illustrated in Fig. 1 for the special case of a
sis is possible as long as end effects can be neglected. Theggice model. These wiggles carry out Brownian motion
end effects, known as “tube renewal” and “tube length fluc- gong the chain. If a wiggle reaches a chain end, it may decay
tuations,” can be treated only in some approximation. Weand prolong the tube by its spared length. Chain ends also
here generalize an approach that in our previous work gavgay produce new wiggles that then diffuse into the interior
good results for the segment motion. In Sec. V, we compargs the tube. This shortens the tube by the spared length of the
our rigorous results for the motion within the initial tube to newly created wiggle. In the long run, this random motion of
those of the model of a “Rouse chain in a coiled tu&2].  the chain ends leads to a complete destruction of the initial
Pronounced differences are found and their origin is claritype.

fied. In Sec. VI, we derive an integral equation which takes Tpis very simple dynamical model involves several time
complete tube destruction into account. For long chains andcgles. It needs a microscopic tiffig until the segment mo-
times large compared to the internal relaxation time of thgjon feels the existence of the constrainTs, generally is

chain, we recover the results of.the “primit'ive chain” model jjentified with the Rouse time of a chain of length equal to
[13,2], as shown in Sec. VII. Typical numerical results of our e entanglement lengtK,,

theory are discussed in Sec. VIII. It is found that tube length

fluctuations, which have been neglected in previous calcula- To~N2. 2.0
tions of the coherent scattering function, in fact determine

the scattering up to times larger than the Rouse time. In Seq. is relevant for the short-time dynamics of melts, where
VIII, we also present some results of our simulations, whichthe tube diameter typically is found to be quite lafg®,11],
compare favorably with our theory. Finally, Sec. IX containsn_~10-40. For reptationT, defines the elementary time

a summary and conclusions. The full evaluation of the repstep, since this theory does not deal with the unconstrained
tation model leads to quite involved expressions, and somgotion on scale of the tube diameter. A second sdalés

part of the analysis is summarized in Appendixes. the time a wiggle needs to diffuse over the whole chain.
Since in the coarse grained description, the wiggle has to
Il. REVIEW OF THE REPTATION SCENARIO AND OF diffuse a distance oN/N, steps, one finds

PREVIOUS RESULTS FOR THE COHERENT
STRUCTURE FUNCTION N\ 2 )

A. Basic dynamics and time scales Ne

As mentioned in the Introduction, the reptation model as~r

. X . thus is of the order of the Rouse time of the whole chain.
sumes th? existence Of. a tube deflngd by the mstantaneo#ﬁ.la"y' the reptation timd 3 is needed to destruct the initial
configuration of the chain together with the surrounding Ob'tube completely. Reptation theof¢] predicts
stacles. The chain cannot leave the tube sideways since it
would have to fold into a double-stranded conformation, N3
which costs too much entropy. Those parts of the chain, T3~T0<N—) 2.3

which lie stretched in the tube, essentially cannot move. In
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as limiting result for long chains. Asymptotically, power laws grees of freedom are equilibrated. In the limit of large wave
as function oft andN are predicted to hold for the segment numbersQ= q2R2>l the result reduces to

motion or the motion of the center of mass in the time win-

dows Ty<t<T,, T,<t<Tj3, andT;<t. As a typical result

we quote the mean squared spatial displacement of some Spe(Q,7)= = Z (2p—1)"%exd —(2p—1)%7].

bead of the chain, Pt

(2.9
1/4 < < . . . . e .
t for To<t<T, This is the scattering from that part of the primitive chain
(Ir;()=r,(0)P)~{ (IN)¥2 for T,<t<Ts which at timet still resides in the initial tubgl,12).
t/N2 for Te<t. The limit q2R5>1 has also been considered by de

Gennes. Taking the internal relaxation of the chain into ac-
Herer;(t) gives the spatial position of begdt timet. The count, his resulf12] for the normalized coherent scattering
bar |nd|cates thédynamio average over the stochastic mo- function is a sum of two terms,
tion and the angular brackets denote thtatio average over

all tube configurations. Suc(0,t,N) =[1—Bya(a) ISV (q,t) + Bya(q) SO(t,N),
(2.10
B. Previous results for the coherent structure function N
We consider a chain dfi+ 1 beads K segments labeled Bac(q)=1— G—Nequé- (211
by j=0,1, ... N. The coherent structure function is defined
as The “creep term”S©(t,N) is given by Eq.(2.9) and thus
N describes the large time behavioeT,. It tends to 1 for
Se(q,t,N)= >, (e IO=rd0ly, (2.4  t/T3—0. The “local term” S!)(q,t) is taken from an ap-
jk=0

proximate evaluation of the internal relaxation of an infi-
nitely long one-dimensional Rouse chain, folded into the
three-dimensional random walk configuration of a tube of
N/N, segments. The result reads

By definition, S;(q,t,N) refers to a single chain. It can be
measured by appropriately labeling a few chains in the sys
tem. Reptation results foB.(q,t,N) previously have been
derived by Doi and Edwardsl3] and by de Genn€dl2].

Doi and Edwards have evaluated a simplified version of
the reptation model, where the internal motion of the chain i%/vhere
neglected. The physical chain is replaced by a “primitive
chain,” which only can slide along the tube so that all seg- 3 N t
ments experience the same curvilinear displacemeift). tl:—z—(quZ)Z =— (2.13
This model therefore reduces the dynamics to diffusive mo- 7a Tq
tion of the single stochastic variableé. For the coherent o N )
structure function, it yields the resulsee Ref[2], Chap. This introduces an additiongtdependent time scale
6.3.9

SO(g,t)=e'r erfeyty, (2.12

1T Ne 7 (2.14
Sc(q,t,N) 3 2R2 t 25 13 N (quS)z’ .
S{(qoN) P[4 e ) |
, which in view ofRS~N, andr4~N?2 is independent o. Ty
< o Q 2 Sinzape*(‘l/»n-z)apr 26 governslthe relaxatiozn ;)f segment density fluctuations on
1T = ’ . - i = i
DE D(Q) &4 aS(Q2/4+ Q2+ ag) scaleq . In view of q“Rg>1, T, is much smaller thamy,

and for timest<T,, the creep term is constarg,(c)(t,N)
whereR? is the radius of gyration angy~T3~N3 D(Q)is ~ ~S(0N)=1. On top of this plateaus’(q,t) yields a

the Debye function, peak rapidly decreasing in time. Note tr@lt)(q,t) for t,
>1 behaves as$!)(q,t)=(=t,) Y2 The amplitude of the
D(Q)= %(e—Q_1+Q). 2.7 Kleak is determined bB4g, which only depends og? and
-
Both these approaches neglect end effects such as tube
The a,= a,(Q) are the positive solutions of length fluctuations, which are governed by the time s@ale

The approximations involved greatly simplify the analysis
but are no essential part of the reptation model. In the sequel,
we present an analysis of the full model, accounting for the
internal degrees of freedom and the finite chain length. Since
Neglecting all internal motions, the result can be appliedall the dynamics is driven by the diffusion of the spared
only for t>T,, i.e., in a time regime where the internal de- length as the only stochastic process, this yields a unified

(2.9

aptanang.
2
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description of local relaxation, global creep, and tube length
fluctuations. We will find that tube length fluctuations, in pt 1 N-1 cos’
particular, have an important influence for intermediate times A (j,t)= —+ —— (1- af()
and chain lengths. Internal relaxation, however, is of much N 2N &1

less influence than the results referred to above suggest.

1
It3

TK
N

NS
Slnz(m

(3.5

I1l. FORMULATION OF THE FULL REPTATION MODEL TK
_ _ , a,=1—4psirf——. (3.6
A. Microscopic dynamics 2N

We here recall the essential features of our model. A mor
detailed discussion can be found in RE8). The chain is
modeled as a random walk ® steps of fixed lengthr;
—rj_1|=lp,j=1, ... N. The motion is due to the diffusion
of wiggles of spared lengtlhs. These are represented by 2
particles hopping along the chain from bead to bead, with | t)|= ——=[poA1(j,.H)]*41—F1[4poAi(j D1},
hopping probabilityp per time step. The particles do not J
interact, and a given particle sees the others just as a part of (3.7
the chain. If a particle passes a bgad tracks it along by a

Bome useful properties @,(j,t) are collected in Ref(8],
Appendix A. We also will need the first momepi(j,t)|,
which from Ref.[8], Egs.(3.26), (3.27), is found as

distance of the spared length, which is taken to be the 1 [z x| ~12

same for all particles. The end begdsO,N of the chain are Fi(2)= —\/—J’ dxx 3% (1— E) —l}
coupled to large reservoirs that absorb and emit particles at 2ymJo

such a rate that the equilibrium density of particles on the 1 1

chain is maintained on average. Keeping track of the change - —1“( - —,z), (3.8
of the particle number in these reservoirs, we control the 2\ 2

motion of the chain ends: creation or decay of a wiggle at a _ ) )

chain end implies emission or absorption of the correspondwherel’(y,z) is the incompletd” function.

ing particle by the reservoir. Except for microscopic times<2/p, o', can be approxi-
For the motion of beads in the interior of the tube, themated as

essential stochastic variable of the model is the number

n(j,t) of particles which passed over beadwvithin time t B Lo TK
interval[0t]: a,~ex 4Pt5m22N (3.9
n(j,t)=n.(j,t) —n_(j,t). (3.1)  so that the theory involves time only in the combination
t=pt. (3.10

Heren.(j,t) is the number of particles that came from the
“left” ( j'<<j) or from the “right” (j'>j), respectively. ) R ) .
Consider, for instance, the motion of segmerior a time In evaluating the theory, we will usEasAtlme variable. For
interval in which it stays in the original tube. Its displace- n?(j,t)=100, which forN=100 impliest=10%, P;(n;j,t)
ment in the tube is given bln(j,t), and since the tube has is well represented by a simple Gaussian

a random walk configuration, its spatial displacement is
given by

. 2
Pi(m;j,t)~[2mn?(j ,t>]1’2exp< - ) :
2n?(j,t)
([ri(H)=r;(0)1%=ldoln(j,t)]. (3.2 (3.1

. . . L ) Knowledge ofP;(n;j,t) is sufficient as long as we con-
Since the underlying stochastic process is single particlgjger motion inside the initial tube. End effects introduce a
hopping., the distribution function af(j,t) is easily calcu- e complicated quantity. Within time intervi0t], the
lated, with the resulRef. [8], Eq. (3.22] tube from the end =0 is destructed up to begd., where

j < is defined as

PUD=60ni0=€ "0 [N?(G,D], (33

j<=1dNmal O1), (3.12
wherel ,(z) is the modified Bessel function of the first kind. Nmay 0) = max[—n(0,8)]. (3.13
The second moment?(j,t) is found as[see Ref[8], Egs. se[04]
(3.24,(3.12,(3.9]
Here
n%(j,t)=2poAs(j,1), (3.4 n(0,5)=mg(s) —mg(0),
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wheremg(s) is the occupation number at tingeof the res-  contribution of the different parts of the chain, we consider a
ervoir at chain end 0. Thus,,,(0t) is the maximal negative slight generalization in which we sum only over the+1
fluctuation of the occupation number of reservioirO in the  central beads
time interval[0t]. In Eq. (3.12 we also introduced

(N+M)/2

T — S.(g,t;M,N)= L,k N). 3.1

=1/, (3.14 +(q ) ;,k:(NSiM)/z S(q.t;j.kN). (318
measuring all lengths in units of the segment dizeSimi-
larly, from the other end tube destruction within timero-
ceeds to bead

Clearly, the coherent structure function of the full chain is

Sc(a,t;N)=Sc(g,t;N,N). (3.19
J>=N=1dma(N.U, (3.19 To calculateS(q,t;j,k,N), we first consider the contribu-
tion SM(q,t;j,k,N), which results from those stochastic
motions for which a part of the initial tube still exists at time
t. [The upper indexT) stands for “tube.”] We then can set
Hé}() an integral equation forS(q,t;j,k,N), in which

with nha{ N,t) being the maximal negative fluctuation of the
occupation numbemy(s) of the reservoir at chain enn.
The stochastic processeg(s) or my(s) are not Markovian,
since a particle emitted by a reservoir can be reabsorbed . ) .
the saml; reservoir later. ¥his induces a correlation that die 2(q,t;],k,N) shows up as mhomogeneltysee Sec. .V)l

out only if the particle has time to reach the other reservoir, urthermore, fot <Ts, contn_bl_Jtlons wr;ere_ th_e tube_ is de-
i.e., on time scaleT,. For such a correlated process, theStr()3(/Te)d cor_npletely, are negligible, agtf coques withSs
distribution and the moments af,,,, cannot be calculated .S (a.t;j,k,N) Incorporates the eﬁect_s of mterngl re_Iax-
rigorously, even though arbitrary momentsngD,s), involv- ation anq tube length quctuatlons, and its calculatlon_ls the
ing any number of time variables can be evaluatetsee most tedious part of our analysis. We here need to simulta-

