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Diffusion coefficient of propagating fronts with multiplicative noise
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Recent studies have shown that in the presence of noise, both fronts propagating into a metastable state and
so-called pushed fronts propagating into an unstable state, exhibit diffusive wandering about the average
position. In this paper, we derive an expression for the effective diffusion coefficient of such fronts, which was
motivated before on the basis of a multiple scale ansatz. Our systematic derivation is based on the decompo-
sition of the fluctuating front into a suitably positioned average profile plus fluctuating eigenmodes of the
stability operator. While the fluctuations of the front position in this particular decomposition are a Wiener
process on all time scales, the fluctuations about the time-averaged front profile relax exponentially.
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I. INTRODUCTION relative to the deterministic relaxation of the front. The basic
idea was that only the low-frequency components of the
One of the aspects of front propagation that have beenoise are responsible for the front wandering, so that the
studied in the literature in recent years is the effect of fluchigh-frequency components, which renormalize the front
tuations on propagating fronfs—4]. In particular, it has shape and its velocity, could be implicitly integrated out.
been found that in the presence of noise, both oneThis led to an ansatz for the relative scaling of fast and slow
dimensional fronts between a stable and a metastable Stq‘iﬂ]e Variab'es Where the Sma” parameter governing the Sepa_
(“bistable fronts”) and so-calleghushedronts, which propa-  ration of time scales was the diffusion coefficid of the
gate into an unstable sta{®], exhibit a diffusive wandering  fony jtself. The method then self consistently provided an
about their average positigd]. This contrasts with the fluc- explicit prediction forD;, which was in good agreement
tuation behavior of so-callefulled fronts propagating into i their numerical results. The main weakness of the ap-

an unstabl_e state which is subdiffusi@. In this paper, we é)roach was that the above coarse-graining procedure could
shall consider only the case of pushed and bistable front . o : . X )
riot be carried out explicitly, since while there is a separation

however. : " .
Recently, Armercet al. [4] derived an expression for the of time scales for the@veragequantities, a scale separation
! scheme is not natural for thituctuating quantities. Hence,

effective diffusion coefficient of a pushed front in the sto-

chastic field equation the derivation had to rely on an uncontrolled ansatz. In this
brief report, we therefore reconsider this problem. We justify
ap P " the; previously' derived result fdd; with qsystematic 'small-
E:§+f(¢)+8 g(¢) n(x,t) (1) noise expansion based on decomposing the motion of the
front into a diffusive motion of the properly defined front
with a noise term whose correlations are position, plus fluctuations about the average front profile.
Technically, the fluctuating front position is defined by re-
n(x,t)=0, (2)  quiring that the fluctuations about the mean front profile are
orthogonal to the(left) translation mode. This derivation
m= 2C(|x—=x"|IA)8(t—t"). (3)  shows that the previous multiple-scale ansatz is not quite

adequate, and it will clarify the connection between the sepa-

In Eq. (1), f is a nonlinear function of the fiel¢p with a  ration of time scales invoked in Ref4], the small-noise
stable state ath=1 and either aimetastable or unstable expansion, and the existence of a finite gap in the linearized
state atp=0 andg(¢) is some other general nonlinear func- evolution operator. The key point of our fully systematic
tion. In Egs.(2) and(3), the overbar denotes an average overderivation is the fact that there is a unique choice for the
the realizations of the noise. In order that our noise of Straeollective coordinateX(t) of the front profile to be a
tonovich type is well defined, we have introduced a spatiamemory-less Markovian process, and that the fluctuations
cutoff in the noise correlation functidi3) (see[4] for further  about the average profile then relax exponentially. This re-
details. laxation may be deduced from the spectrum of the lineariza-

The derivation inf4] of the effective front diffusion coef- tion operator about the average front profile. In addition, our
ficient D; relied on a small-noise stochastic multiple-scalemethod provides a general strategy to address the problem of
analysis that was based on the idea that the mean-squdiactuations of fronts and other coherent structures, and may
displacement of the front about its average position was slowe extended to higher-order perturbation theory.
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Il. DERIVATION OF THE EFFECTIVE DIFFUSION deb,
COEFFICIENT m)(RO):O@@(RO):d_g'

In our case the operatd} is not self adjoint, sincegr#0; as
a result, the left eigenmode(” is different from®{, but it
06 P is known to be(see, e.g[4,9])

—=——+h(¢)+&"R(p,x,1), (4

11)

We may rewrite Eq(1) in terms of a noise terrR whose
averageR is zero and a deterministic renormalized part,

(12

using Novikov’s Theorem, as discussed 4. In Eq. (4), . . L .
As we mentioned above, a particular definition of the posi-

h(¢)=1(¢)+eC(0)g' (d)g(), (5)  tion X(t) is especially convenient: we takgt) defined im-
plicitly by the requirement that the fluctuating fielf; is

