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Short Time Behavior in de Gennes’ Reptation Model

Ute Ebert,1,3 Artur Baumgärtner,2 and Lothar Schäfer3

1Instituut–Lorentz, Universiteit Leiden, Postbus 9506, 2300 RA Leiden, The Netherlands
2Institut für Festkörperforschung and Forum Modellierung, Forschungszentrum Jülich, 52425 Jülich, German

3Fachbereich Physik, Universität Essen, 45117 Essen, Germany
(Received 7 August 1996)

To establish a standard for the distinction of reptation from other modes of polymer diffusion, we
analytically and numerically study the displacement of the central bead of a chain diffusing through
an ordered obstacle array for timest , O sN2d. Our theory and simulations agree quantitatively
and show that the second moment approaches thet1y4 power law (often viewed as a signature of
reptation) only after a very long transient and only for long chains (N . 100). Our analytically
solvable model furthermore predicts a very short transient for the fourth moment. This is verified by
computer experiment. [S0031-9007(97)02510-6]

PACS numbers: 83.20.Fk, 05.40.+ j, 83.20.Jp
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Since the reptation model was formulated 25 years a
by de Gennes [1], it has become a widely used conce
of polymer motion. In its original form it is concerned
with the diffusion of a mobile polymer chain through a
net of impenetrable and immobile obstacles. It describ
this motion as being confined to a tube created by t
surrounding obstacles. Diffusion takes place by the moti
of little wiggles of surplus length, the “defects”, along the
tube. Asymptotically this scenario yields simple powe
laws for various quantities [1]. For instance, the diffusio
constantD, which governs the motion of the total chain
at large time scales, should behave asD ~ N22, whereN
is the chain length, i.e., the polymerization index of th
macromolecule. Another important prediction concern
the motion of the central beadrNy2std. For intermediate
times it is predicted to diffuse a mean square distance

g1std ­ ksrNy2std 2 rNy2s0dd2l

~

Ω
t1y4 for T0 ø t ø T2
t1y2 for T2 ø t ø T3 .

(1)

HereT0 ­ O sN0d is a microscopic time andT2 ­ O sN2d
is the Rouse time, i.e., the characteristic scale over whi
an unconstrained chain of lengthN equilibrates. The “rep-
tation time” T3 ­ O sN3d marks the onset of the asymp-
totic diffusional regime, where the central bead just follow
the diffusion of the center of mass:g1std ­ Dt. For com-
parison, the Rouse model for a free noninteracting cha
yieldsg1std ~ t1y2 for t ø T2 and asymptotic diffusion of
both central bead and center of mass with diffusion co
stantD ~ N21 for t ¿ T2.

From the beginning, the reptation model has also be
applied to polymer motion through melts, dense solution
or gels, even though in such systems the surroundi
medium more or less can relax. A lot of experimenta
or computer experimental work has aimed at verifying th
reptation predictions in such systems. (See [2] for a rece
review.) The outcome of these efforts today is somewh
ambiguous. The expected power laws have never be
established beyond doubt. Compared to the free moti
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of a chain, one typically finds some slowing down, givin
rise to effective power laws, with no obvious unique an
simple interpretation [3,4].g1std, for instance, typically
behaves as

g1std ~ tx with 0.25 , x & 0.4 for T0 & t & T2 .

It is never clear whether such deviations from predictio
like (1) are due to the relaxation of the surroundin
medium or are intrinsic to the reptation scenario in th
available range of chain lengths. Furthermore, it mu
be stressed that contrary to statements often found
the literature, also in a frozen disordered environme
the asymptotic reptation behavior has not been prope
observed. In fact, recent work [5–7] suggests that ev
strictly immobile obstacles can ruin the reptational pow
laws, due to their disordered spatial distribution. Th
finding is in contrast to the view prevailing in the olde
literature. (See [8], for instance.)

