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Propagation and structure of planar streamer fronts
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Streamers are a mode of dielectric breakdown of a gas in a strong electric field: A sharp nonlinear ionization
wave propagates into a nonionized gas, leaving a nonequilibrium plasma behind. The ionization avalanche in
the tip of the wave is due to free electrons being accelerated in the strong field and ionizing the gas by impact.
This chain reaction deeper in the wave is suppressed by the generated free charges screening the field.
Simulations of streamers show two widely separated spatial scales: the width of the charged layer where the
electron density gradients and the ionization rate are very lg@fe.m)], and the width of the electrically
screened, finger-shaped, and ionized redi@mm)]. We thus recently have suggested analyzing first the
properties of the charge-ionization layer on the inner scale on which it is almost planar, and then understanding
the streamer shape on the outer scale as the motion of an effective interface, as is done in other examples of
nonequilibrium pattern formation. The first step thus is the analysis of the inner dynamics of planar streamer
fronts. For these, we resolve the long-standing question about what determines the front speed, by applying the
modern insights of pattern formation to the streamer equations used in the recent simulations. These include
field-driven impact ionization, electron drift and diffusion, and the Poisson equation for the electric field. First,
in appropriately chosen dimensionless units only one parameter remains to characterize the gas, the dimen-
sionless electron diffusion constant for typical gases under normal conditioDs=0.1-0.3. Then we deter-
mine essentially all relevant properties of planar streamer fronts. Technically, we identify the propagation of
streamer fronts as an example fodnt propagation into unstable stateb terms of the marginal stability
scenario we then find that the front approached asymptotically starting from any sufficiently localized initial
condition (the “selected front) is the steepest uniformly translating front solution, which is physical and
stable. Negatively charged fronts are selected by linear marginal stability, which allows us to derive their
velocity analytically. Positively charged fronts can only propagate due to electron diffusion against the electric
field; as a result their behavior is singular in the limit Bf~0. For D<1, these fronts are selected by
nonlinear marginal stability and we have to apply numerical methods for predicting the selected front velocity.
For largerD, linear marginal stability applies and the velocity can be determined analytically. Numerical
integrations of the temporal evolution of planar fronts out of localized initial conditions confirm all our
analytical and numerical predictions for the selection. Finally, our general predictions for the selected front
velocity and for the degree of ionization of the plasma are in semiquantitative agreement with recent numerical
solutions of three-dimensional streamer propagation. This gives credence to our suggestion that the front
analysis on the innerym) scale yields the moving boundary conditions for a moving “streamer interface,”
whose pattern formation is governed by the evolution of the fields on the ogmen) scale.
[S1063-651%96)09212-4

PACS numbdrs): 47.54:+r, 52.80.Mg, 51.50+v

[. INTRODUCTION The conceptually simplest problem of this kind has be-
come known as the streamer problem in a nonattaching gas.

Discharges are nonequilibrium ionization processes OCy; yreats the dynamics of the free electrons and positive ions

curring in initially nonionized matter exposed to strong elec-, , 'hmogeneous gas at rest taking the following mecha-
tric fields. Depending on the spatiotemporal characteristics.

of the electric field and on the ionization and charge trans'SMS into_accounti) impact |on!zat|on, the Process in
port properties of the medium, discharges can assume man ich a free electron acceleratqd in a strong local field ion-
different modes of appearance. In particular, in gases undé€s & neutral molecule, generating a new free electron and a
approximately normal conditions one distinguishes phenompositive ion; (ii) drift and diffusion of charged particles, in
enologically between stationary modes such as arc, glow, drarticular of the electrons whose mobility is much larger
dark discharges and transient phenomena such as leaders, than that of the iongii ) the coupling of the electric field to
initial stages of sparks, and streamgts-6], which occur, the charges through the Poisson equation of electrostatics.
e.g., in silent dischargel7]. The latter nonstationary dis- Recent numerical simulatior8,9] of a basic model in-
charges often form the initial state of a discharge that later ogorporating these physical ingredients for parameter values
becomes stationary. We will focus here on an essential eleappropriate for nitrogen under normal conditions reveal that
ment of many transient discharge phenomena, the initiah streamer consists of a sharp nonlinear ionization front

field-driven ionization wave. which propagates into a nonionized gas, leaving a weakly
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ionized nonequilibrium plasma behind. The underlying 0.50
mechanism is that in the leading edge of the front the elec-

trons are accelerated by the large imposed electric field; this
causes the build-up of an electron avalanche due to impact 0.40}
ionization. The generated free charges eventually screen the
field and thus suppress further ionization. It is the nonlinear
balance between these two nonequilibrium processes, 030}
namely the ionization avalanche and the electric screening,
which determines the dynamics of the ionization front and
the state of the plasma behind it. In confined geometries, 0.20¢ 1 020
streamers usually have a nontrivial fingerlike shape, as is
illustrated by the snapshots in Fig. 1 of streamer dynamics

0.50

0.40f

0.30

z{(cm)
2 (cm)

taken from the simulations of Vitellet al.[9]. As the sharp- 0.10 1 o0} )
ness of the electron density profiles in Fig. 1 illustrates, the t=4.75ns t=55ns
“passive body” of the finger is separated from the external (a)

nonionized gas by a very narrow region — of width of order °'°°"'0"1“0“‘“'6'(')“" el 0.00 bt
micrometers — in which essentially all the action is occur- T orem) -0.10 r?é?n) 0.10
ring. This width has to be compared to the size of the fila-

ment, which is of order millimeters. It is in this narrow layer 1018¢ ; . . .

that most of the ionization process is taking place. In this .15} t=5.50

same region, there is a nonzero charge density, and conse- ‘g 10°7F 1=550ns :
quently, also a very large electric field gradient. These fea- 2 oML \_/
tures indicate that there are two different spatial scales in this 2 ] ]
process, an “inner” scale associated with the thickness of p 1013[ 1
the zone where the ionization takes place, and an “outer” & 12

one where the spatial variations are set by the size of the :“’ 1077 3
finger and the external experimental geometry. It is precisely or 1011 _ -------------------- ]
for these reasons that accurate simulations are extremely de- 2 10f (C) i

manding and that they were accomplished only recently by 10 : -t ' s

Dhali and Williams[8] and by Vitello et al. [9]. (See also 000 010 020 030 040 050

[10].) z (cm)
Such a separation of scales is strongly reminiscent of
what occurs in combustion frontsl1,12. A combustion

f!’ont_ IS a narrow Iayer_of thlckn_eéﬁ, to _Wh'Ch _the combus- printed from Figs. 1 and 10 ifB]. (a) Negative streamer propagat-
tion is essentially confined, while outside of it, the tempera-Ing downwards towards the anode. Electrodes are planar and

ture field varies on a much longer scajg. Physically, such  |ocated az=0 and 0.5 cm; the voltage between the electrodes is 25
sharp combustion fronts occur in the limit when the chemicaky, which in the absence of the streamer amounts to a constant
reaction rates involved in the combustion are very fast onc@lectric field |€|=Ey/4. The system continues sidewards suffi-
a sufficient temperature is reached. It has been shown thadiently far to make the lateral boundaries irrelevant. The streamer is
on the basis of an asymptotic expansion to lowest order imssumed to be cylinder-symmetric. The dimensionless diffusion
the small parameter=1;,/l,,; using matched asymptotic ex- constantiD=0.1. Each line indicates an increasengfoy a factor
pansions[13,14], the problem can be analyzed in terms of 10; densities of 18-10" cm™3 can be seeffinitial background
the propagation of an “effective interface.” More specifi- ionization: 1 cm 3). Shape at time 4.75 ns after an initial ionization
cally, one first solves the so-called inner problem of a locallyseed was placed near the upper electréoleShape at time 5.5 ns.
almost planarreaction zone. This permits us to relate the(c) Logarithmic electrom, and total chargens density along the
temperature and chemical composition fields on both sides gymmetry axis of(b). Solid line, ne; dot-dashed|ng| for ns>0;
the front(at distance4. such thal;,<L<l,,) and to deter- dotted,|n,| for ns<Q. Note the exponential increase o_f the densities
mine the local front velocity as a function of local curvature ©n the «m scale within the front as well as the maximum of both
and fields. On the scale of the remaining outer pr0b|emgen3|t|es in the rear part of the front. Courtesy of P. A. Vitello.
these relations then play the role of boundary conditions and
of a kinetic equation for the effective moving interface of it might make numerical studies much easier, but also be-
zero thickness. Besides in combustion, the technique of asause it will allow us to draw upon the knowledge and meth-
ymptotic matching to obtain an effective interface descrip-ods which have been developed in the last decade in the field
tion has also been applied to chemical waj/gs], thermal of interfacial pattern formation and dynami0]. The first
plumes [16], and to phase field models of solidification step towards this goal is to determine the field dependence of
[17,18. the velocity and the ionization and charge profile of a planar
In spite of some important differences between combusfront which propagates into the nonionized region. We thus
tion and streamer fronts as discussed in the Appendix, analyze in this paper the inner problem for a planar streamer
similar approach appears possible for streamers. As didront. This allows us to reduce the problem to effectively one
cussed also ifl9], building on such a reduced description of dimension. Our analysis clearly identifies the problem of
streamer dynamics appears very desirable, not only becausteamer front propagation as an example of front propaga-

FIG. 1. Results of the numerical simulations of the full three-
dimensional streamer equatiori®.1)—(2.6) of Vitello et al, re-
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tion into unstable states. Physically, the instability of thelike the size, velocity, and shape of the streamer should be
nonionized gas against charge fluctuations can be traceghalyzed. Once our results on planar fronts will be extended
back to the fact that any small electron density gets amplifiedo weakly curved fronts, all the necessary ingredients to
by the impact ionization. As is standard for front propagationtackle these questions appear to be available.

into unstable stateg§21-25, we find that the one- The main results of our present analysis of the streamer
dimensional streamer equations exhibit a one-parameter farffguations used in the simulatiof@&9] can be summarized as
ily of uniformly translating front solutions, parametrized by follows: . _ o _

their velocity. As usua[21—25, the question is then to de- (@) Dimensional analysis shows that in dimensionless

cide which of these front solutions is the dynamically Se_u_nits, a_single parameter_rem_ains to characterize the gas, the
lected one, i.e., is the one reached at long times after a |flimensionless electron diffusion coefficidtcharacteristic

calized ionized region has been created by some initia?f the gas[see Eq.(2.10]. For gases under normal condi-

ionization event. The existing knowledge of front propaga—t'ons’ D is small, of order 0.1-0.3. . o
tion into unstable statd22,23 provides us with an educated (b), '!'he length scglg setibly. the electroq Impact ionization
guess for the selected velocity, which we confirm with thec0efficient[the coefficienta;, * in Eq. (2.5] is on the order
help of numerical studies. Taken together, our results proQf micrometers for nitrogen. FdD=<1 the thicknesd;, of
vide an essentially complete solution of the inner problem of€ charged layer is on the order of this same ionization
planar streamer fronts. length for negatively charged streamer frontsISF [30].