Ref.[8], Sec. Il). As soon as tube renewal comes into play,"€0usly control the motion of segmep@and of the chain

we ther'efore have to resort to some approximation 'ends. More specifically, we will need the distribution func-
Some important quantity entering our theory is the averion
agen,.{0,t). It, for instance, yields the motion of the end ™ : .
segment via the relatiofRef.[8], Eq. (2.12)] Prnax (MmN =0 <= j=) 8 (00, ,n(;,t)(,3 2

Fo(t) —10(0)12)=21 g 2Nmax 0.
{Iro o017 sl i.e., the simultaneous distribution ofj,t) andn,5,(0,t) un-

We use the expressidiRef. [8], Eq. (5.1)] der the constraint that a part of the initial tube still exists.
Again the correlated nature of the stochastic motion of the
t oS chain ends prevents a rigorous evaluatiorP§f), ; , and we
Nma{ 0t) = Z 55 (3.16 use random walk theory to construct an approximate func-
s=1

tional form. The result depends om,, n;, andt only
through the rescaled variables,/nn(t) andn;/[n7(t)]*?

which is correct for a Markov process. Using in H8.16 and in the spirit of our mean hopping rate approximation, we
the exact momentfin(0,s)| [Eq. (3.7)], we in essence ap- P bping PP '

proximate the correlated process by a sequence of Mark ? 2thes<la/2var|ables replace the norma_hzmg factoggt) and
processes which for each time stepield the correct instan- LNj (1)]7° of the random walk by their counterparts for the
taneous value ofn(0s)|. This “mean hopping rate” ap- proper correlated process. In ess_ence,_th|s again amounts to
proximation, which was discussed in more detail in R, replacing the correlated stochastic motion of the chain ends
gives good results for larger times. For microscopic times, itby_a whole sequence of unc_:orrelated ra_mdom \_Nalks, param-
underestimatesm by about a factor of 2, but with etr_|zed by an effective hopping rafe. This hopping rate is

. o adjusted such that the random walk that replaces the corre-
Increasing time it approaches th_e full result ia as found lated process for final timg at that timeyields the correct

in simulations. Fot~T,, the deviation for the motion of the momentsn (1) = n-=(01) andnZ(t)=[n(j.0T]. [It in fact

end segment, which is most sensitive to our approximation),/ields the (?orrect gaaus’sian dis'éribution (J)f the.single variable
. 0 )

's of the order of 10% onlysee Fig. 9 of Ref|9)) n(j,t).] As discussed in Ref8], Sec. VB,p’ changes from

a valuepgp at microscopic times tpyp/N for t>T,. Since
poP governs the short time motion of a segment whereas
The basic quantity to be considered is the scattering fronpoPp/N is the mobility of the primitive chain, the mean hop-

B. Outline of our calculation of the coherent structure function

a pair of beads ping rate approximation smoothly interpolates between these
, more rigorously accessible limits. This will be discussed
S(q,t;,k,N)y=(e'd OOl (3.17  again in Sec. IVC, after we present the details of our ap-
proach.

which must be summed over the beads to find the coherent Our theory involves three important tinfland segment
structure functior8;(q,t;N). To get some information on the index) dependent parameter functions,
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c=c(t)= \/glsnmago,t) (3.21)
0 j< @ ‘¢" N
measures the extent of tube destruction and thus accounts for o N
tube length fluctuations. For,,,,(0t), we use the approxi- o'.j(t)

mation (3.16). It turns out that the time dependenceagf),

which very slowly tends to its asymptotic limit(t) a)
t—oo
— const t*2 [cf. Eq. (7.2)], is responsible for the well

known crossover behavior of the reptation tinfe;~ NZff,

where zo+ slowly approaches its asymptotic valugz— 3

from above (A detailed discussion of the reptation time will

be given in a separate paper. “

A second functiona(j,t), measures the coupling of the .
motion of an interior segmeitto the motion of a chain end. ‘e
Initially, this coupling vanishes, but it increases with time Se. .
due to particles created at a chain end and traveling over 0 R o N
segment. If this coupling is fully developed, all segments o je Jo
approximately have moved the same distance in the tube and
the primitive chain model results. The precise definition of b)

a(j,t) is given in Eq.(4.17).

Finally, it should be noted that the effective mobility of & pi. 2. schematic drawings of the cases discussed in the text.
segment fort<T, depends on its position in the chain, an The full line represents the unfolded initial tube. Broken lines rep-
effect already present for free Rouse type motion. This igesent the new end pieces of the unfolded tube created up td.time
taken into account by the functidi(j,t), which is defined in
Eq. (4.36. hold. That means that tube renewal from chain end 0 has not

Having described the main ideas of our approach, we nowassed over the original position of segmknand segment
turn to the details. We first construct and analyze the tub¢ at timet is not found in the part of the new tube created
conserving contributiolS(CT)(q,t; M,N) to the structure func- from chain endN. Furthermore, the new position of segment

tion. j, if measured along the tube, is closer to the new position of
chain end zero than the original position of segmenthe
IV. TUBE CONSERVING CONTRIBUTION relative ordering ok andj-., or of j(t) andj- is unimpor-
TO THE STRUCTURE FUNCTION tant. As is clear from Fig. @), the path connecting(t) and

) _ ) ) ~k hask—j(t) steps, and since the chain configuration is a
In this and the following section, we consider the contri- ragndom walk, we find

bution of those stochastic processes, which do not destroy

the initial tube completely, i.e., we insist on the inequality <eiQ'[rj(t)*rk(0)]>:e*az[k*l-(t)], (4.3
j=—j<=0, (4.)  where

since due to the definitions8.12,(3.15), the tube has been — qZIS

destroyed up to segmemt from chain end 0 ofj. from q 76 - (4.4

chain end\, respectively. We first construct a formally exact

expression for  the corresponding contribution As a result, the contribution of such configurations to
SM(q,t;j,k,N). Its summation over indicegandk as in  S(M(q,t;j,k,N) reads

Egs. (3.18 and (3.19 yields the tube conserving contribu-
tion to the coherent structure function. OK—j())OK—j)O(~—jt)O(] >—j<)e—52[k—i(t)1,

A. Exact expression forS(™(q,t;j,k,N) where the discret® function is defined as

Depending on the relation amongk, j-, andj~, we 1, n=0,12...
have to distinguish several cases. We use the notation OM=1y n=—1-2
J(O=j+1Isn(j,1), (4.2 Now consider a typical case of other type, shown in Fig.

. N ) _2(b). It is defined by the inequalities
and we illustrate the analysis with two typical cases shown in

Fig. 2. Figue 2 a gives a schematic sketch of a situation, in j(h<k, j->k,
which the inequalities
and differs from the previous one in that tube renewal from
=k, j=k, j==j), chain end 0 has passed over the original position of segment
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k. The thus created part of the new tube necessarily containshere

the new position of segmeptand the random walk connect-

ing j(t) to k has (-—Kk)+(j-—j(t)) steps. We thus find

the contribution Sy(q,t:j k,N)= e a?lk=i(0) (4.6)

O (k= (1)O(j -—k=1)O(j.—] )e 2=k,
The other cases compatible wijh=j_ are given by the IS the contribution ignoring - ,j.., thus ignoring all end
relations [j(1)<k,j-<j(®)], [i(t)>kj-<j(t),j==k], effects.S, correctssS; for the constrainf-=j_,
[[(O)>k,j>j(t)], and [j(t)>k,j~<k]. Proceeding as
above, after some manipulations with the functions, we S—
arrive at the result So(qut;j k,N)=[O(j=—jo)—1]e ¥IxIOI (4.7
S(a,t:,k,N)=81(a,t;],k,N) +S5(a, 15, k,N)
+853(q,t;j,k,N), (4.5  andS; takes the newly created parts of the tube into account

Sa(a,t;),k,N) = O (K= (1))O (j - —k—1)O (j - — ] -)[e T 12I< k=IOl _ g~ alk-i(D]]

+OG (1) —k—1)O - —j(1)~1)O(j- —j)[e T2i<ki] eIk}

FOK={()OG(D) -~ DO(. —] e FTHB-2] g 0]

+O((1)—k-1)O(k—j-—1)0(j-—j)[e TTkHID-2] _ gk, 4.9

These expressions are formally exact, but, as pointed out in 1,

the preceding section, to evaluafg and S;, we have to Sl(q,t;J,k,N)ZieQ [e**QerfqQ+A)
construct an approximation for the simultaneous distribution

of n(j,t), j-, andj- . S; could be evaluated with the ex- +e 2 Qerfo(Q—A)], (410

actly known distribution of(j,t) [Eq. (3.3)]. However, be-
ing interested in the universal features of the model, whichvhere
only show up for larger times, we use the Gaussian approxi-

mation (3.11) and ignore the discreteness of the elementary Q=0lsVpoAi(jt),

hopping process. We also will take the chain as continuous, .

in the evaluation replacing segment summations by integrals. A k—]j 4.10)
A priori these simplifications might influence the short time N 21 VpoAL(j 1) '

behavior, but in practice they are found to have no measur-

able effects. For a check, we numerically have compared thRiote that Eqs(3.2) and(3.7) imply

continuous model to a fully discrete evaluation. For the prop-

erly normalized coherenf[ structure func_t|0n \/pOAl(j,t)~([rj(t)—rj(0)]2>,
Sc(9,t;M,N)/S.(q,0;M,N), the difference for all times, in-

cluding the microscopic range, is found to be of the orderso that in the result4.10, g andk—j are measured relative
10~ 3 and thus negligible. to the mean displacement of segmgntEven though the
Gaussian approximation from its derivation holds only for
poA1>1, it for pgA1—0, i.e.,t—0, reproduces the exact
static behavior of our model,

B. The contribution S;(q,t;j,k,N)

Combining Egs(4.2) and(4.6) with the definition(3.3) of _—
P,, we find 81(9,0;j ,k,N)y=e~ a7kl (4.12

= As will be discussed in Sec. V E, this is an important require-

. i1 .
Sl(q,t;l,k,N)zn;x e TII=IND (nijt). (4.9 ment for any theory of the dynamic scattering functions.

With the Gaussian approximatiai3.11) for P;(n,j,t) and C. Distribution function for S5(q,t;],k,N)

with n taken continuous, this expression is easily evaluated In view of the symmetry of the chain under reflectipn
to yield —N-—j, the last two terms in Eq4.8) for Sz, when summed
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over j and k, yield contributions identical to the first two where

terms. We therefore can restrict the analysis to the first terms,

which involve the distribution function referred to in Sec.

B [Eqg.(3.20]: n; Ny

i N aa———F (4.19
Vn#(j,t) Vn?(0t)
Pg&ix,j(nmanj ;t):®(j>_j<)5nm,nma>go,t)5nj n(j,t)-
For instance, in terms of this distribution function, the con- ) Kg(j 1)
tribution to the coherent scattering functiSg(q,t,N) of the a=a(j,t)= [ALODAL(].0 ]2 (4.17
first term in Eq.(4.8) reads B
with [cf. Ref.[8], Eq. (A12)]
% nZn O (k—j— 1O np—k—=1)PL, (NN )
’ m: ]
_ o o - pt N 1 1 j? 1.
X[~ 9@l hm—k=i=1sn) _ g=a*(k=i=Tan)q, AiD=5*t3 37an T an |17 an )]
We now construct an approximate expression R, ; . me\  [mk( 1
based on random walk theory. We first present the essential 1 NZreogoy/eosl It
steps of our approach and discuss the approximations in- “5N p— L.
volved thereafter. Some details of the calculations are given =t sinz(—)
in Appendix A. 2N
We introduce the auxiliary variable,=—n(0t) and (4.18
write
P i (N 5t A, and «, are given in Eqgs(3.5) and (3.6), respectively.
o This introduces the parameter functias a(j,t). It mea-
_ 2 0(-——j s 5 5 sures the coupling of the motion of beptb the motion of
i J>71<) On gy g 00) Onp (i 1) O~ (o) chain end 0. If it vanishes, the conditional probabiliy15)

reduces td?;(n; ;j.t). This happens fopt<j? [see Ref[8],
Eq. (A1l6)]. The maximal value ofa is 1, which is ap-
— (T) - . .
_no;w P ax, 0 (Nm Mo, Nj ). (4.13 proached forj—0 and allt, or for t>T, and allj. In the
latter limit, Eqg. (4.19 yields z;=z,, and the motion of all
Recall thain(01t) is the change in the occupation of reservoir S€gments is rigidly coupled to the motion of the end seg-

+ o

0 within timet. We then factorize according to ment. In this limit, we thus recover the basic assumption of
the primitive chain model.
sz,)\x({nm:no;t)PZ(nO:nj :0,j,t) To find an acceptable functional form for