In view of this situation, it is somewhat surprising
to note that little effort has been made to clarify th
implications of the original reptation model, considerin
polymer diffusion in anorderedarray offixedobstacles.
Clearly only such work can provide the basis for
controlled analysis of effects of disorder or relaxatio
of the surrounding medium. We are aware of only tw
such studies. In early work [8] Evans and Edward
claimed to find the behavior (1), but the statistics of the
data are insufficient for a convincing analysis. In fac
our extended study of their model as presented bel
clearly demonstrates that for their chain lengths thet1y4

power law is not yet attained. More recently Deutsch a
Madden [9] reconsidered the model and foundD ~ N22.5

for N & 100, in contrast to the expectedN22 power law.
In order to establish the predictions of the pure rep

tion model, which serves as a starting point for the i
vestigation of more complicated environments, we he
present results of an extended study of reptation throu
an ordered array of fixed obstacles in three dimensio
Concentrating on the internal motion in a time regim
© 1997 The American Physical Society
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prior to free diffusion, we present new extensive sim
lations, and we introduce an analytically solvable mod
that modifies the original reptation model of de Genn
[1] to take the discreteness of the chain into accou
We find quantitative agreement among our theory a
our data. Simple power laws, however, are found on
after a surprisingly long initial transient and are reache
only by quite long chains. Our theory explains the lon
transient quantitatively as a consequence of the finite s
ment size. Furthermore, our theory suggests to determ
another quantity, not measured previously, which shou
show the reptational power laws more clearly, without th
long transient. This prediction is also verified by com
puter experiment. In summary, we provide an analytica
understood and numerically tested standard for reptat
of discrete chains of finite length, relevant for the inte
pretation of all previous simulation results, and mergin
asymptotically (N °! `, t ¿ 1) with the earlier pre-
dicted power laws (1) [1]. In future work, this should al
low for a meaningful analysis of the influence of disorde
or of some slow relaxation of the medium on reptation.

In our simulations we use the Evans-Edwards mod
[8]: The chain is confined to a cubic lattice. A secon
identical lattice is taken to represent the obstacles and
placed such that the lattice points coincide with the cente
of the cells of the first lattice. Then the only move
allowed are those of “hairpins”, which can rotate amon
lattice bonds (see Fig. 1). This model incorporates t
smallest possible tube diameter. It therefore shows
strongest restriction of chain motion and should exhib
reptation in clearest form. In our numerical experime
we concentrated on the short-time behavior (1), search
for thet1y4 power law. We note, however, that for shorte
chains sN # 100d we also covered timest . T3 and
recovered the results of [9]. A full account of our resul
will be published elsewhere.

Figure 2 showsg1std for times t & T2. Obviously,
the expected power lawg1std ~ t1y4 indeed is attained,

FIG. 1. The Evans-Edwards model: (a) Section of a rando
walk on a square lattice, showing one hairpin. The cross
represent the obstacle lattice. The oval identifies a bead of
chain. While the hairpin diffuses past it, the bead is transport
two steps along the tube toward configuration (d). (b) and (
give intermediate configurations. For clearer representation
have opened the base of the hairpins.
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but only very slowly. It fully is developed only for
surprisingly long chainssN * 100d. It seems that for
N °! `, there is a well-defined limiting curve that
merges with the expected power law only for Monte Carlo
time tMC * 3 ? 104. (tMC ­ 1 stands for one attempted
move per bead of the chain.) For our longest chainsN ­
600d the t1y4 power-law regime then extends over abou
two decades. ForN & 100 the influence of the hairpins
diffusing in from the ends of the chain becomes importan
i.e., T2 is exceeded before the power law properly is
developed. The curves then bend upward according
Eq. (1). Effective exponents14 , x & 0.4 could easily be
extracted for shorter chains, in full agreement with earlie
observations.

To properly understand these results, we worked out th
quantitative predictions of the original reptation model [1
in a fully discretized version. The defects are modele
as noninteracting particles, freely diffusing along a lattic
chain. At the chain ends defects can be destroyed
created, which is modeled by coupling the ends to larg
reservoirs. If a defect passes a bead, that bead is displac
by two steps along the “tube”, which is defined by the
t ­ 0 configuration of the chain (see Fig. 1). Letn6st, jd
be the number of defects passing beadj within time
interval t from the left (1) or right (2), respectively.
Then2nst, jd with

nst, jd ­ n1st, jd 2 n2st, jd (2)

gives the displacement of that bead along the “tube
If t is short compared to the tube renewal or reptatio
time T3 ­ O sN3d, this effective diffusion for a central
bead takes place in the fixed initial tube. Since thi
tube is a realization of a random walk on a cubic lattice
with lattice constanta ­ 1, i.e., with lattice vectorssi

with Cartesian componentss
m
i [ h0, 61j andksi ? si0lt ­

dii0, the average over all tube configurations yields fo
t ø T3 (a lower indexc denotes the average over tube