In itself, the idea to analyze the planar fronts of a streamef>iven that typical streamer diameters found in the simula-
model is not new — we refer tf26—29 for earlier work. ~ tions are of the order of 1 mna,=l;,/l,,is at most of order
Apart from the fact that the authors from the 19726—29 10°2; this Just|f|_es an effective interface description of
investigate different models, which are more inspired byStréamer dynamics. o _
equilibrium conceptge.g., the ionization behind the frontis  (¢) We find that electron diffusion acts as a singular per-
determined by thermal ionization, where the electron temiurbation forpositively charged streamer fron(®SH: with-
perature is raised by application of strong electric figldgr ~ Out diffusion, such fronts can not propagate, but with any
work casts new light on this old problem from two different "onzeroD, they do. As a result, the behavior is singular in
angles. the limit D—0: for D=0(1), thethicknessl;, is again of

First it was empirically noted that the standard approactrder of the ionization length, but fdb—0 the electron
to analyze uniformly translating fronts failed to determine adensity and its gradients diverge due to the appearance of
unique propagation velocity, given the field and the gas paanother smaller length scafef orderD/ ).
rameters. Turcotte and Orig6] clearly state this failure of (d) The electron density generated by the propagating
their theory(this “great defect” of their theory is recalled in front is again basically set by dimensional analysis for NSF.
Fowler's reviews[28]) and suggest that a unique solution We calculate foD=<1.5 the dependence of the dimension-
might be determined by a dynamical stability analysis. Al-less electron densityy™ behind the front on the electric field
bright and Tidmari27] then perform such a stability analy- E* far ahead of our planar front. Our results compare favor-
sis, but not in a systematic way, and they draw incorrecbly with those extracted from the simulatidi®d, according
conclusions. D'yakonov and Kachorovsk#i9] also find the  to the prescriptions of the theory of matched asymptotic ex-
indeterminacy of the speed of uniformly translating planarPansions[13,14. Namely, E" is not the field value at the
fronts, now for an approximated version of our model, angelectrode position, but the value obtained by extrapolating
propose to solve this by using the tip radius of the streamethe slowly varying outer field to the front position. We also
finger as an extra length scale, which, however, they canna@lculate the fulD andE™ dependence of the electron den-
determine. We, in contrast, trace the indeterminacy of th&ity o~ behind the front of PSF fob<1.5.
velocity from the analysis of uniformly translating streamer (€) The dynamically relevant‘selected”) front velocity
front solutions to the fact that this is an example of frontv is @ unique function oE ™ andD. The analysis confirms
propagation into unstable states. Applying the concepts exhe strong asymmetry between NSF and PSF also found in
plained above, we solve the selection problem for planathe simulationg8,9] for fronts propagating into an essen-
fronts without additional assumptions or approximations. Welially nonionized region. The asymmetry is stronger the
argue that a particular front solution out of a whole family of smallerD is and disappears fd>>1.
dynamically stable solutions is selected, because it is the (f) For NSF,v¢ is given by the so-called linear marginal
only one compatible with the initial condition of a localized stability velocityv* [22] — see Eq(5.3) below. For param-
ionization seed. eter values used in the simulations, we find thais typi-

Second, this result is the firgigredientfor studying the cally 30—40 % higher than the electron drift velocity just in
formation of patterns, in particular of the tip radius — we dofront of the streamer head, which agrees semiquantitatively
not attempt to modeglobal features of the pattern formation with the findings of Vitelloet al. [9].
with our planar front analysis. Our approach thus is very (g) We find that PSF propagate for any nonzero value of
different in spirit from the earlier investigations: As also the dimensionless electron diffusion coefficidbt Due to
stressed ifi19], in an effective interface description based onthe singular behavior @3— 0, we find that fronts propagate
a matched asymptotic expansion, the results of weaklwith a unique velocity ' predicted by the so-called nonlin-
curved, almost planar fronts are essentially ukeadlly ev-  ear marginal stability mechanisf23] for small D. For the
erywhere in the interface region: They enter the analysis offownsend expression used in the simulatif$9], this hap-
the outer scale as boundary conditions at the moving interpens below a well-defined field-dependent valu®obf or-
face. It is on this outer scale that pattern formation problemsler unity (see Fig. 3 Above this threshold value, PSF
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propagate with the linear marginal stability valué. nonattaching gas like Nunder normal conditions, Dhali and
In this paper, our main focus will be on those results thatwilliams [8], and Vitello et al. [9] use the following set of

are of greatest interest from the point of view of understanddeterministic continuum equations for the electron density

ing the generation of low temperature plasmas by the,, the ion densityr, and the electric fiel&: balance equa-

streamer mechanism. We note, however, that the equatiofgns for electrons and ions,

for planar streamer fronfEgs.(3.11) and(3.12 below] ap-

pear to be of interest in their own right. As will be discussed diNg+ VR-je=source, (2.9
briefly in Sec. V, our streamers have several features in com-
mon with the celebrated nonlinear diffusion equation studied an, +Vg-j.=source, (2.2

in mathematic$31,32 since the early work of Kolmogorov

et al.[33] and Fishe34]; at the same time, however, they \here the fact that the two source terms are the same is due

are sufficiently more complicated that they appear to presen}, charge conservation in an ionization event; the Poisson
new challenges from a mathematical point of view. equation

This paper is organized as follows. In Sec. Il we introduce
the basic equations for streamer formation, and perform a e
dimensional analysis for the inner problem of streamer Vg -E=— (n.—ny), (2.3
fronts. In Sec. Ill, we discuss the stability of the basic ho- €o
mogeneous states of interest, the homogeneous nonionized
state, and the homogeneous weakly ionized state. We algiid the approximate phenomenological expressions
discuss the physical mechanism of streamer formation and

the proper initial and boundary conditions to study these in Je= ~Neme€—DeVrNe, (2.4
the case of planar fronts, which allow us to simplify the
equations describing planar front dynamics. In Sec. IV we j+=0, (2.5

demonstrate that there exists a one-parameter family of uni-
formly translating fronts characterized by a continuous range
of front velocitiesv. We also briefly show how in the case

D=0, the equations for uniformly translating fronts can be ypar from the fact that we will allow for a slight generali-
solved analytically. Thesg so_lutlons, wh|ch turn out t.o.bezation of Eq.(2.6), these are the equations that we will in-
useful as a smalD approximation for NSF, yield an explicit vestigate analyticl';llly below
B et by 1 these cquatons, and). are the partce et den-

J . y sities of electrons and positive ions, and e is the absolute

nalysis of th neral ; then th ion nn . . .
analysis of the general cafe~0; then the equations cannot a\/alue of the electron charge. Tkdimensional spatial coor-

be solved analytically, but we demonstrate that there still is 4 d d 4V is th di ith
one-parameter family of uniformly translating front solu- dinates are denoted Iy, andV is the gradient with respect

tions. For PSF, we show that the lint— 0 is singular; we ~ t© these coordinates. The use of only Poisson’s law of elec-
discuss this limit in detail and show that it accounts for thetrostatics, Eq(2.3), means that all magnetic fields, as well as
strong asymmetry between PSF and NSF for realistic value®rms in the Maxwell equations associated with time depen-
of D. In Sec. V we then summarize some of the main resultslences of the fields, are neglec{&].

[21-25 concerning the so-called selection problem, the The electron particle current densjtyis approximated in
question of which particular front solution from the family is Eq.(2.4) as the sum of a drift and a diffusion term. Note that
reached asymptotically for large times for a large class ofhis diffusion approximation implies that the electron mean
initial conditions. Application of these concepts allows us tofree path must be small with respect to the scale of variation
predict the shape and velocity of the dynamically relevant;, of the electric field. This condition is just about satisfied
front solution(the selected frontand the value of the elec- for the parameter values taken fbk, in the simulations,
tron density generated behind it. This yields the various seexcept possibly at the highest field valugse also the dis-
lection results for NSF and for PSF, summarized in pointscussion in Sec. VL The electron drift velocity is taken to be
(©)—(g) above, and leads us to predict that the behavior ofinear in the fieldg, with . the (positive) electron mobility.
PSF in the |imitD—0 is singular. In Sec. VI we present The glectron diffusion coefficier@, and the mobilityu., are

numerical simulations of the full partial differential equa- eated here as independent coefficients, since they effec-
tions for planar streamer dynamics; starting from various ini+ e\ depend on the field strengf8] (only in the low-field
tial conditions, we illustrate that in all cases we have studiedy " o they related by the Einstein relatioMore gener-

the long time dynamics of the system is characterized by e” . e
NSF and a PSF whose behavior is in full agreement with ou%”y' the diffusion coefficient should be replaced by a diffu

predictions. In the concluding section we finally reflect onSion tensor, which |s_d|§gonal ina r(_afer_ence frame with one
our results and on the future steps to be taken to arrive at a is along the electric field. Its longitudinal component, the
effective interface description of streamer dynamics. In arpnly relevant one for planar fronts perpendlpularao IS
Appendix we discuss differences and similarities betweersomewhat smaller than the transverse one. Since we will see

source= | Neue€| ey € Fo’l€l. (2.6)

combustion and streamer fronts. that N, reaches a typical degree of ionization of only £p
density fluctuations of the nonionized gas can be neglected
Il. MODELING AND DIMENSIONAL ANALYSIS and the mean free path of the electrons and thergigrand

D. can be taken as independent of the degree of ionization.
The ionic current is neglected according to HB.5),
For simulating the dynamical development of streamerssince the mobility of ions is at least two orders of magnitude
out of a macroscopic initial ionization seed in a so-calledsmaller than that of the electrofi8]. In particular, for the

A. The minimal streamer model
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analysis of the inner scale, that we will perform in the (i) Boundary conditions: as will be discussed in detalil in
present papel,, is negligible. Sec. lll, for the problem of front propagation, these are

The source2.6) finally accounts for the creation of free specified by the valuE™ of the electric field far ahead of the
charges by impact ionization. If the product of electric field front, where the total charge density vanishes.
£ and electronic mean free palthy, is large enough, free (i) Initial conditions: we ignore the details of the plasma
electrons can gain sufficient kinetic energy to ionize neutrahucleation even(e.qg., triggering by radiation from an exter-
molecules. Accordingly there is a threshold figll]=E, nal sourcg and assume that a=0 a small well-localized
oclr;flp For |E|=E, the probability that a scattering event ionization seed is present. The precise meaning, for our prob-
carries at least the ionization energy is large. The effectivéem, of “well-localized” will be made clear in Sec. V.
ionization cross-sectiow.¢(|€|) then essentially saturates,
while for |E|<E, the ionization rate per scattering event is B. Dimensional analysis
largely suppressed. The source term is given by the ioniza-
tion rate, which can be calculated as the product of the drif}a
current of free electronfn.u.E| times the target particle di
densityn,, of the neutral gas times the effective ionization
cross sectiowr (| £]). Commonly, a phenomenological ion-
ization coefficient a(|&|)=n,o.(|&|]) is used, (which
clearly has dimension of inverse lengtivhose field thresh-
old behavior in the Townsend approximatioa(|&|) L

charge unitgy=¢egagEy.

= ao exp(~Eo/|€]) [3] is expressed by E2.6). As dis- For concreteness, we list here the values of these quanti-

cgssgd_by_ Ra|zg[r3], in the approximation that every colli- ties for N, at normal pressure, used in the simulatip89]
sion is ionizing, if the electron carries an energy larger than

In order to identify the physical scales and intrinsic pa-
meters of our problem, we reduce E¢®.1)—(2.6) to a
mensionless form. The most natural scale of length and
electric field are the ionization length,,=ay ! and the
threshold fieldE, of the ionization ratg2.6). The velocity
scale is then the electron drift velocity at this field strength,
vo=mcEop, leading to a time unito=(aou<Eq) 1, and a

the ionization energy, we have a61~2-3 um, ve~7.56x10" cm/s,
@~ iy, and Eg=1/(el ). 2.7) to~3-10 125, go~4.7x10e/cn? 2.9
Since in much of our analysis the specific forma( £|) is Eo~200 kV/icm, ue~380 cnf /Vs.
not needed, we will use a slightly more general formulation
in Eq. (2.11) below. We now introduce dimensionless quantities by defining
In the source term, ionization due to the photons also
created in recombination or scattering events is neglected. r=Ray, T=1t/to,
This is motivated by the ionization cross sections due to q=(n;—neyeldy, o=neldo,

photons being much smaller than those due to electrons.
Note that, if photoionization is taken into account, the dy-
namical equations become nonlocal.

