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Bunches of streamers form the early stages of sparks and lightning but theory presently concentrates on
single streamers or on coarse approximations of whole breakdown trees. Here a periodic array of interacting
streamer discharges in a strong homogeneous electric field is studied in density or fluid approximation in two
dimensions. If the period of the streamer array is small enough, the streamers do not branch, but approach
uniform translation. When the streamers are close to the branching regime, the enhanced field at the tip of the
streamer is close to 2E�, where E� is the homogeneous field applied between the electrodes. We discuss a
moving boundary approximation to the density model. This moving boundary model turns out to be essentially
the same as the one for two-fluid Hele-Shaw flows. In two dimensions, this model possesses a known analyti-
cal solution. The shape of the two-dimensional interacting streamers in uniform motion obtained from the PDE
simulations is actually well fitted by the analytically known “selected Saffman-Taylor finger.” This finding
helps to understand streamer interactions and raises new questions on the general theory of finger selection in
moving boundary problems.
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I. INTRODUCTION

Streamers are growing ionized fingers that appear in elec-
tric breakdown whenever nonionized matter is suddenly ex-
posed to strong electric fields, therefore they are very com-
mon in nature and technology in gases, liquids, and solids
�1–3�. They occur for instance in early stages of atmospheric
discharges such as sparks and lightning or in sprite dis-
charges high above thunderclouds �4–8�. Streamers are char-
acterized by a thin space charge layer around their tip that
enhances the local electric field; this enhanced field in turn
creates a very active impact ionization region.

Most experiments produce many streamers, certainly
when the emitting electrode is a long wire �9�, and frequently
also when it is the point of a needle �10�. Simulations, on the
other hand, concentrate almost exclusively either on single
streamers within a microscopic discharge model, or on the
complete streamer branching tree in quite coarse phenom-
enological models. Only in Ref. �11�, the electrostatic inter-
action of narrow streamers within a widely spaced streamer
array is studied in relatively low electric fields within a mi-
croscopic model; as the streamer radius is fixed, the numeri-
cal implementation is essentially one dimensional. In the
present paper, we mimic a similar periodic array of identical
parallel streamers, but in a higher field, see Fig. 1. Further-
more, rather than fixing radius and shape of the streamers a
priori, we let it emerge dynamically within the simulation.
Such arrays of streamers can be created experimentally by an
array of needles inserted into a plate electrode �12,13�.
Bunches of parallel streamers have also been observed in
sprite discharges above thunderclouds �6,8�.

The problems addressed in this paper are multiple: What
is the charge distribution and velocity of an array of stream-
ers, depending on their distance and on the applied strong
electric field? Do they approach a state of uniform transla-
tion, in contrast to single streamers? And how can the dy-
namical evolution of their shape be placed in the context of

other moving boundary problems in nature? Giving already a
major conclusion of the paper, we find that uniformly trans-
lating streamer arrays in the microscopic discharge model in
two spatial dimensions are very well fitted by a classical
solution of two-fluid flow �14�, namely, by the so-called se-
lected Saffman-Taylor finger �15�, see Fig. 3. Therefore the
velocity of the streamer array is about twice the electron drift
motion in the background field, and their diameter ap-
proaches half the period of the array. This observation also
raises a theoretical question on pattern selection, namely why
the same finger shape is selected in the hydrodynamic and in
the discharge problem, given the fact that the problems are
similar but not identical.

The paper is organized as follows. Sections II A and II B
introduce the minimal partial differential equation �PDE�
model for streamers adapted to describe the evolution of an
array of streamers. The general behavior and properties of
these interacting streamers are discussed in Sec. II C. Section
III A presents a moving boundary approximation of the mini-
mal model used in the simulations. In Sec. III B we present
an analytical solution of this approximation for the shape of
the streamer. This solution is known as the selected Saffman-
Taylor finger and fits well the charge distribution of the
streamer, see Fig. 3. In Sec. III C we briefly discuss some
open issues related to this boundary observation. We con-
clude by shortly summarizing and discussing our study in
Sec. IV.