R(b,x,1)=g( ) n(x,1)—e¥2C(0)g' (4)g(p),  (6) orthogonal to the left zero mode. Indeed, defining

whereC(0) is of orderA ™%, so that Eq.(3) yields a delta (A(£)B(£))= fx dEA(E)B(E), (13
correlation in space in the limik —0 [7]. The main idea of —
the derivation is to introduce a collective coordinXtg) for

the position of the front. Of course, there are various choiced'® reauire

for the positionX(t), but as we shall show a particular deg
choice makes the equations quite transparent. We decompose(® (V¢ (&,t))= f d§e”R§d—§[¢— ho(§—X(1))]=0.
the fluctuating field$ as (14)

b= ol = X(V) ]+ e[ - X(1),t]. (7)  Note that at any moment, tHeictuatingfront positionX(t)
is defined in terms ofveighted spatial averagef the fluc-
Here, ¢, is the solution of the ordinary differential equation tyating field ¢.
for the Shape of a deterministic front with VeIOC.W)Q, the Upon substitution of Eq(?) into Eq(4) and linearization

velocity of the deterministic front associated with Bd)  in ¢, (which is justified for small noise we obtain
with R=0 (the subscripR on vk reminds us that the front
do

speed is determined by ¢) rather tharf(¢), and hence, is oy :
renormalized due to the presence of the noise other 7—£¢1—X(t)a—gx+R(¢o,§,t).
words, ¢, satisfies

(15

Note that we have also approximated(¢,éx,t) by
d2eo(&) Ibo( &) R(¢O,§,t), which again is correct to lowest order in the
= 5 UR 9% +h(¢g). (8) noise.
d¢ In addition to the zero mode, the operatdwill in gen-
eral have right eigenmodeb{)) with eigenvalues- o;:

0

While ¢ is a nonfluctuating quantityp, is a stochastic field
that contains the fluctuations abogt. In the above £=x LOV=—gd® %0, (16)
—uvpgt is the proper variable for a deterministic front moving

with the asymptotic velocity g, but note that in Eq(7), the  and with associated left eigenfunctio@ﬁ_')=e”R§<I>g). Our

fields are written in terms of the shifted variable convention to have the eigenvaluesr, anticipates that the
dynamically relevant front solution is stable, so that all ei-
x= &= X(t) =x—vgt—X(1), (9  genvaluesr, are positive. Moreover, both for fronts between

a stable and a metastable state and for pushed fronts propa-
where X(t) is the rapidly fluctuating front position whose gating into an unstable state, the spectrum is known to be
explicit definition in terms of a spatially averaged front pro- gapped 10,11, i.e., the smallest eigenvalue is strictly greater
file is given below. than zerd 10,11.

As is well known, the derivation of a mOVing bOUndary Since d)l is Orthogona| to(I)(LO)' we can expandﬁl in

approximation for deterministic equatiorisee, €.9.[8,9]  terms of the eigenmodebg) (1=1) of £ as
and references therginormally proceeds by projecting onto

the zero mode. Indeed, associated with the front solutign

_ |
of Eq. (8) is a zero mode of the stability operator $1(€x :t)—go ()L (£x). 17
92 d ) Substitution of this expansion into E(L5) then yields upon
L= (9—52+0R(9—§+h (o), (10" projection onto the zero mode(®:
. DOR(¢o, &t
which is obtained by linearizing about,. This zero mode x(t)=81’2% (18
expresses translational invariance, and indeed implies that (P DR7)
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Taking the square of this result, integrating and averagingnoise, previously found in Ref4]. The present derivation is
over the noise, fully explicit and based on standard projection techniques.
. . The key point is the identification of a definition of the front
Xz(t)=2th=f dt,f dUX(t)X(t"), (19 position, which nqtura}lly |mplles the diffusive wandermg_ of
0 0 the front, and avoids invoking an uncontrolled hypothesis in
) ) addition to the basic assumption of small-noise strength. This
then yields with Eqs(3), (11), and(12) has also clarified that the time scale separation used in Ref.
[4] may be traced back to the small-noise approximation
J d&e®ré(depy /d€)%g?( ) together with the existence of a finite gap in the spectrum of
Di=¢ 5 (20) the linearized evolution operator. All these considerations
may be generalized to the effect of fluctuations on other
types of coherent structures.
o ) ) o _ Our derivation of the solvability expressi¢0) for D; of
This is precisely the result derived earlier[#], but now in 4 propagating front shows that the collective coordingte
a fully systemgtic way. To lowest order in the present Sma“'responds instantaneously to the nd&&here is no memory
noise expansion, the average front profile is simgly.  term in(18), so thatX(t) is Markovian and, more precisely,
However, notice that¢, contains a dependence oAt coincides with the Wiener procegt lowest order in the
throughC(0) in h(¢). The paramete€(0) must be consid- ngjse strength We stress that this is only true for our par-
ered as an independent one, so that the re8QJthas to be  ticylar definition ofX(t) in terms of the orthogonality o,
interpreted as to first order i but to all orders ire/A. to the left zero mode. For any other definition, such as the
The above derivation allows us to also obtain the relax ,syal one to define the front position X§t)=[d& ¢(¢),
ation of a fluctuation about the average. Indeed, upon substj((t) will not be a Markov process, and would show only
tuting Eq.(17) into Eq.(15) and projecting onto the left zero gitfusive behavior at sufficiently long time scales.