No sink term needs to be included for the analysis of th
inner problem, since the recombination length at a degree
ionization of order 10° that we will derive below is very
large as compared with the front widkly. (For this reason, D=Dao/ cEp, (2.10
the inner problem is the same for streamers and led@érs
the difference between these discharge modes, which comve obtain what we call the streamer equations
sists in the fact that recombination is negligible in the plasma

j=—Jeel(qovo), E=EIE,. (2.9

Note that with our definitionj now plays the role of a di-
ensionlesghargecurrent. If we furthermore introduce the
imensionless diffusion coefficiel as

body of leaders, would come into play only when solving, at 9,0—V -j=of(|E]), (211
a later stage, the outer problénthe fact that the degree of )
ionization remains small is also the reason that saturation 9,.9+V-j=0, (2.12
effects are neglected in EQR.6).

In contrast to the situation in )N which is described by q=V-E, (2.13
our model equations, in attaching gases likg, @ third )
charged species plays a role, namely, negative ions formed j=0E+DVo, (2.14

by a neutral molecule catching a free electron. For a descrip-
tion of the physics of such attaching gases and simulation
thereof, see, e.g[36].

The equations above are deterministic. Thermal fluctua- _
tions in fact can be neglected, since even an unphysically FED =|Ela([E])/ao 219
small ionization energy of 3 eV leads to a Boltzmann factoris assumed to vanish at zero field. Townsend's expression
of 10~°? at room temperature. Also other stochastic effects ) yields
are not accounted for in the simulations we compare to. We
further discuss possible stochastic effects in the experiments f+(|E))=|E|exp(— 1/ E|). (2.1
in the Conclusion.

Finally, the dynamical system(2.1)—(2.6) must be In general, we will treat an ionization function with the prop-
complemented by the following. erties[37]

hereV denotes the gradient with respect to the dimension-
ess coordinate, and where the “ionization function”
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f(0)=0=f'(0) and f'(|E[))=0 for all|E|. Since the steady states we consider as well as the equa-
(2.170  tions of motion are translation invariant in space and time,
the eigenstates of the linear perturbations are Fourier modes

. . ) of the form
The dimensionless equatiofi2.11)—(2.14 now depend on

only one internal parameter, the dimensionless diffusion co- So(r,t) o1
efficientD. For the values used {18,9] for N, under normal ( SE(r t)) = ( E
conditions,D~0.1, while according to the data given by ' !
Raizer[3], for Ne and Ar,D~0.3. We believe that typical We first investigate the linear stability of the nonionized state
values are generally in the range 0.1-0.3, since in the apy*=0. Upon linearizing the equations about the zeroth or-
proximation (2.7), ag/Eg~l/e and since the rati®./ue  der values §=0, E*), we find two branches of modes.
appears to be commonly of the order of volts for large fields, (a) The first, trivial branch is a zero mode & 0), with
while | is typically of the order of several electron volts.  4,=0, expressing that the electron density remains zero.
We are now able, solely on the basis of the dimensionairhis zero mode accounts for the degeneracy of the nonion-
analysis above, to make a first semiquantitative predictiolized states, i.e., for the fact that there exis{sta stationary
about streamers. We will in practice be interested in externadtate for each value &*. (For E* # const, these zero modes
fields E*=0(1) (for E*<1 andag* on the order of mi-  express the degeneracy of all steady states gtk V-E*
crometers, the electron avalanche process becomes much e any ion densityg® as long as the electron density"
ineffective for streamer fronts to develop at reasonably smalanishes.
distances; also our scale separation approach discussed in the(b) The second branch of perturbations is associated with
Introduction might break down We can therefore expect fluctuations carrying a finite electron charge; its dispersion
that, forD values<1, as is the case for N\ front widths will  relation is
be of orderag,®, and that in addition the reduced electron . N N )
densityo~ far behind the front on the inner scale will be of o =ik-E"+f(|[E"[) - DK%, 3.3
order unity as well. This leads one to expect electron densiz ... : +,, = _ Yo+ ;
ties in the streamer body on the order of*4@m~3, in With i *k-E;=[f(|E"[)~ " Joy. The first term on the
agreement with numerical findings.

explik-r+wr). (3.2

right-hand side of Eq(3.3) simply expresses the fact that the
electrons drift, to first order, in the electric fied" with
velocity (—E™). The real part Re™, the sign of which de-
termines whether fluctuations decay or are amplified, con-
tains a destabilizing term, expressing that any small electron
density fluctuation is amplified at rate and a stabilizing

A. Homogeneous states and their stability term, due to the diffusive spreading of electron charges. For

The first task, when studying in general the propagation ok2<,f(|E+|)/D' Rew™>0: nomom;ed states are unstable
a front, is to identify the nature and stability of the states thaf9inst long-wavelength perturbations. .
the front connects. We expect the invading state, here the W& note that the single Fourier eigenmod8s) violate
ionized one created by the front, to be sta@8], while the individually the physical constramt that be _posmve every-
invaded state can in general either be metastable or unstaplihere. But Eq.3.3 also determines the time evolution of
Physically, we of course expect the nonionized state to b@nysically allowed fluctuationéwave packetsthat are su-
unstable in a nonvanishing field in the present mogialan perpositions of these eigenmodes. For example, one easily

attaching gas forming also negative ions, it is conceivabl@educes from it Lozanski's expressip#0] for the time evo-

[ll. HOMOGENEOUS SOLUTIONS AND THE CONCEPT
OF FRONTS

that the nonionized state is metastable for not too strondtion of a Gaussian-shaped small electron density with ar-

fields) itrary constant€,,c,>0,
Equations(2.1])—(2.1_4) immediately _yield that stationary o~ (r+E*n2(cy+4D7)
homogeneous states simply are solutions of 5U(r17_)zclef(|5+|)f (3.9

(c,+4D7)%%
aof(|E|)=0. (3.2

as long as linearization around the nonionized state holds. As

expected, the center of the spreading packet drifts with ve-
So, these stationary states decompose into two families, ascity —E™*, while the total number of electrons it contains is
follows. amplified at ratef and the wave packet stays Gaussian, with

(i) Nonionized states, witler=0, E arbitrary: Since the time-dependent widtlt,+4D 7. Such ionization modes de-

density of free electrons vanishes, no ionization can occutived by linearizing around the nonionized state are known
whatever the value oE is. If also the density of ions van- as electron or ionization avalanches in the gas discharge lit-
ishes,V-E=0. Since these states correspond to the physicadrature.

situation far ahead of the front, we label thém). More- We now perform the same linear stability analysis for the
over, since we will need in particular the case in which thecompletely screened states(=const, E"=0). The fact
field ahead of the front is constant, we ta&é = const. thatf’(0)=0 from Eq.(2.17) assures that the linear pertur-

(ii) Completely screened states, labeled)( with E=0, bations are not affected by ionization; the dynamics thus
o~ arbitrary[39]: Whatever the electron density, f&r=0  evolves with conserved particle densities.
impact ionization does not occur and thermal energy is much Again, due to the existence of a continuous family of
too small to permit ionization. screened stationary states, parametrized-bythe spectrum



1536 UTE EBERT, WIM van SAARLOOS, AND CHRISTIANE CAROLI 55

contains a branch ab=0 modes. For the nontrivial branch, In the above discussion, we have neglected electron dif-
the dispersion relation is given by fusion. In this case the NSF propagates towards the anode
with a velocity that is at least the drift velocity of the elec-
w =-0 —DK? (3.5 trons in the local electric field. The PSF, in contrast, is mov-

ing in the directionoppositeto the drift of the only mobile
while the eigendirection of such a perturbation is given by species, the electrons. Its space charge is formed by the ions
] staying put, while the electrons are drawn into the ionized
o1+ik-E;=0,+0,=0. (3.6 pody. Propagation of a PSF is therefore only possible if the

. . . . ) i ) electron diffusion current overcompensates the drift current.
Since (71 +qy) is the dimensionless ion density of the linear this in turn implies that if the diffusion coefficierd is

mode, Eq.(3.6) simply expresses the fact that ions are cOm-gm | electron density gradients must be extremely steep.
pletely immobile in our model. From this discussion it already becomes evident — and we
Equation (3.5 expresses the fact that the completely,yij derive this below — that for an NSF, diffusion is a small
screened {) states are stable, the decay of perturbationg,rrection forD<1, since drift and diffusion currents are
being due to the added stabilizing effects of overdamped .(ing in parallel directions. In PSF, however, diffusion has
plasmons ¢ o) and electron diffusion. The—0 limit of {5 gyercome the drift, and as a result in this case the limit of

the plasmon mode leads to dielectric screeridd. vanishing diffusion is very singular. We will see in Sec. IV
that this manifests itself through the emergence of a new
B. The mechanism of front creation inner length scaleD/a,=D./(ueEp), the diffusion length

Let us now investigate the dynamical evolution of an ini- 25S0ciated with the electron drift velocity.

tial state in which the electron and ion densities vanish ev- ©f CO'“]"rshe’ alcha_rg?_dlgron:]_on_ly scr:]reelns the norma! com-
erywhere except in a small localized region. An example of?ONent of the electric field. This is why electric screening is

such localized initial conditions is an initially Gaussian elec-€fficient in the head of the streamer, while the field pen-
tron density, as in the simulatiori8,9] — under what cir- etrates in the body of a single streamer in the simulations

cumstances initial conditions are sufficiently localized will [8:9)- Our planar front analysis thus serves as a first approxi-

become clear later. As long as the electron and ion densitigd@tion for the mechanisms in the moving tip of the streamer

are small enough, we can neglect in linear approximation thdnger-
changes in the field as we did above when linearizing about _ _ _
the nonionized state. As a result, both densities will grow C. The one-dimensional streamer equations

due to impact ionization. If this were the only mechanism, | et us now restrict our analysis to the case of plane fronts
the space charge would remain unchanged and the ionizatiqferpendicular to a constant electric field. Of course, in prac-
would continue indefinitely. However, the electrons are mo-jce planar streamer fronts will be unstable to deformations
bile, and at the same time they start to drift in the directiong|ong the frontvery much like in the Mullins-Sekerka insta-
opposite to the electric fiel. If we neglect for the moment  pjlity in crystal growth[20]), but as explained in the Intro-
the diffusion, this drift has two effects. First of aII, the elec- duction, the p|anar front ana|ysis is a first step towards un-
trons start to drift in the direction of the anode. Impact ion-qerstanding the dynamics on the inner length seglé and
ization then starts in previously nonionized regions as welliime scalet,. As such, it is the first basic ingredient for
so the ionized region expands towards the anode. Second, 88riving an effective interface model on Sca%&,al.