II. DENSITY APPROXIMATION AND SIMULATION
RESULTS

A. Minimal streamer model

We analyze negative streamers in simple media like pure
nitrogen within the minimal streamer model �1,16–20� that
includes electron diffusion and drift in a self-consistent elec-
tric field, while ions are taken as immobile due to their much
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larger mass. New charge carriers are generated by an impact
ionization term in Townsend approximation that depends
nonlinearly on the local electric field. In dimensionless units,
the model is

�t� = D�2� + � · ��E� + ��E�e−1/�E�, �1�

�t� = ��E�e−1/�E�, �2�

�2� = � − �, E = − �� , �3�

where � and � are the electron and ion densities, � is the
electrostatic potential, E the electric field, and D is a diffu-
sion coefficient, taken as D=0.1 �3,19�. The intrinsic length
scale of the model is the mean free path of an electron be-
tween two ionizing collisions in fields �E��1, for nitrogen at
standard temperature and pressure, it is 2.3 �m; the scale of
time is 3 ps and the scale of the electric field is
�200 kV /cm in this case. A general discussion of dimen-
sions can be found, e.g., in Refs. �3,19,21�. There it is argued
that the main advantage of working with dimensionless
quantities is that all basic results are immediately generalized
to any gas pressure, temperature, and composition.

The model is solved numerically on adaptively refined
comoving grids as described in detail in Ref. �22�; the finest
grid in our simulations was 1 /4. Notice that the only ioniza-
tion source in our model is impact ionization. We assumed
this for the sake of simplicity and in order to emphasize the
elementary processes that are common between streamers
and two-phase hydrodynamic systems, as will be discussed
below. In exchange for this simplicity we restricted ourselves
to negative streamers in media where photoionization is ab-
sent or negligible, such as pure nitrogen, argon, or GaAs.
Moreover, in Ref. �21� it was shown that under certain con-
ditions the effects of photo-ionization on the propagation of
negative streamers are negligible even in ambient air.

B. Implementing an array of streamers in 2D

Another simplifying assumption is the restriction of the
problem to two dimensions. Indeed, we believe that the main
characteristics of the dynamics of the interacting streamers in
two dimensions, as described below, will be qualitatively
similar in three dimensions. This is supported by past simu-
lations of single streamers in two dimensions �23� which are
qualitatively very similar to three-dimensional simulations
�21�. Moreover the generalization to a three-dimensional
�3D� geometry is not straightforward since the numerical
implementation of streamers in the 3D streamer array will
form a 2D periodic lattice in the cross-sectional plane, that is
nontrivial to implement numerically as a boundary condition
with an approach as developed in Ref �24�. Another reason to
consider only a two-dimensional geometry is that it allows
the construction of moving boundary approximations with
known analytical solutions. The agreement between one of
these explicit solutions and the actual shape of the front is
remarkable and detailed below. However, two-dimensional
streamers are not just interesting from an academic point of
view, they also occur in experiments in thin semiconductor
wafers �25�.

An infinite, periodic array of streamers can be reduced to
the simulation of a single streamer in a channel with Neu-
mann conditions on the lateral boundaries. This is done as
follows. If the streamer is centered at y=0 and propagates
along the x direction, and if the period of the streamer array
is L, there are two symmetry lines at y= �L /2 where all
normal derivatives vanish; therefore Neumann conditions for
potential and electron density �y�=0, �y�=0 at y= �L /2
can substitute the other streamers in the array.

This array of streamers is now studied in a constant elec-
tric field E=−E�x̂ far ahead of the streamers; this field is
imposed as an inhomogeneous Neumann boundary condition
on � at the boundary at x�1 while at x=0 the electrostatic
potential is fixed. These conditions can be used when planar
electrodes are first charged and then insulated; for more gen-
eral electric circuits, they also approximate streamers that are
much shorter than the interelectrode distance. For the particle
densities, we used homogeneous Neumann boundary condi-
tions on all boundaries. As initial conditions we used in this
paper an electrically neutral Gaussian seed centered at
�x ,y�= �0,0� of width 16 and height 1 /4.7, except in Fig.
6�b�, where the width is larger but the total number of par-
ticles is not changed. We verified that the same attractor of
the dynamics is approached after sufficiently long time when
lateral position, width, and height of the initial seed were
varied.