P roi(NmNo.Nj 1) — PO dNm.No;t), we replace the correlated stochastic pro-
(4.14 cessn(0,s) by a random walln’(s) on the integer numbers,

with hopping ratep’. We have to consider walks that start at
Here P{D, {Nm.No:t) is the simultaneous distribution of N'(0)=0, end atn’(t)=n,, and attain the maximal value
Nma(0) and—n(0,t), with the constrainf-=j_ taken into  Nm="o for somese[0;t]. To take care of the constraint
account.P,(ng,n;;0,j,t) is the simultaneous distribution of
—n(0;t) andn(j,t), so thatP,(ng,n;;0,j,t)/P1(ng;0t) is
the conditional probability to findn;=n(j,t), once ng
=—n(0,t) is given. A rigorous expression f@?, was given
in Ref.[8], Sec. Ill. Here we again use the Gaussian approxi-
mation [Ref. [8], Appendix C, Eq.(C7)]. Using also the

P1(no;0.t)

i(j>_j<): N’ _nmax(Nvt)_nman&Ovt)BO- (4-19)

s

Gaussian approximatiof8.11) for P;(ng;0,t), we find we restrict the walkn’(t) to the interval[n,—N’'+21,n,],

. whereN’ is the greatest integer less thilihl i, and we use
P2(No,n;;0,j,1) absorbing boundary conditions. This amounts to the assump-
P1(ng;01) tion that a particle entering the chain from the reservoir at

——— i o1 chain endN is transfered immediately to the reservoir at
=[27n°(j,H)]" " H(1-a%) chain end 0. This assumption is in the spirit of the primitive
1 chain model.
xexg - ———(a22+ 72— 2azz)|, (419 With these simplificationsP (), , can be calculated as
2(1—a sketched in Appendix A. Our result reads
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PO {Nm.No;t) for p’t>1 is a valid approximation consistent with our deri-
’ vation. With these substitutions, E@.20 reads
Ino| +ng ( |no|—no> 1
=®(n - O N —n,—
m 2 m 2 \/;p't
. § e vN’ N, N dnodnmPﬁE‘X’({nm,no;t)
Y Jp’ ‘/ p't 2\/p’t _ 1zol + 2o - 1Zol — 2o
=0ly— 5 O|N—-y— 5
F{ ! N Ng )2 vN’
Xexp —| —=+t—--——| || = < .
Vp't  Ap't 2yp't Vp't \/>dzody Z (v+1)(2vN+2y—2z,)
, 2
P - ==t : . 2vN+2y—z A
2p't Jp't 2\/ Xex4—W}—v(2vN+zo)
It is valid for p’t>1 andN’>1, which is the region of (2vN+24)?
interest here. We now note that fpft>1, the relations xexp ————|{- (4.22
nT(t)=2p’t We use this result that has been derived for a random walk,

also for the correlated proces$0,s) by reinterpreting the
variables.z; is given by Eq.(4.16), and

_ "t
Nn,= mMaxn’(s)=2 b (4.21)

se[04] m 2 Npa)0t)
y= \/;m— (4.23

n 0
hold, and we use these relations to eliminate the factors max 0)
Vp't,
N=N/c, (4.24
no \/—z
‘/no(t o with
2 nm . _ T

=2 =2y, c=c(t)= E'g”ma>z(0,t)- (4.25

For nha{0t), the approximation3.16 is used. Up to the

N’ 2 N R factor /2, the parameter gives the distance up to which
—=12 \ﬁ— =\2N. the tube has been destroyed on average. We now use expres-
Vp't TNy, sions(4.22, (4.15), and(4.14) to evaluate Eq(4.13), where

the sum ovemn, has to be replaced by the integral owgr

. - . . . me exercise in ian integrals yiel r final resul
In the last line, we used,,, sinceN’ is introduced via the Some exercise in Gaussian integrals yields our final result,

constraint(4.19. Furthermore, we write the prefactor in Eq.
(4.20 as

dzdy .
dnjdnmpggxyj(nmanj ,t): ]—®(Y)®(N_Y)

V2w

1

-1
_ S rarZi-12 \/E_
\/;p't \/;[n (t)] ( 2nm) '

and we again treat, andy as continuous variables, which (4.26

X :z_m PET:}gX,j(yle ,a),
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2avN+2ay—z)? . az—y+a,y+a,vN
PO (y.z.a)=(v+ 1)exp[—( y=2) a(2avN+2ay—2) erfc( yToyT
' 2 Ve
az—y+a,y+a,yN+N a, p( (az—y+a2y+a2vN)2)
—erf +\/—|exg —
Va, T 2
(az—y+a,y+a,vN+N)2 (2avN—2z)? . az—y+a,vN
—exp — —vexg — ———|§ a(2avN—-2)| erfcf —————
a 2 Va2
az—y+a,yN+N a, p( (az—y+a2vN)2> p( (az—y+a,vN+N)? }
—erf +\/—|exp ————— | —exp — ,
\/a—Z a a2 a2
(4.27
|
with the notationa,=2(1—a?). To summarize, our construction interpolates among two

Clearly, the approximations inherent in our constructionlimits where the full dynamics reduces to that of a single
of P(12; need some justification. Steps like the replacemenstochastic variable. Fdr<T,, the motion of individual seg-
of discrete by continuous variables are well justified, sincenents governed by(j,t) is essential. For>T,, the param-
we need the result only in a time and chain-length regimeeter functiona tends to 1 and the internal motion becomes
where a continuous chain model is valid. The problematid'rélevant. Furthermore, the correlations of the stochastic

steps are the factorizatid@.14) of (7). . and the calcula- processn(0,s) have died out. We thus are concerned with a

max,Oj . . . e .
. . &) single uncorrelated proces$0,s), as in the primitive chain
tion of the functional form OfP o by random walk theory. model. Smoothly interpolating among these limits, we may

Technically, the factorlzat|0|(14.14)_ serves to red_uce the hope to have found a good approximation also in the cross-
problem to the treatment of the single stochastic process, o regiont~T,. Indeed, as shown in Figs. 10 and 11 of

n(0,). It clearly is justified for large t'meSt?T% where  Ref [9], a simplified version of our theory almost quantita-
n(j,t) is firmly bound ton(0), and whereP{y),; becomes tively fits with Monte Carlo data for the motion of individual
equivalent taP {12, ,. For shorter times=<T», it assumes that ~segments. Furthermore, as will be illustrated in Sec. VIIl and
—n(0t) is a good measure of,,,,(0,t), which is certainly in more detail in Ref[14], our theory quantitatively accounts
incorrect, in particular fot<T,. However, fort<T,, end for data for the coherent scattering functi®(q,t;M,N).
effects influence only a small part of the chain. As can beThe agreement is equally good for the total chaih={N)
seen from Eqgs(3.16 and (3.7), and has been explicitly where tube length fluctuations are very important, and for an
worked out in Ref[8], Eq. (5.28), Ny (0t) for t<T, be-  interior piece M <N) where tube length fluctuations are ir-
haves asi,(01) ~ (pt) Y4~ NYZ(t/T,)*<N. Since the co- 'elevant

herent scattering function sums over all segments, it for such o . .

times is dominated by the motion of interior segments not D. Distribution function for  S5(q,t;j,k,N)

influenced by end effects and governed by the distribution To evaluateS,(q,t;j,k,N) [Eq. (4.7)], we need the distri-
functionP,(n;j,t). Itis easily verified that in the appropriate bution function

limit N=N/c(t)—o, the distribution function(4.26), when

integrated oven,,, reduces to the Gaussian approximation Pil(n, D=100>71<) =100 Gy
for P1(n;j,t). [Note that in this limit only a part of the P
=0 contribution to the sum in Ed4.26 survives] => PO (MmN s =Py(n;3,0).
We now turn to our construction ap{1) (n,,ne). Our Ny=0 !
treatment of the constrairitt.19 should be adequate, since (4.28

this constraint is relevant only for times of the order of the
reptation timet~Ts, where the internal degrees of freedom The first part can be determined by integratif Ta)lx,j [Eq.

of the chain are irrelevant. Furthermofié,(,rBX’O by construc-  (4.26)] overn,,. Equations(4.26—(4.28 thus yield

tion obeys the constraimy<n,,. Also, takingN>1 and d e

mtegratmg cMeTO, we find a d|str.|but|0n with the_deswed danI(T)(nj t)= ] _2 7)]_(V)(ZJ_ a), (429
first momentn,=n,,{0,t). Integrating oven,,, we find the 27 v=-
correct(Gaussiandistribution ofng. With these three impor- i

tant features guaranteed, we may hope that we have found a ), \_ f N () oy _ 2
good approximation for the distribution function of the full Pi(z.2) 0 AYP e (¥:2):8) = 60,0 8XR = Z]/2).
correlated process. (4.30
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N—M
n2< +j,t

They integral can be evaluated analytically and we quote the
result, which is useful for the numerical evaluation&f in b=—
Appendix B.

1/2
} , (4.39

E. Result for the tube conserving contribution to the coherent  where the parameter has been defined in E¢4.25. With
structure function S{"(q,t;M,N) due regard of thé) functions, a straightforward calculation

We consider the scattering from thé+1 central beads Yi€lds
[Eq. (3.18] and write

M+ _ . . 2w .
S (9,t;M,N)=8;(q,t;M,N) +S,(q,t;M,N) 82(q7t;M1N):Tf0 dj(5(21)+8(22)), (4.37)
+83(q,5M,N), (4.31) g
where the §(q,t;M,N), i=1,2,3, are the contributions 1 . 1 -
Si(a,t;],k,N) [Eq. (4.5], summed ovef andk. The super- 3(1):_(1_6—&M) dze % > { o _ 2t a
script (T) again recalls the constraift.1), j-—j.=0 2 b 0 2m b’
Due to this constraint the relation .
—j+N
(v)
Se(a,t;M,N)=S{P(q,t;M,N) (432 P T Al (4.38
in general holds only fot<T;. However, for largeg such
that q?RZ>1, contributions in which the tube has been de- 1t 1
stroyed, contribute negligibly t&(q,t;M,N), so that Eq. 8(22)=BJ' dZ2—e 97— AM-2]_—_
(4.32 in this limit holds for all times. 0 N2
Consider now the first contribution. i
(N+M)/2 XE P(V)(T,a), (4.39
Sl(q,t;M,N)=f djdkSi(q,t;j,k,N).
(N=M)/2
Using Egs.(4.10 and(4.11), we can carry out the integral 2¢% (W .
overk to find S3(a,t;M,N) = ?jo dj(S§+8P+sP+88),
1 [(N+M)2 5 (4.40
Si(a,tEMN) = — dj[e**1?" CerfoQ+A)
29%) (N-m)P2 1 fur N
(1)_= [ (N+M)2 —ay(1-2)_ -ayz
_e—2A1Q+QZerfO(Q_A1) S5 bfo dyy . dZ2e 2+e
— 220+ Qerfg Q+ A,) N-Kt y ]
e e E Paily+ ——.Fz—+.al,
+e 2820+ QerfQ—A,) V2 mexd 2 b b
+2 erfcd,— 2 erfc\ ], (4.33 (4.4
where R 1
(N+M)/2 * ~ ~
— . 8(2)=——J d f dze #(1-e ¥)2—
Q=01sVpoAs(j 1), 3 bJo Y], ( ) NEX
1 [N+M _ , N-M  z+]
127 2 _J)[pOAl(Jyt)]_llzi XE P(m.'zl)q y+ _Taa ) (4.42
S
oMo 012 @34 L(d-ie, (1 :
2 2I_S 2 PoA1lls : ' 3(33):_ Bf dyyf dZ2e WA"D_2 4 e W2
0 0
The remaining integration in general must be done numeri-
cally, due to thg dependence oh(j,t). — e w2~ z)] E Pgﬁng
The integral ovek can be carried out also ifi,,S;. We ’
introduce the notation A A
lyr My M7 4.4
q=c?c, j=jlc, NM=Mlc, (4.35 Y*T T et e 8 (4.43
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1/4

1 (N-m)r2 °° - - 1 A — t
8(4)=—f d f dze %(1-e W)2— 212 (— ,

3 b 0 y 0 ( ) \/Z Q q SpO T
SRRz R CORT ()

XZ 7)(m.’zlx,j y+ oot ——.,a|. A= — (53)
v 2 b b -
2V15po
(4.49

Integrating ovelj andk, we find for the normalized dynamic

The prefactor of 2 in Eq(4.40 accounts for the last two structure function

contributions in Eq(4.8). We note that these results depend

on time via the paramete c, andb. From its definition S.(q,t;:M, )

(4.36), the parameter functiob=b(j,t) measures the mo- Sy (q,t;M,»)=————"~

tion of an arbitrary segment relative to the motion of the end M?D(g°M)

segment. It is weakly dependent prand tends to 1 fot " s\ U4

>T,. _ _ ) =1-= = {Zerfc{ - ]
In S, andS3, one more integration could be done analyti- 2MD(g°M) t

cally, which, however, only blows up the number of terms 1

without leading to any simplification. Due to the dependence 2 [t —(T4/t)1’6

on the segment indeximplicit in a=a(j,t) andb=b(j,t), + \/_; -?_4 (1-e

an analytical evaluation of all integrals is possible only in the
limit t>T, wherea—1 andb—1. In general, we have to 1
resort to numerical evaluation. In this context, we may note + =

- i (9°M)?D(q°M)
that the summations over for t<T; converge rapidly, so
that in the range Wherng)(taéO)/SC(O) exceeds 10°, we R
never need to go beyorja|<4. +e@

-
In a time region where end effects are unimportant, the +e “Verf

results of the preceding section can be simplified. In precise

terms, the neglect of end effects amounts to considering a (5.9

subchain of lengthM, in the center of an infinitely long Ny )

chain. We here concentrate on this particular limit and comYVe recall thaD(x) = (2/x)(e" "~ 1+x) is the Debye func-

pare our results to those derived for a Rouse chain in a coiletion, and note thag®M can also be written as

tube.