the electrons drift while the ions stay p(dn the fast time We choose the axis as parallel to the field and perpen-

scalg, a charge separation occurs which tends to SUPPreS§cular to the planar front so th&=EX andV==%d, . From

the field strength in the ionized region. When the size of thqhe point of view of matched asymptotic expansions, the

initial perturbation and/or the time during which the ava- gactric field in the nonionized region before the front will

lanche has built up are large enough, the screening of th\‘?ary adiabatically slowly on the “inner” time scale of the

fielq bgcomes almost complete in Fhe .ioniz.ed region SO thaﬁont, the time scale on which the front propagates over a
ionization stops there. The behavior in this region can bE‘distance comparable to its width, because the length scales of

described by linearizing around the screened state as WaSe outer problem determining the change€afre assumed

done above. After an electrically screened body of the 10N30 be much larger than the inner Sca@l‘ For our study of

ized region has developed, the initial ionization avalanche i e inner problem, we thus take the asymptotic field value

said to have developed into a streamer. Thus streamer fronE+ . o , oY
in the unionized region constant in time. Furthermore,

are strongly nonlinear and determined by two competin . g - L
mechanisms, which dynamically balance each other: the iOg/_ve will use the convention that the nonionized initial state

ization process which is strongest at the leading edge and tHgto.Wh'Ch the front propagates is at the right towards large
screening of the field due to the free charges which increaseosos't've values ok, so that there

towards the rear end of the front. This balance also explaing, _, ;+—0, gq-q*=0, E-E*, 9.Et=0 for x— +x,

our finding that the ionization length and the screening (3.7
length in the plasma behind the NSF are of the same order of

magnitude for field values that are not too small. Technically

speaking, the challenge in constructing the full front is towhich motivates now the use of the superscrptWe em-
connect the two regimes linearized about the homogeneoughasize again thatxX'— +” should be interpreted on the
states in an appropriate way through the nonlinear regime déngth scaleozgl of the inner problem in the sense of
the front. matched asymptotic expansion43,14. Far behind the
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front, i.e., forx— —«, the discussion of Sec. Il leads us to the width and amplitude of the initial perturbation are small,
expect a homogeneous stable state the electron drift will separate the negative electron charge
and the positive ion charge almost completely. The crossover
oc—o #0,9g—q =0, E-0 for x—>—. (3.8 {0 the nonlinear streamer regime will therefore occur when
the total charge in the positively and negatively charged re-
gions is big enough that screening of the field becomes ap-
preciable, i.e., at a time, when

Which valueo™ will be dynamically selected and what the
corresponding front velocity and profile are, for a given fixed
value of the electric fielE* before the front, is the selection

problem we aim to solve. 1
The boundary conditiofi3.7) allows an important simpli- Ne(To)~|ET|, =7~ f(E—+)In[|E+|/Ne(O)].
fication of the equations in one dimension: If we insert Eq. (3.13

(2.13 into (2.12 and integrate, we obtain
d,E+j=h(7), (3.9 IV. UNIFORMLY TRANSLATING FRONT SOLUTIONS

whereh(7) is an arbitrary function of time which is constant ~ Above we already have introduced the idea that fronts
in space. In view of the boundary conditi¢8.7), h(7) van- ~ asymptotically approach some shape, which is independent
ishes atx— o and thus everywhere. For planar fronts theOf the initial conditions. This is based on our experience

model Egs.(2.11)—(2.14) then reduce to [21-25 with other examples of front propagation into un-
stable states that the front will acquire some asymptotic
3,0=0y(0E)+Da 2o+ of(|E|), (3.10  shape and velocity in the long time limit, which will be the
same(“universal”) for a large class of “sufficiently local-
d,E=—-cE-Dd,o0, (3.11) ized” initial conditions that comprise most physically rel-
evant initial states. This property is often referred to as the
with space charge and electric current determined by front selection problem. Our subsequent analysis will there-

fore follow the usual strategy in examples of this type: We
will first show in this section that there generally is a one-
parameter family of front solutions. In Sec. V we then sum-
marize our present understanding of the front selection prob-
lem, and on the basis of this predict the properties of the
selected streamer front. The numerical simulations that con-
firm our predictions are presented in Sec. VI.

g=dyE and j=cE+Ddyo. (3.12

We will refer to Egs.(3.10 and (3.11) as to the one-
dimensional streamer equatian¥hey are the basic equa-
tions of this paper, on which the rest of our analysis will be
based.

Equation(3.11) implies that the field decays behind the ) ) ) : .
front(jI if no strong denpsity gradients act agains}t/ it. As we shall Umform_ly translating fron_ts W't.h velocny_a are stationary
see later when we will discuss our simulation results in Sec" & coordinate system moving with velocity If we denote

; ; ; this comoving coordinate b§=x—v 7, the partial differen-
VI, such strong density gradients often occur during the tran-. : , . . ;
sient regime before a PSF emerges. Once, however, a froH’[’lI equations(PDE'9) (3.11) and (3.12 in this coordinate

has approached an approximately uniformly translating states,yStem become

the electron density~ behind the front is almost homoge- 9,0];=vd,0+ I oE)+Dd 2o+ of(|E|),
neous and the field behind the front then decays to zero on a e ¢ ¢ ¢ @.1)
time scale 16~ according to Eq(3.11). Note that the local 0,E|;=vd,E— sE—Dd,0. '

decay of the field for any nonzero electron density is due to
electrodynamics of conserved quantities that continues al

SR front translating uniformly with velocityv in the fixed
after the impact ionization has been suppressed. g y Y

; ; o - . . frame x is stationary in this comovin frame,

We finally note that in the limit where the diffusion is , o]=0=3,E;. As a reysult the correspondinggfront pro-
smaI_I (D<1), itis easy to identify the crossover time fm”? files are solutions of the ordinary differential equations
the linear avalanche regime to that of streamer propagatm{bDE,S). (We continue to use partial differential sigd

in the C?Sfa that the initial ellectlrpnddens_lty |sAsmaII laf‘d gqnéven though the uniformly translating solutions are functions
zero only in a very narrow localized region. As explaine me the variable¢ only.)

the beginning of this section, in the avalanche regime we ca

neglect the changes in the background figld due to the Do+ (v+E)d;o+0dE+of(|E))=0,
build-up of the charges. The evolution of the electron density 4.2
is then described by the linearized version of E10), a Dio—vdE+oE=0.

linear equation with drift, diffusion, and growth. Hence, if

the initial electron density is, e.g., Gaussian, the electrohese equations are analyzed below. BothOer O and for
density will, according to Eq(3.4), remain a Gaussian pro- D#0, they admit solutions for a range of values of the ve-
file, whose maximum drifts with a velocityE| in the direc- locity, so we are indeed faced with the question of front
tion opposite to the field and whose amplitude grows exposelection.

nentially as expf(E™)7). In other words, if the total initial It is important to realize that not all the exact uniformly
electron charge idl,(0)= [dxo(x,0), then the total number translating front solutions of these ODE’s correspond to
of electrons in this avalanche regime grows asphysically relevant solutions. In particular, any physical elec-
No(7)=Ng(0)expf(E*) 7). Likewise, the total ion charge tron densityo needs to be non-negative£0), but as we
grows exponentially, but if both the diffusion constant andshall see the sei4.2) admits PSF solutions where goes



1538 UTE EBERT, WIM van SAARLOOS, AND CHRISTIANE CAROLI 55

negative. We expect these solutions to be unstablaccord  with the function
with the “nonlinear marginal stability” scenarif23]), and

also not to be approachable from an initial condition with B
o=0. Hence they are neither dynamically nor physically rel- per[E]= J
evant. Furthermore, note that in our model the ion density

g; (=p+ o) can only increase due to impact ionizati@ys.  The functionpg+[ E] is nothing but the ion density, as can be
(2.17) and(2.11) imply d.q;=of(E)=0]. With our conven-  deduced by inserting= d;E into Eq. (4.5 and equating the
tion that the nonionized state is on the right, this implies thatharge densityg with p—o. The ion densityp for D=0
uniformly receding front solutions with<0 are unphysical. turns out to be a function oE and E* only, and to be
We will therefore call a uniformly translating front solution independent of the particular front shape parametrized by

o f
“ax X el =0 @9
E| X

physical if v.
The fieldsa, p, andE as a function o can be found by
v>0 ando(£)=0 for all ¢ (43 solving the implicit equation foE = E(¢),
A. D=0 Front solutions _ pe+lIEl]
den|E|= T E (4.10

In contrast to the casb # 0, where we can derive prop-

erties of uniformly translating fronts only either qualitatively . .
: . . o which can be derived from Eg#4.5 and(4.9).
by discussing flows in phase space or quantitatively by nu Equation(4.8) immediately shows that physically allow-

merical integration, Eqs(4.2 for D=0 can be integrated . .

L : ; ; e ; ble solutions withr=0 andv>0 must havev + E=0 for
explicitly. Doing so, we derive a simple explicit e ression a0’ .
xpacitly g W v IMp'e EXpictt exp I all field values. Because of the monotonicityfas a func-

for the electron density~ behind the front in terms of the > : - .
field E* before the front; this analysis generalizes an earlieF'cin of ¢, this is automgtlcqlly §at|sf|ed for. PSF with
E™>0, but for NSF this implies in particular that

result of D'yakonov and Kachorovskji29], and explicitl . .
illustrates tﬁ/e existence of a family of uniformly trgnsla{ing v+E"=0; together withu>0 we thus have for physical
solutions. For NSF, these results extend smoothly to the caééoms
D #0: The electron densityg (E*) derived forD=0 will

turn out to be a good approximation for<1, and the small
overshoot ofo at the rear end of the front visible in the |, physical terms, the condition=—E* expresses that the

three—_dimensional simulations in Fig(c, is also recovered \q|qcity of uniformly translating fronts must be at least the
for D=0. For PSF, on the other hand, we will see hacCts i velocity —E* of free electrons in the leading edge of

as a singular perturbation, so that the classDef0 PSF e front, where the field is strongegRemember that Eq.
solutions that we derive here is not relevant for the PSIi4.7) implies that the field is monotonic in spate.
selection problem fob=1. _ For all values ofy obeying the inequality4.11), the so-
The ODE's describing uniformly _tran_slat_mg fronts for |utions of Eqs.(4.8) and(4.10 are proper, physically allow-
vanishing diffusion are found by puttini3=0 in Eq.(4.2.  ape solutions for fixedE *; within the context of the present

v=maf0,—-E*]. (4.11

These equations then become model, this illustrates a general feature of front propagation
9 YE)o]=—of(|E]), 4.4 into L_mstable states_, namely that there exists a family of front
d(vrE)o] of(ED @4 solutions parametrized by the veloc[{#2].
va§In|E| -0 (4.5) In Fig. 2(a), we plot the solutior{4.8) for o as a function

of E for the fixed value of the velocity =2 in the case that

Upon insertion of the left-hand side of E@.5) for o inthe ~ the impact ionization functionf(E) is given by the

right-hand side of Eq(4.4), this equation can then be ex- Townsend expressidiy(E) of Eq.(2.16 as in the numerical
pressed as a complete derivative by writing simulations[8,9]. Note that in this representation, the state

behind the front at=—< corresponds to a point on the

axis, and that the front solutiom(&), E(€) is represented in
=0. (4.6 this diagram by the flow along one of the trajectories towards
either the positivee axis for PSF or the negativié axis for
NSF for é— . Note furthermore tha& overshoots the value

|El
(v+E)o+v dx

C

f(Ix])
Jy "

For physical fronts withv >0 ando=0 [see Eq.(4.3)], we

see from Eq(4.5), thatE is a monotonic function of, o~ [=0(§— —=)]inthe case of NSF. This property as well
as the monotonicity or[ E] and accordingly ofo (&) for
sgn(d.E(£))= sgnq(é)= sgnE(&)= sgnE™ for all . positive fronts follows immediately from E@4.8). For NSF,

(4.77 it can also be observed in the three-dimensional simulations
of Vitello et al.[9], shown in Fig. 1c).