C. Branching versus uniform translation

After a transient evolution, the simulated streamers either
reach a state of uniform translation, i.e., they propagate with
constant velocity and unchanged shape, or they branch simi-
larly to single streamers �26,27�. Two parameters control the
two regimes for the evolution of the streamers: the period of
the array L and the background electric field applied between
the electrodes E�. Figure 2 shows a phase diagram spanned
by the electric field E� and the spatial period L; here L=96 to

FIG. 1. �Color online� Periodic array of negative streamers �net
charge density� in a strong homogeneous background electric field
E� pointing downwards. L is the period of the array. The dash lines
represent two symmetry lines. The box around a part of the central
streamer indicates the part presented in Fig. 3.
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616 was explored in steps of 	L=40 and E�=0.4 to 1.0 in
steps of 	E�=0.1. Below the transition line, i.e., for small
period L, the proximity of the other streamers suppresses
branching and the whole streamer array propagates uni-
formly after some transient stage, while above the line the
streamers branch eventually. We remark that in general, there
can be uniformly translating solutions in the part of the phase
diagram marked as “branching;” however, the set of initial
conditions for which those solutions emerge �their basin of
attraction� is so small that they are not reached from our
initial conditions.

We now analyze in detail the uniformly translating
streamer array that emerges for sufficiently small E� and/or
L �the lower part of the phase diagram, see Fig. 2�. After
initial transients of duration t�100 or less, these streamer
heads reach a constant velocity and a constant shape for the
rest of the evolution: this is the attractor of the dynamics,
namely, the solution reached after a sufficiently long evolu-
tion from a large set of initial conditions. Therefore this at-
tractor does not depend on the particular choice of the initial
seed used. Only the transient evolution and its duration can
depend on this choice. But all these various transient regimes
lead to the same final uniformly translating state, with the
same shape and velocity. Figure 3 shows the space charge
distribution �−� of the attractor for E�=0.5 and L=256 at
the time t=1800 �long after the transient evolution ended�.
Figure 4 shows the electric field and the net charge profiles
from the same simulation. The electric field along the
streamer axis �y=0� is presented at times 1400, 1600, and
1800 together with the net charge density at time 1800. The
three profiles of the electric field show that the propagation
indeed is uniform. The thin space charge layer creates a
strong field enhancement immediately ahead of the ioniza-
tion fronts like in a freely propagating streamer. However,
behind the space charge layer, the electric field profile inside
the streamer array shows characteristic differences to the
field profile within a single streamer �21–23,26,27�. Immedi-
ately behind the space charge layer, the electric field decays
very rapidly as in a single streamer. Then a transition to a
slower field decay sets in. Finally, far behind the streamer
head, the electric field vanishes completely, in contrast to the

nonvanishing residual field inside a single streamer. These
observations require further studies. However, one conclu-
sion can already be drawn by applying the Poisson equation
� ·E=�−� to the streamer head front as a whole. As the field
has a constant value −E� far ahead of the streamer array and
vanishes far behind the streamer heads, the streamer heads
must carry an average charge −E� per unit area, i.e., each
streamer head must carry a total charge overshoot of −E� ·L
to collectively screen the electric field completely behind the
array of heads.

These properties of an array of streamers contrast strongly
with those of a single streamer, discussed extensively in Ref.
�23�. For example, a single streamer in a strong homoge-
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FIG. 2. �Color online� Simulated streamers that branch �
� or
translate uniformly ��� as a function of the period L of the array
and of the uniform field E� ahead of it. The line interpolates the
phase transition.

FIG. 3. �Color online� The thin space charge layer �−� around
the uniformly translating streamer discharge �density color coded�
with the Saffman-Taylor finger of width L /2 superimposed �thick
solid line�. L is the width of the Hele-Shaw cell for the Saffman-
Taylor finger or the period of the array for streamers, the lateral
boundaries then being lines of mirror symmetry between the
streamers. Here L=256, and the electric field far ahead is E�=0.5;
this corresponds to �590 cm and �100 kV /cm for nitrogen stan-
dard temperature and pressure. Electric equipotential lines are also
plotted �thin solid lines�.
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FIG. 4. �Color online� Absolute value of the electric field �solid
lines� for times t=1400, 1600, and 1800, and space charge density
�dotted line� at time t=1800 on the streamer axis for L=256 and
E�=0.5. Field and density at time t=1800 correspond to the uni-
formly translating finger in Fig. 3.
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neous background electric field never reaches a state of uni-
form translation. The radius of curvature of the head of the
streamer expands during its motion up to the time where
instabilities grow and branching occurs. Furthermore, the
electric field inside of a single streamer is not as perfectly
screened. There are, therefore, remarkable qualitative
changes in the propagation of a streamer when the interac-
tion with neighboring streamers is significant. These effects
are expected to persist also in the three-dimensional case.