V. DYNAMICS WITHIN THE INITIAL TUBE C[

—2erqu)”.

A*M=0?R(M), (5.5
A. Results of th tati del . . . .
esults 0 N © reptation mci © where Ry(M) is the radius of gyration of the subchain. In
In the limit N—oco, with j=j—N/2 andk=k—N/2 fixed, Eq.(5.4), we introduced a new time scale
only the contributions; to S™M(q,t;j,k,N) [Eq. (4.5)] sur-

vives. FurthermoreA(j,t) (3.5 simplifies to[see Ref[8], 2 _ T 2\ —2yg4
Eq. (4.13] Ta=16(12p0) ™", (5.6
tY2 raidz 7 which is of the order of the time the subchain needs to leave
Aq(j,t)= 7J —\/1-—=e’? its original part of the tube. This interpretation is obvious
0z 4 from the results on segment motion quoted at the end of Sec.
I, ([r(Ts)—r;(0)])~T{*~M for T,<T,. Also the vari-
=1 [} ableQ can be expressed in terms of a time scale,
—\/—, (5.1
o ;[\ 1/4
- . N - Q= T) , (5.7
independent of j. (Recall the definition t=pt.) Tq

Si(a,t;),k,N) [Eq. (4.10] takes the form

. — 6T,
e I T TN To=m(12p0) 2(@?) *=——5—-——. (59
Sl(q,t;J,k)=§eQ [e22Qerfq Q+A) d s [9R5(M)]*
+e 2Merf O A)], (5.2 It needs the timd, before the distance diffused by the sub-
chain, can be resolved by scattering of wave vectoFor
where now comparison with previous work, we concentrate on
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q%R3(M)>1, so thatT,<T, andD(x)~2/x. We then find
the following limiting behavior in the various time regimes:

SC(qatyMyoo) 202
T—D[q Rg(M)]
1-e @R [ §\¥2
22— =— for t<T
[a?R5(M)]2 Tq) !
2 't* 1/4 A o
—m _AI_—A for T <t<T,,
g
(5.9
~ \ 1/4
S:(q,t;M 00 6 T A A
&(d )% > -2 for T,<t.
M?2 VTPRI M) |
(5.10

PHYSICAL REVIEW E 65 061505

C. Closer inspection of Rouse motion in a tube

The derivation of Eq(5.11) in Ref. [12] involves some
approximations, which greatly simplify the analysis but are
not really necessary. For a general test of the validity of the
model, we therefore have repeated the analysis without these
simplifications. The analysis is sketched in Appendix C. For
further discussion, we here quote the result for the scattering
from a given pair of beadgEgs. (C16—(C18)],

U P
SRT(q,t;j,k)ZEeQz{eZAQerfc(Q+A)

+e-2Q erfqgQ—A)},

~ o~ / Yo
|j—k|+ 2|—2tg

(5.19

1/2

N
Q=q 5

Note that our results depend only on macroscopic parameters

q%R5(M) andt/T,, which absorb any reference to the mi-

croscopic structure.

B. Comparison with de Gennes’ results for Rouse motion
in a tube

In Sec. 11 B, we recalled de Gennes’ resyli®], derived

6 1K / -k ]

- I -~ o~ Y ]~

A=\/:— 7K+ \/2—tg| —— ,
Ne 2 12 Yo

(5.19

for one-dimensional Rouse-type motion in a coiled tube. In

the derivation, the relatiom’R3>1>q%? was assumed,

with | being the average segment size of a Gaussian chain.

Of interest here is the “local” tern8)(q,t) [Eq. (2.12]. A

glance at the derivation shows that it implicitly exploits the

limit considered here: a subchafof length M) in an infi-
nitely long chain. Combining Eqg2.10 to Eq. (2.14) we
thus find

Sic(q,t;M, ) — T
e 1N 1- fo( U/ Ty)],
M?D(g*M) e q)](5 11
const
Ty 12

Clearly this expression differs strongly from our res&it4).
It leads to very different asymptotics,

SdG(q,t;M,OO)
T—D[qué(M)]
2 t 1/2
- | = for t<T
_ 2Ne \/;(Tq) K
=M T2 (5.13
-1+ —q) for t>T,.
Tt

Furthermore the scaling with?, M, andt is quite different.

(5.1

1
g(z)= \/—_e’zz— zerfcz.
a

Here vy, is the segment mobility of the one-dimensional
Rouse model.

Clearly the structure dbg 1 [Eq. (5.14)] is identical to that
of our resultS; [Eq. (5.2)]. The difference is in the quantities
Q,A [Eq. (5.15], compared toQ,A [Eq. (5.3]. We note,
however, that the relation

O U
2QA=g*j-kl=0*5 [ —k|=2QA

holds. Recall that the mean segment dizef a Gaussian
chain, which is asymptotically equivalent to a chain with
fixed segment length, 0beys|2=lgl6 (in three dimen-
sions.

To analyze the difference among the two models, we first
consider the static limit,=0. S; reduces tdrecall the defi-

nition g?=q?12/6=q??)
51(0,057 k=€ 10K, (5.17)

which is the exact result. The result 81 can be written as
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~ ~ Ne 1
SRT(q.O:J,k)=eX;{—q2IZIJ—kl(l—qzlz—” 0)=—,
6 9(0) =
1 6 . (1 Ne
x[l—zerfc[ \/N—e|J—k|(§—qz|2€>” g(2)~e %, z-o.
n E 227 _ %l 1+ 2I2% Now the limiting result forSgt sensitively depends on the
2 &XRat q way we scale the time. We first consider times suchdfiat

stays finite upon taking the limig?l°—0,

f \/6 -k !
X er N—e|1—|

Ne
§+q2'2€) } (5.18

q°l? Zghq“, a=0.
Even if we ignore the termg?l?N./6<1, taking them to be
irrelevant microstructure effects, this result does reduce  We then find

to the exact form(5.17). To recover this form, we rather

consistently have to take the linil>—0 with g22(j —k) 0—0, Ao

fixed, i.e.,[] —k|=|j —k|—c. This just demonstrates that a o .
one-dimensional Gaussian chain, folded into the threeand recover the static limi6.17). Indeed, for such times the
dimensional random walk configuration of the tube, does noscattering cannot resolve the internal motion,

yield the exact distribution of a three-dimensional Gaussian

chain. In other words, the model of a Rouse chain in a tube a¥[rj(t)—r;(0)])~g?t¥4~q***2-0.
violates the equilibrium initial conditions by microstructure
terms on scalé] —k|~N,. Effects of internal dynamics can be seen only for times such

For the dynamics, this discussion implies that the modethat g/t diverge,
gives a wrong estimate for the number of wiggles in the

initial configuration. To eliminate this effect of unphysical y
initial conditions, we have to take the same lirgitl>—0 q?? 2—20t~q’“, a>0.
with g?1%(] —k) fixed, also in the full time dependent expres- I

sion (5.14). To facilitate the discussion, we rewrite Egs. o . .
(5.15 in a form that exhibits the fixed combination of vari- 1 hen the contribution proportional pdominates the square
ablesq?12[] —K|: brackets in Egs(5.19, and furthermore the argument gf

tends to zero. Thus

1/4
& Nel oo o 0—q2l? % Eﬂt
Q=ql\/—| 9?7 -K TTNE\ 72t

6

~ 1\/?,.,,.,(2’)’0)1/4
, 2\/7 q2|2|T—F| 12 A—)E N—e|j k| ;l—zt , (520}
Fop12 |23ty ————
212 Z%t which is the same functional dependencet@md|] —k| as
that of Q or A [Eq. (5.3]. The limiting expression for
Sr1(q,t;],k) becomes identical to our resu(q,t;],k) if

6 we identify
A= —\/—q??]-K| q21¥] -k
2q1 V.9 1=Kl a%17]] —k| b
PI?=0’=a’7, (5.2
21217 T -1/2
Yo q°17[j —k| 2
+QA2\/ 25ty ——— : N .
a B e Y0 (12p,)%. (5.22
219 Yo 18 |2 s
gl 2|—2t
(5.19 In summary, we have found that the model of a Rouse chain
in a tube is equivalent to the reptation model only in the limit
q%12—0 with g?1?(j — k) fixed. Outside this limit, it exhibits
The functiong(z) obeys the relations an unphysical relaxation of nonequilibrium initial conditions.
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D. Relation among the microscopic parameters _ S.
of the different models T3~ -
As a byproduct of our analysis, we with E.22 have \\\
found a relation among the microscopic parameters of our -1 ] \2\\ 3 4 logio(d)
model and those used in more standard Rouse type modeling T .y
of chain dynamics. Analyzing in Sec. VIl the relation of our N ‘l‘;\\ \
model with the primitive chain model, we will find as an RN
additional result, 0.9 N
N - BN
f %tzl_gpot. (5.23 0.8 o
FIG. 3. Coherent normalized structure funct@ﬁq,t;M,oo) of
Combining Eqgs(5.22 and(5.23, we find the central piece of an infinitely long chain fa?R5(M)=50M
— =200. Thick line, reptation resulEq. (5.4)]; long dashes and short
Ne=3l5po, (5.29 dashes, Rouse chain in a coiled tube. For the latter curve, a constant
has been subtracted such t@(q,O;M ,2)=1. Medium size
Yo, - dashes, de Gennes’ approximat[éy. (5.11)]. The arrow points to
ﬁt_t' (5.29 T,(M=200).

We now can give a quantitative definition of the equilibration¢ ;. - icrostructure effect. but the range stays of order
time T,, which we identify with the Rouse time of a free 1 \1y Thjs is obvious since a nonequilibrium initial condi-

chain ofN segments, tion generically will relax only on time scal€,. As a side
5 12 issue, we note that de Gennes’ approximatiibril) agrees
T,=—(N+1)2— quite well with the shifted form oBgy.
2 2 . . . .

T Yo To close this section, a general remark on microstructure
] . corrections for the dynamics may be appropriate. Our result
With Eq. (5.25, we find shows no such corrections, which would give rise to an ad-

(N+1)2 ditional 1M dependence in Eq5.4), which is not in the

T,=pT,=———. (5.26  form of the scaling variableg?M andt/T,. Thus our model
™ succeeded in singling out the universal aspects of reptation
dynamics. This, however, does not imply tliabnuniversal
E. Implications for the coherent structure function terms yielding some additional I/ dependence could not
show up for a microscopically realistic model, which takes

the details of the microscopic motion into account. But we

cerns only small part_s of the chain of the Ofdef Qf the tuquam to stress that any model first of all has to yield the
diameter and thus might be thought to be negligible. In theq ot static structure function. Otherwise some unphysical
static structure function, the error sums up to a term of OrdeFeIaxation will influence the dynamics. Such results can

N, small compared t&.(q,0;N)=ND(q°N). Since, how- safely be trusted only in a range wherg,(q,0;N)
ever, fort=<T, the time dependence & is weak, even such s (q,t;N) exceeds the error i6.(q,0;N).

a small effect is relevant. |ndeed, it can greatly Change the We f|na||y note that here we have been concerned exclu-
picture. To illustrate this, we in Fig. 3 compare our resultsjyely with the reptation aspect of the dynamics, modeled as
(5.4 for the normalized coherent structure function gnedimensional Rouse motion in a tube. This is to be clearly
S.(q,t;M, ) to the result found by integrating:(q,t;] k) distinguished fromthreedimensional Rouse motion among
[Eq. (5.14] over —M/2<]<M/2 and—M/2<k<M/2. To  fixed entanglement points, as treated by Des Cloiz¢afk
relate the mode|S, we used re|a’[io(§_21), (524), and for instance. The latter model is concerned with motion in
(5.25. To include also de Gennes’ approximate fonl1),  Mmelts for “microscopic” timest=<Tj.