This allows us to us& as a coordinate instead 6f Accord- The smalles€* for which a front solution withv =2 is
ing to Eq.(3.7), before the front af— o« the electron density shown in Fig. 1a), is E"=—1.999. For this value oE™,
vanishes, sar" =¢[E"]=0. Equations(4.6) and (4.7) to-  ¢[E] continues to increase tilE~E* and then suddenly
gether then determine as a function o as decays to zero. A short analytical investigation of &8
shows that this behavior develops into a discontinuity of
o[E] at the pointE=E* for v=—E". o[ E] then increases

olE]= monotonically up tdf (E*) for E|E™ and then jumps to zero

—grelEl 49
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order, and this show@or smallD) that the growth raté3.3)

of long wavelength unstable modes in the nonionized state is
comparable to the damping rat&.5 of stable modes in the
plasma behind a NSF. For small fields, the strict bounds on
E, [43] show thato~~E*f(E™), so that the approximate
equivalence of these two time scales does not hold for
E* <1, but in the small field range our starting model is not
very realistic anyway, because of the neglect of stabilizing
recombination terms.

1.2
! i i
0.8 i ¥ .
0.4
/_/so.z B. D#0 front solutions
< E For D #0, we cannot obtain the uniformly translating so-

lutions analytically. Moreover, perturbation theory around
the D=0 case is not simply possible, Bsappears in front
of the highest derivative in Eq4.2), so the diffusion term
acts as a singular perturbation. As a consequence,(E®s.

(a)

FIG. 2. (8 Uniformly translating fronts foD=0 andv=2
shown as flows in the two-dimensiondt () phase space. Out of

each pointr™ on theo axis, there is a PSF flowing to the right and . ,
a NSF to the left. Both reach the same v4lEé| on the horizontal reduce to a set of two coupled first order ODE's B0,

axis, which also is independent of Note that NSF have a maxi- While three are required fob+#0. However, we can still
mum of & within the front, while PSE have monotonie. Note, ~ €asily demonstrate the existence of a one-parameter family
also, that no physical fronté.e., with =0 everywhergreach a  Of uniformly translating front solutions fob#0 through
valueE* < —p=—2, in agreement with Eq4.11). (b) Sketch ofa  Standard counting arguments for ODE's. Building on the re-
uniformly translating PSF and NSF f@#0 as a flow in three- Sults of such an analysis, the solutions can then be con-
dimensional E,o,q) phase space. The thick curves indicate thestructed by integrating numerically in a stable direction, us-
trajectories, while the thin ones show their projection into theing so-called “shooting methods['44].
o=0 andg=0 planes. For fixed, there is at each point of the To perform the analysis, it is convenient to write the
o axis still only one outgoing vector, which can be followed in two equations as a set of three coupled first order ODE’s. There
antiparallel directions. ThE axis is fully attractive folE>—v and  is some freedom for the choice of the third variable: The
then always will be reached. be reached. standard choice would be’ = .o, but for the discussion of

. _ _ _ _ the singular limit as well as for numerical stability, the
discontinuously atE". This shocklike behavior stays un- charge densityy has turned out to be the most convenient

changed under a parameter change-(g). It is further dis-  choice. The ODE’44.2) then become
cussed and motivated in Sec. V.

An immediate consequence of E¢4.8) and(4.9) for the _ oE—-vq
electron and ion density is that the valat€ behind the front 0g0 =~ D
(whereE—0) is a simple function of the valuE™ of the
field ahead of the streamer profile: 2E=q, 4.14

_ e, f(x)
o (E*)=p\E+|[0]=fo dx——. (412 ; __crf(|E|)+(rE—vq

d= v D

The virtue of this expression for the electron densify far

behind the front, as well as of the expressidr®) for the ion 5,5t as we thought of the profiles fer=0 as describing
densityp throughout the whole front, is that it is independent o\ in a two-dimensional &,E) phase space, we can now
of the velocityv, hence independent of whichever front pro- ihink of Egs. (4.14 as déscribing a flow in a three-

file is selected, provided that the linit— 0 is smooth. We  4imensional ¢, E.q) phase space. The velocityjust plays

shall see later that thi®=0 result remains relatively accu- ine role of a parameter in the flow equations, whilagain
rate for NSF fronts wittD=<1, and compare it to the results yays the role of a timelike variable — see the sketch in Fig.
of the simulationg8,9] in Sec. VI. For PSF, on the other b).

hand, the above result will turn out to be less relevant due to The steady states of the full PDE’s discussed in Sec. IlI

the nonperturbative nature.of the linit— 0 in this case. correspond to fixed points of the flow: the points,0,0) on

_ For_the+Townsend functiofr(|x|) [Eq. (2.16] the func-  he ;-axis are fixed points of the flow.14), that correspond
tion o~ (E") can be expressed as to homogeneously ionized plasma states, whileBheis is

a line of fixed points (@&,0) each of which corresponds to a

e +)-1
o (ET)r=|ET|Ex(|ET|™H) nonionized state withr=0¢'=0 andE#0.

=fr(|ET)—Ey(|[ET|™Y), (4.13 A uniformly translating front solution now corresponds to
the existence of a trajectory in this phase space that starts at
whereE,(z) is the exponential integrg#3]. “time” ¢=—o on theo axis and flows to th& axis for

We finally note that the second form of E@.13 shows ¢—c. The multiplicity of such solutionsi.e., whether they
that o~ approaches; for large fields, sinceft>E; for  exist as discrete sets, or, e.g., as a one- or two-parameter
E*>1. ForE* of order unity,c andf; are still of the same family) can be determined as follows. If we linearize the
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flow near an arbitrary points~,0,0) on theo axis by writ-  the real parts of these eigenvalues are always positive, so that
ing (0,0,0) =(07,0,0) +A exp(—=A~ &), we find the eigen- both eigendirections are stable. In other words, for

value equation E*>—v, all points near th& axis flow towards this axis —
in slightly more technical terms, there is a two-dimensional

A A‘2—A‘3—£ -0 4.15 stable manifold flowing into each of these points on ke

D D ' ' axis. ForE* < —v, the flow is away from theéE axis, and

fronts withv + E* <0 cannot be constructed. This general-
The fact that there is a zero eigenmode is a consequence ks Eq.(4.11) to D+#0.
the fact that ther axis is a line of fixed points. For the two The existence of a one-parameter family of fronts with
nontrivial eigenvaluegwhich correspond to the linearized velocity v>—E* can now simply be understood as follows.
modes(3.5) about the ionized and screened region by equatAs we saw before, there is one unique PSF and one unique

ingik-x=—A" andw™=A"v] we have NSF trajectory flowing out of each point on tleaxis for
_ fixedv andD. Since the flow defined by Eq¢.14) is con-
A-2lT Vu?+4Do (416 linuous, we can expect each trajectory to extend smoothly
= 2D ’ ' [45]. Once the flow gets near tie axis, we know from the

above analysis that the trajectory will be attracted completely

The eigenvalue\ | is positive, and hence gives a decayingto the axis, provided is large enough. Thus, for each™
exponential; thus points along the corresponding eigendirecandy, there will exist two unique trajectories, i.e., a unique
tion flow into the o axis as¢ increases. The eigenvalue PSF solution and a unique NSF solution. Since each of these
AZ, onthe other hand, is negative and hence corresponds tejectories flows into a unique point on tReaxis, the flow
an unstable eigendirection, with flow away from the axis.equations implicitly define a unique relation of the form
This implies that at each point(,0,0) on thes axis, there ¢~ =0 (v,E") for each of the two types of fronts. For a
is, for fixed v, a unique eigendirection{A_,1,A_)E;  given value ofE*, we thus have a one-parameter family of
along which the flow is away from the axis. This flow can befront solutions, parametrized hy.
followed in two antiparallel directions, determined by the There are two important properties of the front solutions
sign of E;. The one flowing towards positive valuesBfis  associated with their asymptotic largdehavior. First of all,
the beginning of a PSF front profile, the one flowing towardswe note that according to E¢4.18 the eigenvalued © are
negativeE is the beginning of an NSF profile. From these only real for
eigendirections, one derives that for PSF with field perturba-
tions E;>0, the electron density decreases close tod¢he v=v*=—E*"+2{Df(|E*|). (4.19
axis, while for NSF it increases. Accordingly, before reach-
ing o=0 for é—%, a NSF profile has at least one maximum This implies that the corresponding front profiles can cer-
of o, while a negative one can Kand i3 monotonic. This tainly not approach the asymptotic state=0 ahead of the
generalizes our result fdd=0, and is consistent with the frontin a monotonic way fov <v*: When the eigenvalues
findings of Vitelloet al.[9] shown in Fig. 1c). The physical ~are complex, the front profiles have an oscillatory tail of the
origin of the maximum ofo in the rear end of the NSF form exg—(ReA ")&] cog(ImA™)£]. Clearly, this violates
profile is the screening of the field: Due to the low ionizationthe physical condition that the electron densityshould re-
rate in an already fairly suppressed field the ion density hagiain positive, so solutions with-E*<v<v* are physi-
already almost acquired its final value, so the electron dencally excludedv™* denotes, in the present case, the smallest
sity has to overshoot its asymptotic valae so as to make Velocity of physically allowable uniformly translating front
9:E<0. The screening behind a PSF happens by suppressirgglutions.
the electron density faster than the ion density for increasing The identification ofv* as a bound on the velocity of
¢, and so therer is monotonic. physically allowed front profiles depends only on the struc-

Let us now investigate the stability of the flow near ature of the eigenvalued * associated with thénear flow
point (OE™,0) on theE axis. Upon linearizing the flow near unstable states. There is a secomhlinear way in
equationg4.14) and writing the¢ dependence of the pertur- Which the range of physically allowed values wfcan be
bations in the form expfA ™ &), we find the eigenvalue equa- bounded. To understand this, note that for aryv™, the
tion asymptotic decay of(¢) for é—oo for a uniformly translat-

ing profile will be

At areoarHED L TUETDY o g + +

D o )-% @17 o(§)=A_e f+A e Mfrhot. (420
Again, there is a zero eigenvalue due to the fact that thavith real coefficientsA_ and A, . Here, h.o.t. stands for
whole E axis is a line of fixed points. The two nontrivial higher powers of the two exponentials generated when ex-

eigenvalues are panding the equations to higher than linear order in the vari-
ables. Clearly, the smallest eigenvalé governs the as-
. v+EYEJ(w+ET)*-4Df([ET]) ymptotic decay of the profile providetl_#0. ThatA_ will
A= 2D . (419 generically be nonzero for an arbitrary velocityfollows

again from the counting argument above for the flow in
These eigenvalues can be related to E333) in the same phase space: Each PSF and NSF trajectory flowing out of a
way as Eq.4.19 could be related t¢3.5). Forv+E*>0, point on theo axis is unique, and hence there is no freedom
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to impose an additional conditioh_ =0 close to theéE axis.
Furthermore, the coefficiens_ andA, depend on the full

global nonlinear behavior of the flow, and hence they depend

implicitly on v.
There might exist, however, particular velocities
vP™>y* | for which
A_(vPa=0. (4.21

For discussing these we invoke again a continuity argument

for the front properties as a function of We expect a very

slowly decaying, nearly homogeneous uniformly translatingAb
front solution to have a non-negative density everywhere
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FIG. 3. Phase diagram for PSF as a functionDofand E™.
ove the solid line the lowest speed of physical front solutions is
given byv*, below the line byv™ corresponding to the smallest

and_to_ have a _very. large velocity, s_ince th? velocity of aspeed of physical front solutions. Accordingly, the selected front
profile is essentially inversely proportional to its slope in thespeed iw* above the solid lindlinear marginal stability regimeg

limit of small slopes[So indeed the rootA ~ given by Eqg.
(4.16 and A* given by Eq.(4.18 vanish in the limit that
v becomes larg¢.So for largev we expect to find physical
solutions. These are characterized Ady>0 in the leading
edge of the front. Decreasingcontinuously, we either reach
v=v* smoothly with stilA_>0, or we reach the first par-
ticular velocity,v§?", whereA_ vanishes. In the latter case,

we expect by continuityA_(v)<0 for v<v§®". This im-

andv below the solid line(nonlinear marginal stability regime
The dotted curve indicates* =0 and is a lower bound for the
crossover ta ' behavior of the selected fronts.