However, global considerations on the charge content of
the streamer head do not fix the shape of the finger and the
spatial charge distribution within each uniformly translating
streamer head. These density distributions and the consecu-
tive field enhancement and velocity are problems of dynami-
cal selection that will be addressed in the remainder of the
paper.

III. MOVING BOUNDARY APPROXIMATION
AND SAFFMAN-TAYLOR SOLUTION

A. Moving boundary approximation

As shown in Figs. 1 and 3, after a sufficiently long evo-
lution, during the steady evolution of the streamer, the width
of the ionization front can be much smaller than its radius of
curvature. Similarly to other pattern forming systems, such
as solidification fronts, this separation of scales enables one
to consider the front as an infinitesimally thin, sharp moving
interface. The original nonlinear dynamics is then replaced
by a set of linear field equations �typically Laplace� on both
sides of the interface, with appropriate boundary conditions
at the interface and further away from it. The interface dy-
namics is then typically related to gradients of the Laplacian
fields at its vicinity.

In Refs. �23,25,26,28–30�, a moving boundary approxi-
mation was proposed and elaborated for the thin space
charge layer and associated sharp ionization front that sepa-
rates the ionized from the nonionized region. This model was
proposed to describe the evolution of a single streamer but it
is straightforward to adapt it to the evolution of an array of
streamers since we just need to add homogeneous Neumann
boundary conditions on the symmetry lines. See Fig. 5 for a
schematic view of the mathematical setup of the moving
boundary approximation.

The nonionized, electrically neutral region outside the
streamer is fully described by �2�=0, and �→�0+E�x
fixes the homogeneous field E� far ahead of the streamers at
x�1. The symmetry line between two streamers is repre-
sented by a Neumann boundary condition for the electric
potential �y�=0 at y= �L /2. If the boundary motion is ap-
proximated by the local electron drift velocity v=��, the
interior of the streamer as ideally conducting �=const
�where the constant can be set to 0 due to electrostatic gauge
invariance�, and the electric potential across the boundary as
continuous, we arrive precisely at the unregularized moving
boundary problem for a Saffman-Taylor finger after simply
substituting the electric potential � by the pressure field p.
This is a classical problem where a very viscous fluid is
penetrated by a much less viscous one within the narrow
spacing of a Hele-Shaw cell.

B. Comparison with the Saffman-Taylor solution

Explicit uniformly translating solutions for this moving
boundary problem was found long ago by Saffman and Tay-
lor �15�. The solution for the interface x=x�y , t� in a channel
of width L is given by

x =
L�1 − ��

2�
ln	1

2

1 + cos�2�y

�L
�
� + vt , �4�

where the velocity is v=E� /� in our notation and the field at
the tip is enhanced by a factor 1 /�. The parameter � is the
ratio between the width of the finger and the width of the
channel; � can take any value between 0 and 1, parametriz-
ing a continuous family of finger solutions. However, fluid
experiments only showed fingers with �=1 /2. This selection
problem was understood only three decades later by different
groups �31–35�. They included surface tension into the
boundary condition for the pressure p on the interface. This
boundary condition also prevents cusp formation within a
finite time �36,37�; this leads to a regularized moving bound-
ary problem. It was shown, using expansion beyond all or-
ders and reduction to a nonlinear eigenvalue problem, that in
the limit of small surface tension only the finger with �
=1 /2 is stable. Recently it was found that the so-called “ki-
netic undercooling” boundary condition also leads to regu-
larization and dynamical selection of the Saffman-Taylor fin-
ger with width �=1 /2 for infinitesimally weak regularization
�38�. We recently have proposed a similar regularization
mechanism for streamers �23,29�.