we used the large valuqus(M)=50. We note that de

Gennes enforced the corrett0 behavior by artificially VI. ANALYSIS OF COMPLETE TUBE DESTRUCTION

subtracting his result foBzr. We furthermore note that re- In this section, we derive an integral equation extending

peating his calculation in our notation, we foutld,=q*t. 5 (q,t:M,N) to arbitrarily large timegSec. VI A). Basically
The remaining parametd_rgpozl.ZB has been taken from it is an equation forS(q,t;j,k,N), which incorporates
our previous work9]. SM(q,t;j,0N) as inhomogeneity. To calcula& , we need
Figure 3 shows that the effect of the artificial initial con- to sum this inhomogeneity ov@rWe construct this function
ditions can be quite large and dies out only slowly. It extendsn Sec. VI B, following the approach of Sec. IV. The kernel
up to the Rouse time of the subchain considered. This resutif the integral equation involves some distribution function
is generic. For longer chains, the amplitude of the effectwhich is calculated in Sec. VIC with the help of the mean
decreases for the normalized structure function, as expectdtbpping rate approximation. Quantities like the probability

The artifact of the model of a Rouse chain in a tube con

061505-15



LOTHAR SCHAFER, UTE EBERT, AND ARTUR BAUMGARTNER PHYSICAL REVIEW E65 061505

S(q’t!j 1k|j0!t0!m)
t :<eiQ'[fj(t)*fk(0)1>|jo't0’m

— (e IO Tt [ O 1Oy
o'lo:

~ (O] (gl 11O -1kOly  m=0QN,
(6.2)

where the second factor in the last line is a purely static
average. We have exploite’qln(to)=rj0(0). This factoriza-

- tion should be well justified, since the chain at titgehas
lo attained a completely new internal configuration. Now the
first factor in the last line of EQ.(6.2 equals S(q,t
0 —t9;j,m,N), whereas the second factor is the static structure
function expp—q?[j,—k{]. Combining Eqs(6.1) and(6.2) we
FIG. 4. Initial (0) and finakt) configuration of the chaitthick  thus find
lines), together with the configuration at tintg (thin line). At time . ™ .
to, the chain leaves the last piece of the initial tube, with one chainS(0,t;],k,N)=8"(q,t;],k,N)
end at the position of beag in the initial tube. t—1
+ 3 3 [P*(jo.tol0)e o ¥
density of tube destruction at tinte which can be derived =1 Jo
from this distribution function, are discussed in Sec. VID.

bt i G
The numerical evaluation of our results #8(q,t;M,N) is X S(0,t=to:J,0N) +P* (jo. Lol )™ o

deferred to Sec. VIII, after we have shown that our theory in X S(q,t—tg;j,N,N)].
the appropriate limit yields the results of the primitive chain
model. Reflection symmetry along the chain implies

. _ _ P*(jo,to|N)=P*(N—jo,t/0),
A. Derivation of an integral equation
for the structure function S(q,t;j,N,N)=S(q,t;N—j,0N),
Up to now, we only considered stochastic processes for

which some part of the initial tube still exists at tim@o get SO that our result takes the form
rid of this constraint, we have to deal with situations as -1
shown in Fig. 4: at timey,0<ty<t, the chain leaves the i M t-i :
original tube, which means that the remainder of the original S(a.61.kN)=S (q,t,j,k,N)+tE:1 ,Eo P*(Jo:tol0)
tube is the single poinltjo(O). This point is occupied by a Plio—k _
chain end. The rest of the chain has found a completely new x[e~ %o Ms(q,t—t9;],0N)

configuration. —0?IN=jo—k| b N—
Let 7* (jo,to|0) oF P*(jo.to|N) be the probability that +e TTTTES(q,t—to;N=j.ON)].
the tube is finally destroyed at tintg, the last pointrjO(O) (6.3

being occupied by chain end 0 N respectively. We assume
J P y fresp 4 e now sumj andk over the central piece of the chain to

that P* does not depend on the initial configuration, which W
should be satisfied except for rare extreme cases. find

We then can write the full time dependent scattering S(Q.:M.N)
(3.17 from a pair of bead$,k as (.6

=s{"(q,t;M,N)

t—1 N (N+M)2

S(q,t:j,k,N)=ST(q,t:j,k,N)

t—1 N .
. . +2 P*(jo,to|0)e 9 oK
+t2—l 12—0 [P*(JOItO|O)S(q!tvj!k|JO!t010) '[02=l ]OE=O k=(NZM)/2 (JO 0| )
0~ 0~
. - X t—=t;M,N), 6.4
+P* (Jo.tolN) S, Ko to,N)], (6.0 Se(@t=to:MN) ©4
where
whereS(q,t,j,K|jo,tg,m) with m=0N denotes the scatter- (N+M)/2
ing with tube destruction specified by, to, andm. We now t-M N)= S(g.t:1.0n). 6.
factorize S(q,t,j,k|jo,to,m) according to Se(a.tM.N) j=(lﬂ2M)/2 (.t:1.0n) €3
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For Sg, Eq. (6.3 yields

t— N
Se(g,t;M,N) =S (q,t;M,N) + 21 | E P*(j0.t0/0)

A
x(e‘ﬁb+eq%NthsEaLt—%;M,Ny

(6.6)

With time (and segment indgxaken continuous, this is the

PHYSICAL REVIEW E 65 061505

| dt ]
dtoP* (jo.tol0)= 3 [P (to=1)] "2

+ o0 :
2(vN+jo/2)?
% 2 _ —(ZV, Jo )
v=— lsp (tO_l)
N+jo/2)2
Xex;{—(_;},—k)) . (6.11
Isp (to_l)

basic integral equation of our approach. We note that it is o' /¢ 29ain exprest—1~t, in terms of the maximal excur-

\olterra type and therefore has a unique solution.

B. Expression for St (q,t;M,N)

The tube conserving contribution 8:(q,t;M,N) is eas-
ily found from the results of Sec. IV. Following E¢4.30),
we write

SO (q,t;M,N) =S¢ 1(a,t;M,N) +Sg »(q,t;M,N)

+SE’3(q,t;M,N), (67)

(N+M)/2

SE,l(qvt!M!N)_f dJSl(q!tIJ ON) (68)

(N=M)/2

(N+M)2 ~ (@ e‘aIZ 1
SgAq,t;MN)=c |~ dj -
’ ®&-mmpe Jo T b 27
z— e
X, Pf% al+p bl ),
(6.9
(N+M)/2 1 % -
Ses(q,t;M,N)=cf dj- dy{f dz e 9@y+2)
' (N-Ny2 b 0
v z+]
—e qZ]\/—E ﬂmng(y, - .a
f 7y WD _g- qyz]i
0 N2

x>, P(,Tf;xyj(y,?,a)]. (6.10

The notation is the same as in Sec.(Bée, in particular, Eqgs.

(4.27), (4.35, and(4.36)).

C. Expression for P* (jo,t5|0)
To construct an expression & (j,,t5|0), we again use

random walk theory, closely following the derivation of
P 0in Sec. IV C. The calculation is sketched in Appendix

A. It yields the result

sion n, [Eq. (4.21)] and identify n,, with ny(0.to). This
yields the replacement

c
s\/p (to— 1)_’ snma>&0t0) \/E
resulting in
N
IS f =
To\p’ (to—
Jo
—————2jo=12
Ts\/p (to °
dt, dc djo

2 .
_— \ﬁdjo_
lsVmp'(to—1) ™

With these replacements, we find

. . 2dc , < .
djodteP* (jo,tol0)—2 ;?djoz v[1-4(vN

+70/2)%1exd — 2(vN+]o/2)2].
(6.12

To construct the kernels for the integral equati¢dgh) and
(6.6), we basically need

X . . dce.. ~ . .
dtofo djoP* (jo.to/0)e™ 1 Jozsz*(q,XaN)a
(6.13

whereX=X/c, and whereP* (q,X,N) is given by
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o an - X Ca proximation. Fror’rﬂDmaX](nm,nj,t) [Eq. (3.20], we can de-
PO, XN = — _Zx v, djo[1—4(vN+jo/2)7] rive the probability that a part of the initial tube still exists at
" time t,
xexy —2(vN+]0/2)—qj] -
4 R K POM)= 2 2 Pl (N 1), (6.17
- V‘ azezpc}m&/z erfc cVNTATG
e V2 A straightforward calculation starting from Eqgt.26 and
2VN+E] 5 . (4.27 yields
—erf N - ;ZVNe*Z” N B
PM(t) 1+4Z (— 1)”verfc<TN 7><T>( )
2 PN
+ \/;(2VN+x—q) (6.18
o+ X)2 The probability that the tube is destroyed within time interval
xex;{ _ %_QXH 6.14 dto, corresponding to

dc= C(t0+ dto) - C(to),

In terms of 7*(q,X,N), the kernel of Eq.6.6) takes the can be calculated as dc(d/ac)P™:
form

J 0~ N
_ —pM=_dec—pM| =
dtoatOP dcaCP( (C)

dC\FA ” 202

— a5 _1vv 24— (12)02K

4 c 71_N;:l( 1)"ve .
(6.19

(6.19 On the other hand, we can calculate this probability also as

dc . . N . _
2 Ke(a,R)=dto f djoP* (jo.to|0) (e~ Flo+ e~ 4N -o)
0

Z>
Z)
+
CD\
0
=z
Ql
|
0
=2
“Z)
=

_2dc.73*A
=27 (a,

N ) dc. A
2dt0_20P*(Jo,t0|0)=4FP*(O,N,N), (6.20
Jo=

2—Kc(a.N,M) where the factor of 2 takes the two chain ends into account.
q It is easily verified that these two expressions are identical.
N (N+M)/2 Thus the following relation holds:
—dto | dio | k(o to0)e e
0 (N—M)/2
NN NN ——P(T) =22, P*(jo.to|0 (6.21)
gl _ @ ~ R—f1 . 2 (jo.10[0).
=2—12P*| 0, 5 N | —2P* O’T’N
a This identity guarantees the validity of the normalization
. i [ N=M (M—N)/2
q(N—M)/2 _ - v
e PHaNN) P*(q’ 2 N” Se(@=0MN)= 3 1=M+1 (622
j=(M=N)/2
R-f | R
+ e A(N=M)/2x -q, T'N for all times. From the definition of:’, we have
o (N+M)/2
AR ~ oo me A NEM o (0 M,N)= O(j-—j)=(M+1)PM(1).
4 iRy P*(q,N,N)_P*(q, : N” sPEEMN= S B0 =(M+ PO
(6.23
s [ L N+M - : : .
_e—q(N+M)/2p*( -q, ,N) ] (6.16  Substituting Egs(6.21) and(6.23) into the integral equation
2 (6.6), we find
t
D. Discussion of the probability density of tube destruction Se(0t;M,N)=(M+ 1)7)(T)(t)_ f dto<%7>m(to))
Comparing the present results with those of Sec. IV C, we ° °
can verify the internal consistency of our random walk ap- X Sg(0t—1tg;M,N). (6.29
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(b) 0.2 0.4 0.6 0.8 jl)/N

FIG. 5. Distribution functions for complete tube destructi@a.

PHYSICAL REVIEW E 65 061505

of the kernelg6.15),(6.16. It allows us to solve the integral
equation(6.6) for finite time t by a finite number of itera-
tions, the result being exact within the numerical accuracy of
our calculation.

To close this section, we evaluate the probability that the
initial tube finally is destroyed at the position of segmgt
with chain end O being the last part residing in the initial
tube[Eq. (6.12)]. Figure 3b) shows the dependence YN

for several values ofN. As expected, for shorter times

2/N2<1, chain end 0 leaves the tube close to the other end
(jo/N=1). With increasing time the most probable point of
final destruction slowly shifts to the center of the tube, but
for times where the rate of the tube destruction is maximal
[corresponding to the maximum in Fig(ap], the shape of
P*(jo,to|0) is still quite unsymmetric.

Obviously, the distribution functions considered here are
closely related to the right-hand side of E&.9), which is
determined by the part of the original tube that is still occu-
pied at timet (see Refs[1,12]). In this context, it is inter-
esting to note that Des Cloizea{ik6] modified the expres-
sion (2.9) by replacing7=t/74 in the exponent by some
more complicated time dependence, meant to take the local
motion near an entanglement point into account. This modi-

Probability density of complete tube destruction as a function offication is quite similar to our introduction of the quantity

2/N?~t/T . Normalization,f 5 d(2/N?)N?P* (O,N,N) = 1. (b) Prob-

replacing t/74. We note, however, thaN=N/c via the

ability density of complete tube destruction as a function of thecrossover behavior of=c(t,N) takes end effects such as
position jo/N of the final segment of the original tube, tupe length fluctuations into account rather than internal mo-
d(2IN2)P(jo/N)=dtyP* (jo.to|0). The chain leaves the tube with tion.

end 0. The values of R? chosen are indicated by arrows (i&.