function (2.16), this happens fob<0.25*eYE" | hence for
any E* for D=<0.68. In particular for PSF at smal the
question therefore arises whether there are nonlinear front
solutions defined by Eq4.21) and (4.22 with v7>0. The

plies that thenos approaches zero from below, i.e., that theresults of a numerical search for such solutions are shown in

front solution is unphysical. Below the nex§?", we expect

Fig. 3, as a function oD andE™. Below the full line in this

the electron density to develop two zeros and so forth. Theliagram, there exists indeed a nonlinear frant>v*,

largestvP2", if it exists, thus plays the role of theonlinear
front velocityv ' [24],

vt=maxuPA_(vPa =0} (4.22
for a givenE™. [Note that if AT<0.5AT the higher order
terms in Eq.(4.20 of order exp-2A7¢) are actually larger
than the second term exp(\*&). This does not change our

whereas above this line* denotes the smallest velocity of
physical front solutions. While these results have been ob-
tained numerically, the existence of a singlaique particu-

lar solution with A_(vP®)=0 in the limit D—0 can be
demonstrated analytically. Since a full discussion of these
results will be given elsewhergl7], we confine ourselves
here to a brief outline of the arguments that also demonstrate
the singular nature of these solutions @+ 0.

argument, though, as the prefactor of this second order term If we take the limitD—0 with v fixed, assuming no

will vanish if A_ vanishes,
At the velocityv =vT or at anyv =vP2" the flow in phase
space approaches theaxis along the eigenvector where the

flow is most rapidly contracting. The trajectory correspond-

nontrivial scaling of the variables, E, andq and of the
spatial coordinate, Egs.(4.14) can easily be shown to re-
duce to those studied in Sec. IV A fér=0. Hence, we can
recover in this way the family of front solutions obtained

ing to the nonlinear front solution is therefore more appro-there.Any particular solution, on the other hand, for which

priately referred to as a strongly heteroclinic orbit, whereA_(vP*)=0,

decays according to Eq.(4.20 as

heteroclinic indicates that it is a trajectory from one fixedexp(—AL&) asé—o. SinceA f«D ! for D—0, such a par-
point to another one. The existence and properties oficular front solution becomes extremely steeplas: 0: its
strongly heteroclinic orbits have recently been under activgyradients diverge as b/ so that the diffusion term can still

investigation[46].

Such a velocity T, if it exists, bounds the continuum of
velocities of physical uniformly translating solutions from
below, and thus replaces the earlier bowrfdderived from
linearizing the equations in the leading edge of the front.

C. Nonlinear front solutions for PSF

For NSF, the bounding velocity* given by Eq.(4.19 is

overcome the drift term a® — 0. That the velocity of such a
solution must also have a nontrivial scaling in this limit can
be seen from the third equation of Eg.14), written in the

v

D (4.23

always positive. Moreover, by integrating the flow equationsAny nontrivial scaling of this equation in the limi>—0 can
(4.14) numerically and searching for particular solutions for @nly occur if the first term between large parentheses re-

which, according to Eq4.21), A_(vP*)=0, we have con-

vinced ourselves that there are no such solutions forany
#0 and E"<0. Hence, the smallest velocity of physical
NSF solutions is always*, for any value of the parameters.

mains of the same order as the other two, which diverge as
1/D. This is only possible i scales a®. In this limit, the
third term can then be neglected, and siagg has to change
sign in the front regior(as the charge density vanishes as

For PSF, on the other hand, the situation is very different§— * %), there must be an intermediate valie E" of the

sincev* <0 for (E")>>4Df(|E*|) — for the Townsend

field for whichv=Df(|E|)/E.



1542 UTE EBERT, WIM van SAARLOOS, AND CHRISTIANE CAROLI 55

Now that we know the scaling of the spatial gradient of
the velocity of such particular front profiles f@—0, one v/D
easily convinces oneself that the electron and charge density
of these solutions muslivergeas 1D in this limit. To study
the existence of such possible solutions, it is therefore con-
venient to introduce new variables and coordinates according
to

x=DX, v=Dv, ¢=D§ o=0o/D, q=0/D,
(4.29

with E and 7 unchanged. In these new variables, the flow
equationg4.14) become

dzo=—0E+Du T,
_ FIG. 4.7 T=v"/D (solid) and? *=v*/D (dashed linesas a
JFE=q, (4.29  function of D for E*= 0.3 — 1.0 in steps of 0.1, and f&* = 1.0
— 2.0 in steps of 0.2v T depends only weakly o, i.e., the
. physical front velocityv " is approximately proportional t®. At
—Dv q. v "(ET,D,(E')=v *(E",D(E")), the selected front crosses
over fromv ™ to v*; thev T solutions disappear. Plottirig,(E™) in
the (E*,D) plane yields the solid curve in the phase diagram of
Fig. 3, while the zeros af* determine the dotted curve in Fig. 3.

f(ED

%

The limit D—0 can now be taken simply by leaving out the
term D7 q in the first and last equation. We will show else-
where [47] that the resulting equations hawae unique
physical front solution thus fixing one particular value of the
scaled velocity';, and in view of the scaling4.24) and the
scaling of the eigenvalued ©, this solution must have
A_(v41)=0. This solution is therefore precisely ti@—0
limit of the nonlinear front solution with velocity '=v;D.
Furthermore, since the limid— 0 is smooth for Eqsi4.25), A. Front propagation into unstable states
this shows that there exists a nonlinear front solution with
v'>0 for any E" and nonzero but smalD. Due to the
singular scaling4.24), the corresponding front solutions are
determined by ODE’s that have a different structure from

thosig stu?ed forDI =.O in Sec. IVbA' ?)nd_ th:jarefore éhe_sel necting the two. The existence of a family of front solutions
honlinear front solutions cannot be obtained perturbativelys , qaneric feature of front propagation into unstable states.
from the latter class of solutions — of course, the latter clas§,ve therefore, briefly recall what is known in the literature
of solutions still exists forD+0, in agreement with the ¢, 5n51050us problems and then translate this experience to

counting arguments given earlier, but these now corresponge syreamer problem. The prototype equation for studies of
to a singular limit of Eqs(4.29. The significance of these ¢ type of front propagation is

nonlinear front solutions lies in the fact that they will turn
out to be the selected fronts that dominate the dynamics of atu=a§u+g(u), (5.2
PSF in the physically important range &D =<0.3.

The nonlinear front solution can be constructed numeriwhereg(u) is some nonlinear function which satisfies
cally very easily by integrating Eq$4.25 using standard
numerical “double shooting” routinep44]. Figure 4 shows g(0)=0, g(1)=0, d'(0>0, d'(1)<0. (5.2
our numerical results for the smallest physical velocity,
max(@T,v*) in the case that the ionization function is given Note that these relations imply that the “state™=0 is un-
by the Townsend expression. The scaled velocitié® and  stable, and that the “stateti=1 is stable. The study of the
v*/D are plotted; in agreement with our arguments abovepropagation of fronts into the unstable state0 in this
the scaled velocity /D of the nonlinear front solution ap- equation dates back to the early work of Kolmogoshal.
proaches a finite limit adD—0. Furthermore, the ratio [33] and Fishef34] in the context of population dynamics.
v’/ID hardly varies with D in the physical range Later Gel'fand[48] studied a particular example of a func-
0.1=D=0.3, and for small fieldE™, the scaled velocity tion g(u) motivated by combustion. The mathematical re-
vT/ID becomes exponentially small, in agreement with thesearch on this equation culminated in the work by Aronson
boundv/D<E*exp(—1/E") that follows from the obser- and Weinbergef31], who rigorously solved the front propa-
vations discussed after E(t.23 above. gation problem for Eq(5.1). In particular, they proved that

We finally note that our numerical routines have not onlyany initial perturbation that is nonzero only in a finite part of
allowed us to obtain the results show in Figs. 2 and 4, buspace approaches a unique uniformly translating front solu-
have also enabled us to verify numerically all the statementtion with velocity v; in the long time limit. Ifg”(u)<O0 for
made above about the multiplicity of solutions, the parameteall u, v; equalsv* =2+g’(0) (derived from linearizing in

ranges for physical fronts, the monotony properties, the sin-
gular behavior of the smald PSF limit, and the persistence
of the family of front solutions folD—0.

V. SELECTION OF THE ASYMPTOTIC FRONT

We have seen that the nonionized state into which the
streamer fronts propagate is an unstable state, that the homo-
geneous weakly ionized plasma is a stable state, and that
there is a family of uniformly translating front solutions con-
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the tip of the fron}, while for generalg(u), v; approaches tially, the local electron density grows by drift and ioniza-
eitherv* or somev™>uv*. We refer to the literature for a tion, and the front can move quicker thanE*>0 for a
detailed discussion of this wofld1,32. NSF.

The velocitiesv* andv™ of the above problem directly For D#0, we will here only conjecture the analogous
correspond to ow* (4.19 andv (4.22), since they are also statements as follows, and we will test them numerically in
the smallest velocities, which still allow for uniformly trans- Sec. VI.
lating fronts withu=0 everywhere. So ifi is interpreted as (i) Selected front velocityf the initial conditions are suf-

a population density or a chemical concentration, the seficiently localized the selected front is the slowest physically
lected front for every sufficiently localized initial state is the acceptable front solutigni.e., the slowest front profile for
slowest physical uniformly translating front. In other inter- which o(£)=0 for all £. In view of the discussion of Sec.
pretations no physical constraints bindo positive values. 1V, this means that the selected front veloaityis predicted
Nevertheless the selected velocity stays the same. In thie be

case, one can prove that every front with smaller velocity is

dynamically unstablg21], i.e., that the selected front is mar- vi=v*=—E"+2{Df(|[ET|), (5.3
ginally stable. The slowest physical or stable solution, which . . . e
is selected, coincides with the steepest physical or stable on >_<cept when there exists a nonlinear front solution satisfying

In the last decade, it has been recognized that sever d.(4.22. In that case,
aspects of the front selection problem encountered for the vi=v' (5.4)
nonlinear diffusion equatiofb.1) seem to have more general
validity. Certain scenarios, justified by heuristic argumentsNote that the resulf5.3) (v* is thelinear marginal stability
but lacking a detailed mathematical proof, were formulatedvalue in the terminology 0f22,23)) is an explicit expression
and numerically tested on more complicated PDE's that weréor v; in terms of parameters associated with the linear in-
often of higher order in the spatial derivativp$9,21—-25. stability of the unstable state only. On the other hand, the
Some of the equations studied lead to nonuniformly translatexistence of a nonlinear front and the valuevdf(the non-
ing fronts that leave a nontrivial spatially periodic state be-linear marginal stabilityvalug depends on the whole non-
hind [49,21,23,24,5D A particular scenario is the one dis- linear behavior of the flow equatiorid.14).
tinguishing between the so-callduhear marginal stability (i) Localized initial conditionslnitial conditions are suf-
regime wherev;=v* and thenonlinear marginal stability ficiently localized if their spatial decay is faster than the as-
regime wherev;=v' [21-24. These names stem from the ymptotic decay associated with the smallest eigenvalue of
fact that in this formulation, the two regimes of front selec-the selected profile, i.e., if
tion are related to the stability properties of the front solu- .
tions — in both cases, the selected front separates stable o(x,7=0)<Ce A-")x (5.5
front solutions from unstable ones. Applied to E§.1), this
scenario just provides an intuitive explanation of all the well-Of
known mathematical results. For plasma physicists, it is Catot
worth mentioning that dynamics in Ft)he IineaF: r¥1arginal sta- o(x,7=0)<Ce A-)X " for x—oo, (5.6
bility regime 'S related to that determined by the “pinch jepending on whether the selected fronvts or v ™. Here
point analysis” which was developed in plasma physics iNc is an arbitrary constant, and *(v*) [=A*(v*)] and
the late 1950$51,52,23. A*(v") are given by Eq(4.18.