jdgeng(d¢0/d§)2

modes, using®{"®{")= 5, for normalized eigenmodes,  As a byproduct of our derivation, we have also obtained
we obtain to lowest order an explicit expression for the relaxation behavior of the fluc-
tuations about the mean front profile. Not surprisingly, the

ﬁ =—g a|+81/2<q>(|_l)R>' (22) larger the gap in the spectrum, the fagter the rellaxation. As is
dt well known, in models in which there is a transition from the

, pushed regime to the pulled regime, the gap closes upon
as termsX(t)d¢,/dé are of higher order ire. Note that  approaching the transition from the pushed $it@. Hence,
each mode is damped and has its noise strength weighted lgiye relaxation becomes slower and slower. As is discussed in
®{". One may derive from here in a straightforward way the[10], in the pulled regime, the spectrum is gapless and this
mean square fluctuations about the average profile. leads to anomalous power-law relaxation of deterministic

We finally note that our discussion clarifies the difficulty fronts towards their asymptotic speed and shape. As a result,
of using a separation of time scales argument for the derivapulled fronts cannot be described by a moving boundary ap-
tion of the effective diffusion coefficient: the collective co- proximation[9] and in the presence of fluctuations, they ex-
ordinateX(t) is a memory-less Markov process, and hencehibit subdiffusive wandering[6] in one dimension and
the changes in the position have zero correlation time whilanomalous scaling in higher dimensidig,13.
the average oK?(t) changes slowly. The coefficienss(t),
on the other hand, have a finite correlation time, and hence,
are correlated on timescales in between the one of instanta- ACKNOWLEDGMENTS
neous positiorX(t) and the mean-square wanderdg(t).

We are grateful to L. Ramez-Piscina for illuminating
discussions. Financial support from TMR network Project
111 NCLUDING REMARK .
CONCLUDING S No. ERBFMRX-CT96-0085 is acknowledged. J.C. also ac-
We have reported an improved derivation of the diffusionknowledges financial support from Project No. BXX2000-
coefficient of propagating pushed fronts with multiplicative 0638-C02-02.

[1] A. Lemarchand, A. Lesne, and M. Mareschal, Phys. Rev1E cho, Phys. Rev. B8, 5494(1998.
4457(1995. [5] Deterministic fronts that propagate into a linearly unstable
[2] H. P. Breuer, W. Huber, and F. Petruccione, Physicz3P259 state are called pulled if their asymptotic speged equals the
(19949. asymptotic spreading speed of linear perturbations about
[3] J. Armero, J. M. Sancho, J. Casademunt, A. M. Lacasta, L. the unstable statei,;=v*. For pushed frontsy ,>v*. For
Ramrez-Piscina, and F. SagsiePhys. Rev. Lett76, 3045 fronts propagating into a metastable staté=0. See, e.g.,
(1996. [10] and references therein for further details.

[4] J. Armero, J. Casademunt, L. Ragm-Piscina, and J. M. San-  [6] A. Rocco, U. Ebert, and W. van Saarloos, Phys. Rew2E

012102-3



BRIEF REPORTS

R13(2000.
[7] One takesC(0) of the orderA ™! in order to haveC(x/A)
converge to a delta function arfdixC(x/A)=1 [4].
[8] A. Karma and W.-J. Rappel, Phys. Rev5F, 4323(1998.
[9] U. Ebert and W. van Saarloos, Phys. R8p7, 139 (2000.
[10] U. Ebert and W. van Saarloos, PhysicalBg 1 (2000.

PHYSICAL REVIEW E 65 012102

[11] W. van Saarloos, Phys. Rep01, 9 (1998.

[12] G. Tripathy and W. van Saarloos, Phys. Rev. L88, 3556
(2000.

[13] G. Tripathy, A. Rocco, J. Casademunt, and W. van Saarloos,
Phys. Rev. Lett86, 5215(2001).

012102-4