Partial integration together with
S:(0,0M,N)=M+1, PM0)=1 (6.25

yields
t J
OEJ dtoP(M(to)——Se(0t—to;M,N),  (6.26
0 dty
with only the trivial solution
17
—Se(0t—1tp;M,N)=0. (6.27
dto

Together with Eq(6.25, this proves Eq(6.22. The corre-
sponding analysis can be applied to E6.4), yielding the
correct normalization

S0t M,N)=(M+1)2, (6.28

VII. THE LIMIT OF LARGE TIME AND THE PRIMITIVE
CHAIN MODEL

A. Special cases

If the time is large compared to the equilibration tiffig
of the chain, our results simplify since the parameteend
b can be replaced by their limiting values

a=1=b for (t>T,. (7.2

This implies that all segments experience the same curvilin-
ear shift, which is the basic assumption of the primitive chain

model. Furthermore,(j,t)—t/N for t>T, [cf. Eq.(3.5)],
and the parametar[Eqg. (4.25] reduces to

|_2P 1/2 t 1
T 0
c= \[Elsnmag(o,t)a( > ) 2 SAT0s)

12

N

p 1/2
= ( 25—°> iv2 (7.2)
To get an impression of the time dependence of complete

tube destruction, we in Fig. (8 show N*P*(ON,N)  Thus
~—(alat)PM(t) [cf. Egs.(6.20 and(6.21)] as a function

of 2/N2=2(c/N)2= 7]l nmaf01)/N]2. This choice of the c

. . . . -1_
variable is motivated by the relatioN ?~t/T,, cf. Eq. N N
(7.3). As we see, noticeable tube destruction starts RE 2/

~0.1 and is essentially completed aN2/~3.5. The varia-  pecomes a direct measure i6f s, where for brevity we in-
tion of N>2* as shown here, dominates the time dependenctroduced

Ao\ 12
t

3
2T, (73
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Te=T N’ (7.4) Nl
pls=1l3="—=— : Td= -
4'590 77270Ne

as measure of the reptation time. With relati¢ndl), all the  [Replacement {—1/y,, b—ly, a®>—I2N,, kgT=1 in
integrals in Eqs(4.37)—(4.44) can be evaluated analytically, Ref.[2], Eq.(6.19.] Thus
resulting in a fairly lengthy expression f&"(q,t;M,N) as

a sum of terms involving error functions and Gaussians. We p|§
here quote the result in those limits, in whigf” becomes oN
identical to the full scattering functio®., which is the case oe
for either short timef/T;<1, or large wave vectorsqué and Eq.(5.23 results.
>1.

=(12p) 7%,

1. Limit t/T5—0 with fixed Q=q2R§ B. Proof of asymptotic _equivalence to the primitive
chain model
We find Having recovered the results of Doi and Edwards for
¢ 312 q2R5>1,t>T2, we clearly may ask whether fae-T,, the
=D(Q)— ﬁ(l—eQ)ﬂLO(T—) . two approaches yield identical results irrespectiveq%ﬂ?g.
3 3 This is not obvious since formally the approaches are quite
(7.9 different. Doi and Edward$13,2] start from a diffusion

. ._equation forS(q,t;j,k,N). With the relation among model
Recall thatD (Q) denotes the Debye function. Of course, this d . . .
limit can be attained only for an extremely long chain, Sinceparameters established in Sec. VD, this equation takes the

relation(7.1) impliesT,/T3;—0, i.e.,N—o. The result7.5) form

Se(q,t;N,N)
N2

shows that for such a chain relaxation becomes observable N g &2
only for t>T,. Furthermore, with increasin@, the time _2___fls(q,t;j,k'|\|):o_ (7.9
variation of S; becomes rapidly insensitive to the scattering plipo 9t 9j?

vector.
This is amended by the initial condition

2. Limit Q=g?RZ— = with fixed ¢f and VT,

In this limit, our result reads S(0,05),k,N) =exp(—g?j —k|) (7.10

SQ NN _\EE S 1y
N?D(O) =1 WNMV;( 1)

N and boundary conditions
verfc—=

V2 9 _ _
lim—S(q,t;j,k,N)=09%S(q,t;0k,N),

o 0d]
21 o j—0
- \[Eﬁe_ (VZ/Z)NZl' o

J _
Iima—jS(q,t;j,k,N)=—qZS(q,t;N,k,N). (7.11
j~>N

which is the Poisson transform of

On the other hand, according to our thedsyq,t;j,k,N)
obeys Eq.(6.3), written in the continuous chain model as

Se(q,t;N,N) 8 - w?
— = 2p—1)"%expg —(2p—1)°—
N?D(Q) 1szzl( p—1) exp[ (2p )2N2
(7.7

t N
We thus recover the result of Refd2,13, Eq. (2.9), pro- S(q,t;j,k,N)=S(T)(q,t;j,k,N)+fodtofo djoP* (jo.tol0)
vided we identify

x{e~Tlio"Kg(q,t—t:j,0N)

t _ w? _772 t -
T 282 4 T, +e TINTIoTKs(g,t—to;N—,ON)}.
7.1
leading to (712
5 The inhomogeneity takes the form
N
pTd:T- (7.9 N y R
™ 1spo S(T)(q,t;j,k,N)=f0 dyf NdZE PuY.2F(y.z:] k),
y— v
From Ref.[2], Eq. (6.19, we can take the relation afy to (7.13
the parameters of the underlying Rouse model, which in our
notation reads where
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to the integral equatiofi7.12 to find

Puy2=——lim Pl L. 2 o
mCa1 DS(q,t;j,k,N)=DST(q,t;j,k,N)
21
=\ =S+ 1)@wN+2y-2) J djoP* (jo.1|0){e~Plio—K-a
¢ p'sPo
Xe—(l/zcz)(zvN+2y—z)2 +e—EZ\N—jo—kI—EZ(N—j)}

— p(2uN—z)e" WZA@N-2% (7 14 t (N
+ [ dt [ " digP* io.t0/0)
The rescaling of the variablgsand z serves to isolate the 0 0
time dependence which now is containedcionly [cf. Eq.
(7.2)]. The functionF collects all contributions contained in

81,8,,83 [Eq. (4.5], and is found to be _I_e—EZ\N—jO—leS(q,t_tO;N_j,O,N)}_
(7.17

X{efaz\io*H’DS(q,t—to;j ,ON)

F(y.zjk=e 1240 (k-j-2)0(y—k)
- _ - This is an integral equation f@S which has only the trivial
X[e~ 4 (@y-zk=]) _g=a°(k-j-2)] solution

. . _12 i
+OU 26y~ ~z)e TR DS(q,t; .k N)=0, (7.18
~a-k2] 4 @(k—j+2)O(j—z+y—N)

provided that the inhomogeneity vanishes. We first consider

X[ G (k+i=2+2y=2N) _ g=a%(k=j+2)] the contributionDS(™ and note that in view of Eq7.2), D

. can be written as
+0(j—k—=2)0(k—N+vy)

(92

><[e,c?(|<+jfz+2y72N)_eff?(j*kfz)], (7.15 J
ac  j2'

1
c
Here the last two contributions arise from the last two terms

in Eq. (4.8), which a priori involve the distribution function o
resulting in

O(>=1<)8n, N0 On nGLo-

Interchange of the chain ends transforms this distribution to (M) _ JN Y (E 9 A ) y
P (Nm,—n;5t) [EQ. (3.20] and implies that we have to bs E,, dy] 92 (v.2) |F(y.zi].K)

man

takej.=N-y andj(t)=]—z in the corresponding contri-
butions toF(y,z;j,k). . 2 y
By construction, our form o8(q,t;j,k,N) obeys the ini- —Pv(y,z)EF(y,z,J,k) ' (7.19
tial condition (7.10. To derive Eq.(7.9), we apply the op-
erator F(y,zj,k) [Eq. (7.19] is a sum of terms that depend ¢n
N o &2 andz exclusively via the combinationst z or j — z, respec-
=== (7.16 tively. Thusd?/9j? is equivalent tag?/dz?, and partial inte-
plipo 9t dj gration yields
N oy 19
pSD=2 f dyf dzF(y,z:}.K)| = 5= —5 | Pu(y,2)
v 0 Cc Jdc
N " J . ~ .
-2 f dy) Puly.y) | F(y.Z 1K) =Puly.y = F(y,zj,k)
v 0 z y ~N
F(y,y:j.k ay. +F N;j,k i 2
—Fly.yiik - y7%(3/,2) (y,y=Nij.k)— y7N7?V(y,2) :
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It is easily verified that in this expression the first term van-Thus the inhomogeneity in Eq(7.17 vanishes and
ishes identically, and after some calculation exploiting rela-S(q,t;j,k,N) obeys the diffusion equatiofy.18.

tions like

(2vN—2)?
2¢?

f(z,v)= (2vN—z)ex;{ -
we find
V2me*psM=eic(k) +e PN DN -K),
C)=2N [417fo(0p)e T = (20—1)2

X fo(N, v)e~T(N=K)]

—4q2c2D o[ fo(N,v)e~ N0 _2f (K 1)]

_ N
—4q402J dy>, vfo(y,v)e Tk,
0

14

where

(2vN—vy)?
- 2

fo(y,v)=ex;{

2c

We now turn to the second part of the inhomogeneity in

Eq. (7.17, and we use Eq(6.12 together with
=pT§p0/(Nc) [cf. Eq.(7.2)], to write

N
PEPO

Jo

J2mc?

4
P*(jo.t|0)=42 v{l——z >
v C

Thus

J2mc?

N i H T2 a2
7 f djoP* (jo,t)0){e 9 lo—kI=a%)
plspo 0

+e@IN=io—kI-a*(N-i)
— e TIg(k)+ e FN-DE(N—K),
with

(2uN+jg)?

l_
CZ

- N
C(k):4§V: vfo djo

ol

A short calculation shows that indeed

(2VN+j0)2
2c?

az|jo_k|]-

C(k)=—C(Kk).

]Ef(z+2N,v+1),

vN+ —

Checking the boundary conditiorig.11) is an even sim-
pler task. Direct calculation yields

a
9]

SM(q,t;j,k,N)
0

N y A J .
f dyf dz>, Py(y,z); F(y,z;j,k)
0 y—N v JO
(7.20

=02SM(q,t;0k,N), (7.26

J _
a—jS”)(q,t;j,k,N)E—qZS(T’(q,t;N,k,N), (7.27)

and differentiating the integral equati¢n.12), we find

Jd
S'(q,t;j,k,N)= ;S(q,t;j K,N)
(7.21) J

d
= L aMiqg t-i
7 (g,t;j,k,N)

t N
+ | dtg| dj jo,tol0
(7.22 fo oJO JoP*(jo,tol0)

x{e~ T lo=Ms (q,t—ty:j,0N)

defdt — e IN-io=Kis'(g,t—tg,N—],0N)}.
(7.29
2
) Now writing
S'(q,t;0k,N)=025,(q,t,k,N),
S'(q,t;N,k,N)=—g25,(q,t,k,N), (7.29

we find from Eqs(7.26—(7.28),

~ t N
Sl<q,t,k,N)=s<T><q,t;o,k,N)+f dtof djoP* (jo,tol0)
0 0

X{ei?‘jofk%l(q,t—to§0,N)

(7.23 +e TINTo K8, (g t—to,0N)},
R t N
S(aLkN =ST(@ENKN+ [ dt [ dioP o t0)
0 0
x{e‘?‘jo"‘@z(q,t—to;O,N)

(7.2 +e NI K (qt—to,0N)}.  (7.30
This is exactly the system of equations obeyed by
S(q,t;0,k,N) andS(q,t;N,k,N) [cf. Eq.(6.3)]. The unique-
ness of the solution together with EJ..29 thus guarantees

(7.25 that the boundary conditiond.11) are obeyed.
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We thus have shown that in the lint— oo with t/T5; and

qué fixed, our theory reproduces the results of Doi and

Edwards.