(iii ) Nonlocalized initial conditionslf an initial condition
B. Predictions for streamer fronts does not obey condition&.5) or (5.6), faster front speeds
) . . are possible. In particular, if initially o(x,7=0)

By extending the arguments in the apper?dn{m], ONe  _exp(—Ax), with A<A*(v*) or A<A*(u"), whichever

may show that in the streamer case just like in the case of thr%gime applies, then the front speed is given by

above probleni5.1), all physical solutions, i.e., all solutions

with 0=0 resp.u=0 everywhere, are stable. For a detailed . f(JET])

discussion, we refer tp47]. It can be argued22,23, and v=—E"+DA+—F—, (5.7

proven for Eq.(5.1) [21], that a sufficiently localized initial

condition will approach the physical uniformly translating which is obtained by solving Eq4.17 for v in terms of

front, which is closest in “phase space,” i.e., the steepest\.

one. Both for Eq.5.1) and for the streamer equations, the  We now combine the analytic and numeric findings from

steepest uniformly translating physical front is uniquely de-Sec. IV with the selection rules above to quantitative predic-

fined. It is also the slowest one. tions for asymptotic fronts, which evolve from sufficiently
We can immediately prove this when initially localized initial conditions, in the case that the impact ion-

o(x,7=0)=0 for x>x, for streamer fronts wittb=0: In  ization is given by the Townsend expressi@l6).

general, there is a front solution for every NSF For NSF, we numerically have not found any non-

v=max0,—E*], but now the only way in which the elec- linear fronts for anyD andE™, so our simple yet powerful

trons can enter the range>x. is through electron drift with  prediction is that for NSFy;=v* with v* given by Eq.

velocity —E™. Clearly, therefore, the asymptotic front speed(5.3). In principle it is possible that for ionization functions

of a NSF can only be- E*, while a PSF cannot propagate at f(E) other than the Townsend functid@.16), there can be

all. If the initial electron density, however, decays exponen-onlinear front solutions also in the NSF regime. In practice,
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front width

FIG. 6. Widthw of the front profile(measured between points
with 0.1 0~ and 0.90) as a function oE* for the selected NSF
fronts with D=0.1. The dashed line is given by=6/A" (v*).

always is a nonlinear front solution with velocity'>uv*.
The prediction is that in this range the selected front solution
is the nonlinear front solution, i.evs=v". Values ofv™ as a
function of D and for several values dE* were already
given in Fig. 4. We also saw before that these nonlinear front
solutions are singular in the IlimitD<1, where
v'=Dv "(D=0) ando =& ~(D=0)/D. The resulting
predictions fore~ are shown in Fig. &).

The fact that the dimensionless inner decay length of
these nonlinear fronts scales Bsimplies that the physical
decay length of such solutions ¥ ag=D./(uEp), i.€., is
given by the electron diffusion length. However, since simul-
taneously the electron density~ diverges as T, the total
front width w defined above still approaches a finite limit as

FIG. 5. Electron density— behind the planar selected front as D—0 in units of the ionization Iengtbgl.

a function of the fieldE™ before the front for severdD; dotted: We finally note that the front propagation problem posed
v* fronts; solid:v " fronts. (a) NSF: Forv* fronts,o~ depends only by the one-dimensional streamer equations has a number of
weakly onD. Results foD = 0, 1, 3 are shown. Crosses: Extrapo- interesting differences and similarities with the Aronson
lation of o~ (E*) for D=0.1 for the curved fronts of the 3D simu- Weinberger front propagation problef®.1). In particular, it
lations[9]. (b) PSF results fob= 0.05, 0.1, 0.2,0.3,0.5,0.7, 1, 2, can be hoped that techniques of strict bounds developed for
3. Forv™ fronts, 5~ =const- O(D), i.e.,o (E") is approximately  the time development of these fror&l] as well as for the
proportional to 1D. nonlinear front velocity T [46] might be also applicable to

. _planar streamer fronts.
we expect, however, that this will not be the case for physi-

cally reasonable functionE), i.e., for functions consistent VI. NUMERICAL TESTS OF THE PREDICTIONS

with Eq. (2.17). - . . .
. . - We have tested the predictions listed in Sec. V by numeri-
Once the predicted velocities are known, the vatueof lly integrating the PDE'S3.10 and (3.11) forward in

. . . . C
the electron density behind the streamer head is obtametﬂi]e_ Our computer program is a finite difference code with

from the numerical integration of the fllow.equaluons. Thea time integration which is based on a semi-implicit method.
results of these calculations are shown in Fi@)5Since for We have performed an extensive search through param-

NSF, the limit D—0 is smooth, alsoo depends only  ger gpace, varying between 0.02 and 3, afE*| between

weakly onD for D=1, so that thed =0 prediction(4.13 is .3 and 10. All our numerical studies of the dynamics fully

At the predicted values of the selected front velocity, thepresent a sample of our results that illustrate the important
width of the front region can be obtained directly from our features.
numerical solutions of the flow equations. We have some- All the simulations of the initial value problem, which we
what arbitrarily defined the widttv as the distance between present in the remaining figures, have initially a field
the points wherer is 90% and 10% of the value™. As Fig.  E=—1 constant in space. We keep the field constant in time
6 shows for NSF fronts wittD=0.1, this front width is in the nonionized region. The simulations of Figs. 7—10 start
typically of order 3 for field values of order unity. This con- with the same localized initial ionization seed, a Gaussian
firms again that in the smalD limit the impact ionization profile for the electron density,
length a, * sets the inner scale of streamer fronts. Further- 5
more, we find that our numerical data are well fitted by the o(x,t=0)=0.01 exp-(X—Xo)".
expressionv~6/A 1 (v*), which shows that the front width Figure 7 shows a run fdd=1 and timeg=0 — 130 in time

simply scales with the spatial decay ratdl(v*)  stepsAt=2. As can be seen, the small ionization seed near
=AT(v*) of the streamer profile in the leading edge. NSFx,=50 initially grows while drifting to the right in accord
fronts always have a maximum of the electron density withinwith Eq. (3.4). At time t=0(20), the ionization is strong
the front. enough that field saturation sets in and two asymmetrically
PSFE As we saw in Sec. IV, for PSF witD<0.9, there propagating fronts emerge. The one propagating

0.0 : :
0.0 05 1.0 E 15
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FIG. 7. Numerical integration of the time evolution given by
Egs.(3.10 and(3.11) for D=1.0 in a constant background field
E=—1 (numerical grid sizeAx=0.1 and time stepA =0.05, ini-
tial perturbation aky,=50). Initial condition att=0: small charge-

neutral, ionized region of Gaussian shape depicted by the Iowe§

line. Each new line corresponds to a time step=2 and the upper
line to t=130. (a) The electron density(x,t) initially grows and
then, after field screening in the middle sets in, develops into a NS
propagating to the right and a PSF propagating to the (ftThe
electric field E(x,t) staysE=—1 in the nonionized region and
becomes dynamically screened to zero in the ionized region.

to the right develops into a uniformly propagating NSF with
velocity v* =2.21[53] and degree of ionization behind the
front 0~ =0.130. The maximum value af in the rear part

of the front is o,,,,=0.150. At the same time, a structure

PSF: E'=1, D=1, 6'=0.43, v'=0.2

time step dt = 10 ->

FIG. 8. Emergence of the uniformly translating PSF on the left
in the system of Fig. 7. Conditions identical to Fig. 7 except for
Xo=150 and different numerical grid sizeAk=0.05 and
A7=0.01).0(x,t) is shown in the time range=0 — 500 in time
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NSF: E’=-

1, D=0.1, 6=0.147, v*=1.39

1.0 =
A
o
I
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FIG. 9. Identical with Fig. 7a), except that her® =0.1. Time
range alsot=0 — 130 in steps ofAt=2. The NSF has sharper
contours and propagates slower thanbor 1, the PSF appears not
to develop.

develops on the left, which at time=130 has not yet
reached a stationary form, and which eventually will develop
into a PSF(Note that propagation to the left into a negative
field —E* corresponds to a PSF front moving to the right
towards x—o in a field +E*.) How the PSF actually
reaches a uniformly translating profile is shown in Fig. 8,
where the development for,=150 and otherwise identical
initial and boundary conditions is followed in time steps of
At=10 during the timg=0 — 500. An asymptotic velocity
of v1=0.22 and a degree of ionizatiar =0.43 is reached.
Note the huge difference in the degree of ionization and in
pe front velocity already for the unrealistically large value
of the diffusion constanD=1.

The predictions from Sec. V for the selected uniformly
granslating fronts foD=1 andE™ =1 yield for the NSF
v*=2.213 andr~ =0.129, and for the PS&'=0.2199 and
o~ =0.432. They thus correctly predict the simulations of
the initial value problem shown in Figs. 7 and 8 within the
accuracy given. Note that for the velocity of the PSF and
for the degrees of ionizatiom™ both behind the PSF and the
NSF, this fact also shows the relative accuracy of the two
very different numerical methods used, while for the velocity
v* of the NSF the numerical integration of the initial value
problem exactly reproduces the analytic result.

As D decreases, both the structures within the fronts and
the asymmetry between NSF and PSF become more pro-

U(Xf)z Qfa, D=0.1, 6'=6.32,V'0.0149

FIG. 10. Emergence of the uniformly translating PSF on the left

for D=0.1. Initial conditions identical with Fig. 9. The time range

stepsAt=10. Note the difference in the duration of the transientt=4000-8000 after an initial perturbation &0 andx,=60 is
regimes, in the propagation velocities of PSF and NSF, and in thehown in time steps ofAt=100. (Numerical grid sizeAx=0.01

degrees of ionization behind these.

andAr=0.5)
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NSF with velocity v =2.497>v* =1.384. The simulations

o(xt) | A'=0.25: IE'I=1, D=0.1, v),=2.50, VPsF=0'éO find the fronts propagating with velocities 0.50 and 2.50,
respectively. The ionization behind the NSFas =0.149
1.0 = and behind the PSF~=0.158, so that now both are com-

parable to each other and @ (D =0)=0.1485 found from
Fig. 5a). Note that the diffusion constant is identical with

A
05 C;Il that of Figs. 9 and 10, the only difference being the extended
' 5 initial perturbation.
g The simulations confirm that streamer front propagation is
° indeed correctly described by the marginal stability scenario,
0 A £ which in the present case amounts to the statement that the

100 200 300 400 x slowest physical velocity is selected, whenever one starts
from sufficiently localized initial conditions, just as for the
FIG. 11. A nonlocalized initial condition witth =0.25 as de-  simpler casd5.1).
scribed in the text; otherwise, the situation is like in Fig. 9, and

D=0.1.
VII. CONCLUSIONS AND OUTLOOK

nounced. We illustrate this in Figs. 9 and 10 with the tem- The analysis in this paper fully supports the validity of an
poral development starting from the same initial perturbationeffective interface approach suggested by the results of the
as before, but now fob=0.1, the value corresponding to fy| three-dimensional simulations of Dhali and Williams and
the parameter values of the earlier three-dimensional simulast vitello et al. [8,9]. This emerges from our detailed study
tions [8,9]. The time ranges in each plot are chosen approof the associated one-dimensional problem, which yields the
priately for seeing the NSF and the PSF evolve into a unifo|lowing results.

formly translating state. Figure 9 shows a perturbation () After a very brief stage of transient exponential am-
(initially localized atxo=50) evolving during timet=0 - plification of the initial ionized seed, the growing streamer
130 in time stepsAt=2. Except for the smaller diffusion evolves into an electrically screened plasma body separating
constant and the stretchedaxis, the situation is thus iden- two narrow fronts which propagate into the nonionized outer
tical with that of Fig. 7. The NSF on the right propagatesregion. We show that these two fronts correspond, for all
with a somewhat smaller velocity* =1.39, leaving a practical purposes, to translating profiles which propagate
slightly higher ionizationo~ =0.147 behind. The maximum independently. This entails that the separation of spatial
omax=0.199 is relatively higher, since diffusional smoothen-scales between an inner front and an outer one, set by the
ing of structures is less pronounced. On the time scales ajlobal geometry, is indeed justified.