We therefore have superimposed the Saffman-Taylor fin-
ger with width L /2 as a solid line on the streamer in Fig. 3.
The agreement is convincing. In Fig. 6, the comparison is
further elaborated for three different cases, where �b� differs

0yφ+∂ =

ˆ
x

E xφ+ ∞
→+∞

∇ → −

2 0φ+∇ = v φ+= ∇

0φ φ+ −− =

constφ− =

0yφ+∂ =

y

x
L

FIG. 5. Schematic view of the mathematical setup for the mov-
ing boundary approximation. �+ and �− stand for the electric po-
tential outside and inside the streamer, respectively.
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from �a� by the initial density distribution, and �c� by E� and
L. Here solid lines represent stages of evolution of the den-
sity model from initial transients to uniform translation; they
indicate the position y�x� of the maximal charge density for
every x. The dashed lines are the Saffman-Taylor solution �4�
with the selected width �=1 /2. No adjustments are possible,
except for an arbitrary translation of the Saffman-Taylor fin-
ger along the x axis. This is chosen to overlap with the latest
stage of the density evolution which is the attractor of the
dynamics �at a later stage the shape of the front stays iden-
tical and it moves at constant speed�. Again the agreement is
very convincing. A direct consequence of this agreement is
that we expect the field to be enhanced by a factor of 2
immediately ahead of the front, and the finger velocity to be
2E�, independently of the values of L and E�. Indeed we
observe that this value of the enhanced field is reached when
the moving boundary approximation is most accurate, i.e.,
when the width of the space-charge layer is much smaller
than the radius of curvature of the front. The former is rather
independent on L and E�, while the latter is of order L, since
the width of streamer approaches L /2. However, since large
L also leads to branching, this behavior is observed only for
parameters slightly to the left of the phase-separation curve
of Fig. 2.

C. Open problems for boundary analysis

This apparently very successful interfacial model relies on
four approximations.

�1� For the front motion, the electron drift velocity v in
the local electric field E is increased by a diffusion-reaction

correction �19�. The present simulations show that the
streamer velocity in the maximal electric field E+ can be
linearly interpolated by v=1.312E++6
10−4 within the ex-
plored field range, giving values closely below the analytical

result v= �E�+2�D�E�e−1/�E� for planar fully relaxed fronts
�19�. Such a velocity correction v=c E+ can be absorbed
completely into rescaling time with c.

�2� The streamer interior is not field free immediately be-
hind the ionization front as Fig. 4 shows. Consequently, in
contrast to the prediction of the moving boundary approxi-
mation the front obtained from the minimal streamer model
�1�–�3� is not completely equipotential, as Fig. 3 shows.

�3� The space charge layer has a finite width. As a conse-
quence, it also can be seen in this figure that the electric field
is not enhanced by a factor of 2 but somewhat less, while the
interface position agrees very well. �4� The interfacial ap-
proximation breaks down at the sides of the streamer finger
where the local electric field E is too low to sustain substan-
tial ionization, e−1/�E�
1, while the interface between two
fluids in the Saffman-Taylor finger, of course, continues
along the whole channel length. Therefore the mathematical
similarity between Saffman-Taylor fingers and streamer fin-
gers holds only close to their tips, while the analytical con-
struction of fingers requires their whole length. These obser-
vations pose new challenges to the theoretical understanding
of finger selection in moving boundary problems.

IV. SUMMARY AND CONCLUSIONS

This paper presents, up to our knowledge, the first studies
on the full dynamics of multiple interacting streamers. By
using a simplified but physically relevant model, we were
able to focus on the main effects of the interaction and stress
the most general electrodynamic properties of a bunch of
streamers. We obtained a phase diagram spanned by the elec-
tric field E� and the spatial period L, see Fig. 2. For L and/or
E� large enough, the streamers branch similarly to single
streamers. For L and/or E� small enough, the streamers do
not branch and approach the width L /2. Furthermore, we
used a moving boundary approximation to derive surpris-
ingly accurate predictions. We showed that close to the
branching line of the phase diagram, the enhanced field at the
tip of the streamer is close to 2E�, where E� is the back-
ground electric field applied between the electrodes. More-
over we showed that the shape of the front is well fitted by
the selected Saffman-Taylor finger derived analytically from
the moving boundary approximation.

Certainly there are still many open questions about this
topic. Further investigations should extend our model to
three spatial dimensions and to a wider variety of media,
including nonlocal ionization mechanisms �21�. A rigorous
analysis of the problem of finger selection in this context of
interacting streamers would also prove valuable both for the
pattern formation community and for an improved under-
standing of streamers.

0 50 100
y

150

200

250

300

350

400

450

x

0 100
y

1000

1200

1400

1600

1800

2000

0 100
y

0

100

200

300

400

500

600

FIG. 6. �Color online� Solid lines: contour lines characterizing
the simulations at time steps of 	t=100; dashed curves: the uni-
formly translating Saffman-Taylor finger solution �4� with �=1 /2.
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