VIIl. NUMERICAL EVALUATION AND COMPARISON TO
MONTE CARLO DATA

A. Technicalities of solving the integral equations

As shown by relations like Eq¥6.19 and (6.20), the
natural measure of time in our theory is the parameter

PHYSICAL REVIEW E 65 061505

logro(f)

=c(t). It measures the motion of the chain ends, i.e., the

time dependence of tube destruction, and is defined by Eqgs. &

(4.295 and(3.16). In evaluating the theory, we therefore re-
place time by the variable

c(t,N)

X=X(t)= 1=

8.1

2| -

Using Eq.(6.15, we write the integral equatiof6.6) in the
form

= xdx' [ — 1
Se(x) =S (x)+2 f —,’CE(qux',—,>
0 X X

X Sel X(r(x) = 7(x')], (82
wheret= 7(x) is the inverse function tg= A{(t). §E(x) and

S (x) denote the scattering functioSs andSE” , normal-
ized with the static coherent structure function, e.g.,

SE(CIat,M 1N)

S = S (g t=0M.M)°

8.3

With corresponding notation, Eq&.4) and (6.16) yield for
the normalized coherent structure function

2N ’ M
X 1_7
a x" x'N

— 4 xdx’ — 1
S0=8"0)+ = J —K,
g-Jo x

X Sg[ X(7(x) — 7(x"))]. (8.9

In Egs. (8.2 and(8.4), we then transform from variables

to X=X(7(x) — 7(x')) to find equations of standard Volterra
form, which are solved by discretizingx and iteration. We
note that bothSt(x) and S{"(x) for x>2 are negligibly
small, less than 10/, to be compared to the normalization

§C(0)= 1. Also the kernelsCe, K, exceed 107 only in the
interval 0.1 x’<2.2. This allows for an accurate evaluation,

simply using computer algebra. The numerical uncertainty of
our final results is less than 0.5%. In all our analysis, we used

the same parameter values as in Ref. Specifically,l_§p0
=1.23, p=1/5, andl¢=2.364. (We recall that the precise

values ofp and I in fact are irrelevant for our numerical
results)

;

FIG. 6. Normalized coherent scattering function in different
wave number regions as a function of Jgd). (@ g>=0.01N
=M=157;(b) g’=1.0N=M=317. The thick solid lines give the
full functionsgc. Long dashes represeﬁn, which in (b) coin-

cides withgc. Short dashes are the results neglecting all end ef-
fects. The dot-dashed line {a) is the contribution of complete tube
destruction. See the text for further explanation.

(b) 2 3 5 6 Nogio(d)

B. Typical results

We first want to illustrate the magnitude of the different
contributions to the normalized structure functﬁn Figure
6 shows results for two very different values of wave num-
ber: g?R3~0.27 in Fig. §a), andg?R>~53 in Fig. §b). The
thick lines give the full results fogc, including end effects
and tube destruction. Long dashes repreﬁﬁ)t, i.e., the
contribution without complete tube destruction. Short dashes
represent the(normalized contribution gl [Eq. (4.33],
which omits all end effects and treats the chain as embedded
in an infinitely long tube. The arrows point to the internal
equilibration timeT,, defined by Eq(5.26),

. (N+1)?
T=—(+).

2
77_2

Finally, the heavy slashes in the time axes give the reptation
time defined as the first moment of the time dependent prob-
ability density of complete tube destruction,

~ ® J
T3= pjo dtoto( - a_to)P(T)(tO)' (8.9

Here we use Eq6.19 for 9P D/ 4(t,). For long chains, the
thus defined reptation time tends to the value given in Eq.
(7.4).
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9 logro (f)

FIG. 7. Normalized coherent structure functigp for N=637
and the values 0¢|2R§ as indicatedsolid lineg. The dashed lines

denotegDE. Arrow and slash indicaté*z or 'T's, respectively.

Figure Ga) shows the typical behavior & (q,t,N) for
wave numbers that are too small to resolve the internal struc- . — _
FIG. 8. Normalized coherent structure functi§nof a subchain

T i A
ture of the tu,beg(c : stays close to 1 up to. tlm_es of ordes of aboutM =80 beads in chains of the total lendthas indicated in
and then rapidly drops to zero. The contribution of processege figure. Wave numbeg=0.5. Solid line, theory. Data points
with complete tube destructiduiot-dashed line in Fig.@]  resyt from a simulation of the Evans-Edwards model.

is very important, and end effects become visible only at a

time where also tube destruction plays a role. Note that ac-

. i results close to the results of our full model. RFR;= 10,
cording to Eq.(6.4), the total structure functio; is a sUm  powever, even with such a shift, there remains a definite

of two independently calculated term§." (long-dashed difference: the result of the full theory initially decreases
line) and the contribution of complete tube destructidnt-  faster and approaches the shifted asymptotic curve only for
dashed ling These terms add up to a smooth cuttlick =17, This is an effect of internal relaxation and tube
solid line), an observation that demonstrates the consistencjangth fluctuations. The absence of a visible mismatch in the
of our approach on the quantitative level. It is only for very shape of the curves for smallgrvalues just implies that with

short chainsN= 30, that these two contributions do not quite s;ch small values again the structure of the tube cannot be
match. We trace this back to our approximate calculation ofegglved.

the kernellC; . For such short chains, tube length fluctuations 1o examine more closely the influence of internal relax-

and internal relaxation presumably play a role also for theytion and tube length fluctuation, we in Figs. 8 and 9 show
kernels. results for the scattering from internal pieces of a chain. Fig-

6(b). Here configurations where the original tube has been

destroyed, essentially do not contribute to the scattering. In- 1k

deed, in Fig. &), the curves foS, andS{" fall right on top g 159
of each other. However, end effects such as tube length fluc- ¢ 317

tuations have a strong influence, as shown by the deviations ¢
among the full line and the dashed line represenfingrhey

lead to a gradual decrease $f, starting long before com- M=39
plete tube destruction becomes effective. 0.6

In the preceding section, we have shown that our theory
asymptotically reduces to the primitive chain model of Doi 79

and Edwards. To test the range of validity of the asymptotic 0.4
result, we have evaluated our theory for the fairly large value
N=637 of the chain lengtkcorresponding to a Monte Carlo

chain of 640 beads, cf. Ref9], Sec. 11 Q. Figure 7 shows 0.2
the results for the normalized coherent structure func8pn

as function of loggt for a set of wave vectorsquS=0.1,
1.0, and 10. The dashed lines give the asymptotic result 1 5 3 2 5
(2.5),(2.6), where we used Ed7.8) for 74. Obviously, the

time s_caleg do not quite match: even for this long ghain, the FIG. 9. Results foS, ,q=0.5N=2317. Theoretical resultsolid
repte}t'on time does not yet follow thie® law. A shift of lineg) for central subchains of lengtiid =39, 79, and 159 are com-
logyet by —0.1, equivalent to a decrease of the time scale byared to simulationgdots. Results for the total chainM =317)
20%, for smallg, such thatquésl, brings the asymptotic are also shown.

6 logio(f)
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beads, corresponding q9R§~3.29. The subchain is embed- believe that our theory adequately describes the universal
ded as central piece in chains of different lengths, preciselypart of the coherent scattering function, including tube length
(N=77, total chaif, (N=157M=79), (N=317M=79), fluctuations anduniversal internal relaxation.

(N=%<,M=79). This figure illustrates the suppression of A more extensive presentation of simulation results, com-
end effects with increasinly. The asymptotic resul= is  paring with the present and previous theories, will be pub-
due to internal relaxation only. For finifg, the curves start lished elsewhere. Here we only note that we have taken data
to deviate from the asymptotic form as soon as wiggles crefor values of|g| ranging from 1.0 to 0.1, and thg depen-
ated at a chain end have a non-negligible probability to reacdence found for the initial deviation among theory and simu-
the central piece. The characteristic time for this proces#ations strongly supports the interpretation as microstructure
scales with N—M)2. Figure 9 shows results fay=0.5N effects.

=317, and central pieces of lengthls=317 toM = 39. Due

to tube length fluctuations, the normalized scattering func- IX. SUMMARY AND CONCLUSIONS

tion of the total chain initially decreases faster than the result

for M=159. Tube destruction on the average reaches the In this work, we have exploited the pure reptation model
subchains at times betweeb~10°8 (M=159) or { to cglculate.the coherent structure functEQ:Qq,t;M,N) of a
~10P4 (M =39), so that for large time regimes, the resultsfexible chain moving through an array of impenetrable to-

for the subchains are not affected by tube length 1‘Iuctuation§;0|09ir(]:aI opstaﬁleg. O'“!r an?lysisl i?. rigc?rO:Js for ;‘ §ubchain
The decrease of the normalized scattering intensity with de(_engt M.) in the interior o an in |n|tey. ong ¢ ainN
). This allows for a detailed comparison with an ap-

creasing length of the subchain rather is due to the fact that a’ h wh he interi X £ the chain i deled
shorter subchain leaves its initial position in the tube earlierP'0ach where the Interior mot_lon of the chain IS modeled as
i e. itis due to internal relaxation. one-dimensional Rouse motion along a coiled tube. We

In Figs. 8 and 9, we included results from a simulation Offound that the latter model starts from unphysical nonequi-

the Evans-Edwards modglL7]. This model takes the chain librium initial conditions, which relax only on the scale of
configuration as a random walk on a cubic lattice and allowdn€ Rouse timé,(M) of the subchain. This relaxation com-
only moves of *hairpin” configurations , ,—r;=r_;—r, pletely distorts the time dependenceSg(q,t;M_,Nzoc) fo_r

as internal motion. An illustration for a two-dimensional sys- iMes t=T5(M). Only for timest>T,(M), this model is
tem is shown in Fig. 1. We used the same implementation ofduivalent to the reptation model. If applied to the total
the model as in our previous wof&], to which we refer for chain, “local relaxation” calculated as Rouse motion in a
details. In comparing theory and simulations therefore alfuP€ therefore is unphysical. A realistic system may show
parameters are fixed by our previous analysis of segmeri®™e relaxation that is specific to the microscopic dynamics,

motion. Since, however, the new simulations lead to bettef"d Which is not contained in the pure reptation model. How-
ever, our analysis sheds strong doubts on an interpretation of

statistics, we allow for some readjustment of the relation ) -
- : - 5 such nonuniversal effects within the framework of the model
amongt and the Monte Carlo time scale=6.8X10" “tyc of a Rouse chain in a tube
instead oft =6.09< 10™ *ty taken previously. This yields a 7o evaluate the total structure function for all times, we
shift of —0.048 of the logarithmic time scale and leaves ourhave derived integral equations that s@iitinto a contribu-
previous results essentially unaffected. _ tion S{” of configurations where some part of the initial tube
As shown in Fig. 8, our theory in all details reproducesgyj|| exists, and the remainder. The kerel and in particular
the time variations of the da;a, but the data_ systematlcally "‘?he inhomogeneitieike S((:T)) of these equations cannot be
somewhat below the theoretical curves. This is not due to ou alculated rigorously. They involve distribution functions

approximations that essentially only concern the treatment o oupling the motion of a given segment to tube renewal

tube length fluctuations. Considering for instance the data f%hich is a non-Markovian process with memory time of the

N=317, we note that the deviations from the theory Arder of the Rouse timé&,(N). To calculate the functional
strongest fot<10°, where tube destruction and tube length form of these distributions, we used a random walk approxi-
fluctuations are irrelevant and our theory for the internal parimation. We thus at each instant of time replaced the corre-
M=79 is an exact evaluation of the reptation model. Fur{ated process by an uncorrelated process which as closely as
thermore, the deviations are fairly independent of the lengthgossible reproduces the instantaneous distributions of the
of the end piecesN—M)/2. This suggests that we see somecorrelated process. This “mean hopping rate” approximation
(nonuniversal relaxation of the microstructure. Clearly, par- introduces functionsc=c(t), a=a(j,t), and b=b(j,t),

ticle hopping, which is the elementary dynamics of the rephich appear as parameters in the distribution functions and
tation mOdel, is no faithful I’epresentation of the Monte CarIOCan be calculated from the microscopic hopp|ng process of
hairpin dynamics on the microscopic level. The wave vectoispared length in the reptation model. They also have a simple
la|=0.5 is large enough to resolve such details. Since thghysical meaningc(t) measures the average extent of tube
dynamic effects of microstructure should saturate at |afgeﬂestruction,a(j ,t) describes the coupling of motion of seg-
times, this suggests that we should scale down the theoreticg{entj to tube destruction, anki(j,t) takes care of the inho-
curves by some fact@g<1. This was done in Fig. 9, where mogeneity of the effective segment mobility along the chain,
Br ranges from 0.981 to 0.990, depending bh For t which arises from the fact that the mobile units, i.e., the
=10°, theory and data agree excellently. The same level oWiggles of spared length, can be created and destroyed only
agreement can be reached for the data of Fig. 8. We therefosd the chain ends.
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In the limit of long chains and time>T,, the parameters Z=[1N'], (A1)
a andb tend to 1 irrespective of, andc~tY2 Our theory
then reproduces the results of the “primitive chain” model. with the starting point of the walk’(0)=N"—n,, and the
Our proof of this asymptotic result amounts to a derivationendpointn’(t)=n-+N"—n;. The hopping matrix of the
of the primitive chain model from microscopic reptation dy- walk takes the form
namics. Combined with the analysis of the internal motion

for t<T),, this result allows for a mapping of the microscopic W(N'); j=(1=2p") 8} +p' (8, 1+ 81 j-1),
parameters of our reptation model to the more commonly .,
used Rouse-type parameters. J,J" e (A2)