Fig. 9, the left front does not propagate, but retracts into an (b) This enables us to draw upon the existing knowledge
apparently immobile structure. The electrons drift with theabout front propagation into unstable states and thus to pro-
field into the ionized region, leaving a layer of screening ionsyide definite predictions aboud) the relationshipv¢(E™)
behind. Thus the electrons and the field are almost separatggtween the velocity of a planar streamer front and the value
such that ionization on this side almost cannot occur. Evenof the electric field ahead of it, an€ii) the value of the
tually few electrons will reach the nonzero field region by degree of ionization of the plasma created by the front,
diffusion and slowly will build up a higher ionization and &~ (E™). These predictions, although only valid as such in
ultimately a propagating PSF. That a PSF actually emerges e absence of front curvature, still compare very favorably
shown in Fig. 10. Only times=4000-8000 in time steps of with the numerical results of Ref9]. The two values of
At=100 after the initial perturbation &0 andx,=60 are &~ (E™) on the axis of Figs. (8 and 1b) behind the curved
shown. The front propagates with velocity=0.0149 leav- fronts of the 3D simulationg9] (with the convention that
ing behind an ionizationr™ =6.32. The numerical values E* should be understood as the electric field value extrapo-
predicted in Sec. V are* =1.384 ando™ =0.144 for NSF, lated from the external nonionized region to the front posi-
andv"=0.0146 andr~ =6.234 for PSF. The remaining nu- tion) are plotted in Fig. &). Without adjustable parameters
merical discrepancy of maximally 2% could be resolved byour one-dimensional predictions for (E™) are well within
choosing a still smaller grid size in Figs. 9 and 10. Compari-a factor of 2 from the 3D simulations. Likewise, the velocity
son of the PSF foD=1 andD =0.1 indicates that the time values forv{(E*) even agree to about 20%.

it takes such a front to build up rapidly increases with de- Moreover, our analysis shows that NSF and PSF propa-
creasingD, but we have not pursued the scaling of the tran-gate in this model and for realistic values of the reduced
sient time withD. diffusion coefficientD, in a very asymmetric manner.

We finally show in Fig. 11 the evolution of streamer (i) NSF rapidly reach a regime of uniform propagation —
fronts starting from nonlocalized initial conditions, i.e., typically on the scale of several tens of time units, i.e., in less
not obeying the boundg5.5 or (5.6) for D=0.1. We than 10 !°s. Their velocity is slightly larger than the elec-
used an initial electron density profilec(x,t=0) tron drift velocity in the fieldE*.
=0.0142 cosh\(x—200)) with A=0.25 and an initial field (i) This is to be contrasted with the dynamics of PSF: For
E=—1. At these values, for the NSR,*(v*)=1.918 and realisticD values, of order 0.1-0.3, they approach uniform
for the PSFA " (v7)=0.3766. In this case, the boun@s5  translation considerably more slowly than NSF — typically
or (5.6) are indeed violated for both fronts, and E§.7) on the time scale of 10 s. Moreover, their asymptotic ve-
predicts a PSF with velocity =0.497>v7=0.0146 and an locity is also much smaller thast'>". It obeys the inequality
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vfpSF<DE+exp(—1/E+) [47]. Finally, while the widths of from this effect, we expect no major qualitative differences.

PSF and NSF are comparable, the degree of ionization be- Finally, it should be kept in mind that our continuum
hind PSF is much largefup to a hundred times for €quations are only valid on length scales larger than the
D=0.1) than that behind NSF. mean free patH.g. On the other hand, we find for the

These results answer the question of whether PSF do @trongest field values appearing in the simulatiguisich are
do not propagate, while exp|aining Why the simulations OfmUCh |arger than the values of the field across the gap, due to
Vitello et al. [9] could not vield a definite answer — most the enhancement near the streamey, tipat the front width
probably because, although their total width is of orderdecreases down to abouf,*~3l ., in the approximation
ag !, their true inner length scale, as defined by the steepnedg.?). In such limits, nonlocality of the transport and ioniza-
of the profile, was too small to be resolved by their grid size tion effects begin to play a role. In addition, under these
[Note that the apparent symmetry between PSF and NSfonditions, a typical volume of siag, contains only of the
found in earlier simulationf8] is to be related to the fact that order of 1000 electrons for the parameter val(Z8) used in
their propagation into a preionized mediwith initial elec- the simulations. Fluctuations are then likely to become non-
tron density of 1& cm?®) is studied, and possibly also due to negligible. In principle, treating these effects calls for a full
the use of a poorly resolving grid. kinetic description. This is probably out of reach for the mo-

It was observed empirically by Dhali and Willianj§] ment, but one might want to mimic the main features of
that in the three-dimensional simulations, the dielectric rethese effects by introducing stochastic terms in the equations.
laxation time in the plasma behind the front was of the samdhese also could mimic photoionization somewhat before
order as the intrinsic time scale set by the front motion. Outhe front due to photons released in the impact ionization
analysis shows that this was no accident: It is a manifestatiofvents, or the natural homogeneous background ionization
of the fact that the balance of the growth mechanisnpact ~ due to radioactivity and cosmic radiation. Investigation of
ionization and the stabilization mechanidiscreeningleads  their relevance for branching of dielectric breakdown pat-
to a single time scalgy = (aoucEo) ~* for a NSF and for the terns might help to understand the asymmetry between the
relaxation behind it for fields of ordeE,. Since our dimen- Mmacroscopic patterns of discharges propagating into a posi-
sionless value o~ is the inverse dielectric relaxation time, tive or a negative field55].
it is of order unity(or slightly smalley for fieldsE*~ —1. In conclusion, our analysis opens the way to a micro-

Of course, the above results should only be considered @&opically based interface approach to discharges that seems
a first step towards a realistic treatment of streamer propag&romising for building a coherent framework for the analysis
tion. They will have to be developed and extended along twf breakdown patterns of various degrees of complexity.
different directions, as follows.

(i) Predictions of patterns within the present model and ACKNOWLEDGMENTS
comparison with the simulationdVithin the frame of the
present continuous and fully deterministic model, here we W.v.S. gratefully acknowledges hospitality of the Univer-
have only considered the restricted case of a one-dimensiongite Paris VI, where this work was initiated. U.E. thanks F.
geometry. This enabled us to demonstrate that the concept Bobele and A. Stampa for valuable discussions about
effective interfaces does apply to streamers. This approackireamer experiments and plasma physics. Her work was
will now have to be extended to the description of curvedmade possible by the Priority Program Non-Linear Systems
fronts. As also discussed [19], one will then be equipped of the Dutch Science Foundation NWO. We also gratefully
with a reduced formulation, valid on the outer scale, whichacknowledge financial support by NWO and the Lorentz
will permit us to study real three-dimensional streamers agund for visits of U.E. and W.v.S. to the UniversiRaris
pattern-forming systems, as was done, e.g., for viscous finVll. Finally, we would like to thank P.A. Vitello for making
gers and dendritic solidification fronf&0]. This should pro- copies of figures froni9] available, which appear here as
vide a direct approach to the question of dielectric patterndgfig. 1.
alternative to the phenomenological DLA-inspired dielectric
breakdown modelf54].

(i) Possibly, extensions of the model will be necessary to
predict real experimentdVe have based our analysis on the
minimal model as defined in Sec. Il. It contains several re- In the Introduction, we draw on the similarity between the
stricting simplifications. A first step in the improvement of streamer problem and other problems such as combustion,
the model would be to include the field dependence of thehemical waves, thermal plumes, phase field models, etc., to
transport coefficient®, and u . It is clear that this will not  motivate the development of an effective interface approach.
modify our qualitative analysis, as, e.g., the counting arguOf these problems, streamer propagation is most closely
ment for the existence of front solutions in Sec. IV dependsanalogous to combustion, in that the strong nonlinearity of
only on the linearization about the stable and unstable statethe reaction rategthe combustion rate and the ionization
Moreover, the qualitative asymmetry between the NSF andate is an important factor in giving rise to front develop-
PSF will persist as these result from the asymmetry of thanent in flames and streamers, respectively. There are impor-
electron drift. Quantitatively, the value af*, the selected tant differences as well, however, and since several interface
value of NSF, will simply be given by Eq5.3) with the  techniques were originally developed in the context of com-
transport coefficient and ionization rate evaluated at the fieldhustion[11,12,17, we highlight some of the differences and
value E*. The slow transient build-up and small speed ofsimilarities here.

PSF could be affected quantitatively by ionic motion, but (& In combustion the reaction rate depends strongly on

APPENDIX DIFFERENCES AND SIMILARITIES
BETWEEN COMBUSTION AND STREAMER FRONTS
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the temperature, whose outer dynamics is governed by a difernal dynamics of the front rather than by conservation laws
fusion equation of the forna, T= V2T, while for streamers (i.e., the gas density

the ionization rate depends strongly on the figdl, with E (d) The electron drift— u.E has no clear analog in com-
the gradientof the potentiakb that obeys the Laplace equa- bustion.

tion V2®~0 in the outer region where the total charge den-  (e) Finally, the relevant asymptotic expansion for stream-
sity vanishes. This field strength varies strongly in the ers is not quite like the “activation energy asymptotics” of
streamer front, since the increased screening resulting froombustion[11,12, since we consider here fields strengths
the rising electron density suppresses— and hence the  that are comparable to the characteristic field sEglef the
ionization rate — to zero. In combustion, on the other handignization rate given in Eq2.6) before the front, whereas in
the temperature hardly varies throughout the combustioR,mnustion activation energy asymptotics is often appropri-

zone. . . .. ate since the flame temperature remains much smaller than
(b) Combustion fronts are essentially fronts progating into

a metastable state, because the front has to supply the h t%i chemical activation energy. For streamers, an analysis
that increases the temperature and hence the reaction ral activation energy asymptotics is appropriate in the limit

while streamer front propagation is an example of fronto(? small fields|E|<E,. Of course, in streamers the rapid

propagation into unstable states, where the reaction starts fgpration of the_ fieldE in _the_ fr<_)nt region, and hef?ce t_he
any nonvanishing electron density. rf_ipl_d suppression of th_e ionization ratg, looks, {it first S|ght,

(¢) In a flame front typically the temperature remains high5|m|lar to the suppression of the chemical reaction rate with
enough that all the reactions proceed to saturation: all th8€creasing temperature in flames. However, in flames this is
combustable material burns. The temperature difference bélue to the strongly nonlinear dependence of the reaction rate
tween the flame front and the background is then essentiallgn temperature before the frofgo that a slight suppression
determined by conservatigiconversion of energy. In typi- Of the temperature reduces the reaction rate dramatically
cal streamer fronts, on the other hand, the fiElds sup-  Wwhile in streamers in large external fields of ordigythis is
pressed long before saturation effects start to play a role, anduie to the fact that the field itself is reduced significantly
hence the ionization level behind the front is set by the in-behind the streamer front, as a result of screening.
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