The parameter functions(j,t), b(j,t), and c(t) ap- o) . . .
proach their asymptotic behavior only slowly, and it needspmaxy‘{nm’n’t) gives the weight of the walk under the con-

chain lengths of ordeN/N,=300 to find a time region _straint_thatn’(s)=nm Is attained for at least ore=[0.t]. It
where the primitive chain model is valid. In particular, for Is easily found as

shorter chains the reptation time, if extracted by fitting the In|+n

Doi-Edwards result for the primitive chain model to the large ngxyc(nm ,n;t)=( Nm— 5 )
time behavior ofS.(q,t,N) in the reptation model, does not

obey the asymptotic power lafiz~ N3, As will be shown in n—|n|

Ref. [14], it rather exhibits the well known behavicF; @(T—nm+ N’—l)

~NPZff, with an effective exponert.z>3. The deviation of

a(j,t), b(j,t), and c(t) from their asymptotic primitive X{(Wt(N,))Hn e — (1= 8, )
chain behavior incorporates the effect of internal relaxation moem m
and tube length fluctuations. Our numerical evaluation of the AN

full theory illustrates that these effects in general are quite XOWAN"=1))n g (A3)
important. In particular, we find a clear difference among the\?\/t(N’) can be written as

time variation of scattering from the total chain compared to

scattering from internal pieces. The latter are less influenced 2 K] K]

by tube length fluctuations but are more strongly affected by (Wt(N’))j = 2 sin—— sin——
internal relaxation. This leads to a peculiar behavior of N +1«1 N+1 N+1
Sc(g,t;M,N) with varying lengthM of the internal piece, as t

shown in Fig. 9. Quite generally, for the total chaiM ( o TK

=N) it is the tube length fluctuations, that determigefor x| 1-4p’ sirt 2(N'+ 1)) ' (A4)

times up tot~10T,.
All our quantitative numerical results are well supportedFor t>1, the last factor can be replaced by

by simulations of pure reptation, exploiting the lattice modelexp{—p't{7*«*/(N’ +1)?]}, and a little calculation yields

of Evans and Edwards. In view of the unavoidable approxi-

mations inherent in the theory, the quantitative agreement i§)(T) dNmn,H~0

quite remarkable. It suggests that our mean hopping rate ap- ™% ™"

proximation adequately takes care of the coupling among .

internal relaxat'ion, tube Iepgth fluctuations, and glopal creep. ><| 1 > o P UA2RA(N + 1)

A more extensive comparison to Monte Carlo data including N’ +1 =1

a numerical parametrization of our analytical results will be

published elsewhergl4].

[n|+n
2

n—|n|
2

Nm

nm+N’—1)

X|cC

0S —COos
N'+1 N'+1

TKN mr(2Ny,+ 2—n)]
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APPENDIX A: RANDOM WALK MODEL FOR
DISTRIBUTION FUNCTIONS ) o
_ - _ In extending the sums to infinity, we neglect terms of order

1. The function P 4 o(Nm.N; 1) exp(—72p't).

As explained in Sec. IVC, we consider a random walk Now we note thaP}), ;rapidly decreases fdr>T;. As
n’(s) on the integer numbers, with hopping rgpé. The mentioned in Sec. llIB, the effective hopping rate for
walk starts an’(0)=0 and ends at’(t)=n. It is restricted ~T3>T, behaves ap’ ~1/N~1/N’, and as a consequence,
to the interval[n,—N’+1,n,], with absorbing boundary the argument of the exponential in E@\5) takes the form
conditions. To simplify the notation, we shift the interval by —const «*t/T5. Thus P,(TQX’O yields a relevant contribution
N'—nq,to only for smaller times:t<Ts, and for treating this time
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range, it is preferable to replace the summations in(B§)
by their Poisson transform. This yields

(n—lnl
0

[n|+n
2

PO dNm, M) =0 ny+

2

—nm+N’—1)

X

1 =
\/477p’tv:2—°c |
2v
expy — —
p't
p{ p't
F{ 20+2
exp, —
p't
+1)?
p't

X

vN'+n,—

ul
)

X

vN'+n,—

(AB)

Now the Gaussian prefactors of the square brackets allow for

an essential contribution only fg't=N’?, and in this re-

gion, the square brackets can be replaced by the linear ap-

proximation

2 ( n V2
expg — —| oN'+ 5| - —|—
p't 2] p't
2v N’+n 2v+2( N’ 4 n)
~——| v —|exg — v n,—=
p't 2 p't mo2
(v+1)2
p't
2(y+1)( n)
~- wN +np— 5.
p't 2

Equation(4.20 from Sec. IV C is the result, which is correct
to leading order in M'. The neglect of M’ corrections is
consistent with treating segment indices as continuous.

2. The function P* (j,to|0)

By definition, 7* (j,,t0|0) gives the probability that the
initial tube is destroyed completely at time stigp with j,
being the last point, occupied by chain en¢see Sec. VI A
In the random walk model, this probability is given by the
weight of a walk starting ah’(0)=0 and ending an’(tg)
=jo=]Jolls. The pointj, is reached at=t, for the first
time, but the poinf,—N’+1 is attained for somee[0jt,
—1]. The walk is restricted to the intervg);—N’+1,j,].
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P* (j0:to|0)=p {[Wio }(N" = 1) T pr

’
0

—[Wo H(N"=2) ]y oy —j -1}y (AT)

where the prefactop’ gives the probability of the last step,
leading fromN’—1 to N’ (in the shifted walk Using the

explicit expressior(A4) for W' and exploitingt=ty—1>1,

we find
. - mr(jo—1)
P*(jo.to]0) = (cos—0
N/ =1 N/
71'K(jo""]-) e*p'(tofl)(ﬁz"z/”'z)

—Co

p’ mK(jo—1)
——— > | cos———=
N —1 «x=1 N —1
mr(jot1)
0S———

N —1

e P’ (to~ D7 k(N ~1)7]

(A8)

correct up to exponentially small ternisf. Eqg. (A5)]. The
Poisson transform yields

. p’
P*(lo’t0|o):—47-rp’(t =0
0
+ oo s\ 2
1 Jo
X E ex ——(VN’+—
v=—c F{ p'(tp—1) 2

o 1
2 4

1
X|eXF{,—<VN/+
p'(to—1)

-1 io 1

—eX[{,—(VN"FJ—O'F—
p'(to—1)

1 ic

—EX[{,—[ZV(VN’ﬁ-J?O
p’(to—1)

2 4
io 1 1
+J_o___,,z} —(2y(v|\|'
2 4 p'(to—1)

+vN’

2

As in Eq.(A6), we can expand in the square brackets, keep-
ing the first nonvanishing terms which here are of second

Shifting the interval byN’ —jg, we can express this weight order. Identifying nowf\l’=N/I_s andj(g:joll_s, Eq. (6.11)

as

in Sec. VIC results.
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APPENDIX B: EXPRESSION FOR P (" (n; ;1)

According to Eqs(4.28 and(4.30), P(T)(n, ;t) can be determined by integrati ; overny, (ory, equivalently. This
integral can be carried through analytically to yield
P22 p( (z— 2avN)2){2(2 2, erf az+a,vN ((2 21 1 f az+a,yN+N ((2 2 1)
(z,a)=exp — —— —-a‘)verfdd ———|—| (2—a%)v+ | erfcf ————| —| (2—a“)v— =
| 2 Vs 2 Va2 2
az+a,yN—N . . az+a,vN .
X erf({ ———=———| +va(z—2vaN)| 2(az+a,yvN) erfc¢ ————| —(az+a,vN+N)
Va, Vap
az+a,yN+N . az+a,yN—N
X erf(| ——————|—(azt+a,yN—N) erf¢| —————
Vay Va,
a, . (az+a,vN)? (az+a,yN+N)? (az+a,yN—N)?
—\/—va(z—2vaN)|2exg ———— | —exg —————— | —exp ——— | {,
o az a2 a2
(B1)
|
with a,=2(1—a?). S (p,t;j,k) = (PO KOy = g2iPI( —K g =P Dik(0)
(CH
APPENDIX C: MODELING A ROUSE CHAIN IN A
The model describes the internal dynamics of the reptat-
ing chain as that of a one-dimensional Rouse chain, stretched Yolt| o1
so as to span the contour length of the tube. The potential Dj(t)= N+1 N
energy takes the form
N 1 1
2')/0 |+ 3 k+ 5
N
v _1 e COS(WKNJrl COS<7TKN+1
KT = a2 2 5 X-0% Mxw-xo, (€
keT 4)2 < [ _
1—e wK‘tI
: " X , (C6)
where thex;,j=0, ... N are the bead positionsmeasures @
the mean segment size, anf is the stretching force acting
on the end beads. The average extension of the chain is eas- 2
. B . TK Yo , K
ily calculated as o, 2 Sif-————~-—m2—.  (C7)

2(N+1) 22 (N+1)2
L:<XN_X0>:2|hN. (CZ)

Using the approximate form ab, , we neglect some expo-
The dynamics of the chain is given by a Langevin equanentially small microstructure effects.

tion In the analysis of Sec. V, we need this result for two
segments deep inside a very long chain, for times small com-
Ex-— 9 lJrf_ (3 pared to the Rouse relaxation time of the total chain. Writing
dt’T  T0gx; keT ST | =N/2+7,k=N/2+K and taking the limitN—o, with

Yot/I?>1 fixed, one finds
The fluctuating force; is Gaussian distributed,

1 [+ Yy ﬁ_’RlI
(1=N"Lexd — — 2 Dj(t) = |J—k|+|\/27’ot9( : (C8
P& =N exr{ 470f_x dt§; (t)}. (C9 j 2ot
It is a standard exercise to calculate the dynamical strucwhere
ture functions. Indeed, for this system of coupled harmonic
oscillators, the stretching force does not influence the dy- 1
namics but changes the static prefactor only. For the scatter- 9(2)= —e P —zerfcz. (C9)

ing from a pair {,k) of beads, one finds \/_;
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Now assume that the chain is embedded in a coiled tube, 2
consisting ofN/N, segments of fixed lengtly . The contour —=6N,, (C1)
length of the tube equals the length of the stretched chain,

and Eq.(C10 yields

IT£:L=2IhN. (C10

e 2h \/E C12
The end-to-end distance of the tu&=12(N/N.) must Ne’ (€12
match the end-to-end distance of the physical chain. The
potential energy of the latter is given by the three- To calculate the scattering from segmependk of the
dimensional version of EC1) in the absence of the stretch- stretched one-dimensional Rouse chain embedded in the

ing force, which results irR§:6I2N. Thus tube, we write
|
S(R)(q,t;j ,k):<eiq~[rj(t)frk(0)]>TUbe: j+°Cdx<eiq.[rj(t)—rk(O)]a(Xj(t) _Xk(o)_x)>Tube
+ o0 X 0
= J (e TTOTKON 4 0= 80 (D) = (0) =X). (C13
|

Here the first factor is to be calculated under the constraint 1(j—k)
that the pointsr;(t) and r,(0) have distancex measured A=—— (C18
along the tube. It is thus given by the static correlation func- Ne
tion of a chain ofx/l1 segments of fixed length, 2 EDik(t)

If we take forDj,(t) the result(C8), the variablesQ and A
(eiq‘[’i(‘)*rk(0)1)|x,(t)_xk(o)zxze*(qz"i)'ﬂ’d. (C14  reduce toQ andA given in Eq.(5.15), and the resul{C16)
: becomes identical to the expressi@nl4).

) ) ) ) A final remark on de Gennes’ approximatipt?] may be

'I_'he second factor in EGC13) is the(one-dimensionalFou- appropriate. The derivation starts from EES) with D;,
rier transform ofS*Y) [Eq. (C9)], taken from Eq.(C8). Aiming directly at the coherent struc-

ture function, one integrates this expression gvandk. If

we ignore end effects, this yields

(8(x;(t) =x(0) —x))

=f+x@eipxs<1d>(p t:j,k) 1 djdkS*(p,t;j,k)
— 277 T N J p’ 'Jl
[x—2hl(j—k)]? » sl
=[477D-k(t)]_1lzex4— —_— . ~f dsexg —p?l2s—p?l 2yt
] 4Djk(t) 0 p p Yold \/m
(C1H x (e21PINs | g=2ipIhs)
Substituting Eqs(C14) and (C19 into Eq. (C13, we can  wheres=|j—k|. To evaluate this integral analytically, one
carry out the integral to find expands exp-p?2yotg(sl/\2yet)] up to first order. The
remaining steps closely follow our derivation given above
1, and result in the form{2.12) of the “local” contribution to
SP(q,t;j,k)= EeQ {e*2QerfqQ+A) the coherent structure function. It should be noted that the
expansion is valid only fop?l \2y,t<1. The analysis sup-
+e2AQ erfd Q—A)}, (C16 poses that is small compared to the Rouse relaxation time,

and in this time regime,/2y,t is of the order of the mean
square distance moved by a segment along the tube. Thus the

Q=q? - /%Djk(t), (17 condition p?l2yet=~p*(x;(t)—x;(0))?)<1 implies that

the wave numbep cannot resolve the motion of a segment.
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