FIG. 2. Doubly logarithmic plot of Monte Carlo data for
various chain lengthsN . The straight lines give slope1y4 or
1y3, respectively.
1593
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g1std ­ kfrNy2std 2 rNy2s0dg2lc,d

­

øµ 2jnjX
i­1

si

∂2¿
c,d

­

øÇ
2n

µ
t,

N
2

∂ Ç¿
d

, (3)

a result that should hold up to a microstructure depend
additive constantc0 much less than one. Such correction
for instance, arise from configurations where the bead
times0 or t sits on the tip of a hairpin, such configuration
being not included faithfully in our defect model. Not
that we use the notion of the “tube” in a somewh
loose way, not distinguishing it properly from the chai
configuration. In the MC model the tube can be defined
the chain configuration with all hairpins cut off, resultin
in a nonreversal random walk. The simple random-wa
like spatial embeddingr of the internal chain coordinates
implied by Eq. (3) is justified by the observation that bo
defects and bead move along the chain, not along the tu
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Our model is similar in spirit to the repton mode
proposed by Rubinstein [10], but somewhat closer to t
original de Gennes model. It allows one to analytical
calculate dynamical properties like the time depende
distribution functionP st; n, jd of nst, jd, while taking the
proper defect dynamics at the chain ends into accou
Leaving details for a forthcoming paper, we only prese
some results for the central beadj ­ Ny2. The second
moment of the distribution ofnst, Ny2d is found asø

n2

µ
t,

N
2

∂¿
d

­ r0

∑
2t
N

1
N
6

1
1

3N
1

1
N

N21X
k­1

s21dk

3

µ
1 2

cos2 pk
2

sin2 pk
2N

∂
e24t sin2 pk

N

∏
, (4)

where r0 is the density of defects. In Eq. (4) we
recognize the sum over the Rouse modes of the cha
typical for such problems.g1std [Eq. (3)] is found as a
function of kn2l as
g1std ­ kj2njl ­
s2kn2ld1y2

p

Ω
2
p

p 1 G

µ
2

1
2

, 2kn2l
∂

2
Z 2kn2l

0
dx x23y2e2x

∑µ
1 2

x
2kn2l

∂21y2

2 1

∏æ
, (5)
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where Gsx, yd denotes the incomplete Gamma function
In Eq. (5) both the termGs· · ·d and the integral are
due to the discrete structure of the chain. Evaluatin
these results in the time regimeT0 ø t ø T2, which
mathematically is defined by the limitN °! ` and1 ø
t , ` fixed, we find the intermediate asymptotics

g1,`std ­ 4p23y4r
1y2
0 t1y4. (6)

In the time regimeT2 ø t ø T3, defined as limitN °!
`, 1 ø tyN2 , ` fixed, we recover thet1y2 behavior:
g1std ­ 4sr0ypd1y2styNd1y2. These are the well known
asymptotic reptation predictions (1).

In comparing our quantitative results to the simulatio
data, we have to specify the density of defectsr0. Due
to the occurrence of larger side loops (double hairpin
etc.), the mapping of hairpins onto defects is not one-t
one, so thatr0 is an effective model parameter. From th
equilibrium statistics of a random walk, it is found to be
fixed within very close bounds:19 & r0 &

1
4 . The shape

of our theoretical curves is not sensitive to the precis
value chosen, which mainly can be absorbed into the tim
scale. We here taker0 ­ 1y4. We also need to fix the
additive constantc0 introduced above. From analyzing
the data for microscopic timesstMC & 30d, we choose to
subtractc0 ­ 0.1 from the Monte Carlo data forg1std.
The only really free parameter is the scalet ­ tytMC,
relating the time variablet of the analytical model to the
Monte Carlo timetMC. By adjusting this single parameter
to t ­ 0.01, we find the results of Fig. 3. Note that
since we divided out the intermediate asymptotics (6), th
plot is much more sensitive to small deviations than th
usual doubly logarithmic representation. In view of thi
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we believe the agreement found forN $ 40 to be truly
remarkable.

We now can analyze in detail the origin of the lon
transient, which in Fig. 3 extends up tot ø 103. Accord-
ing to Eq. (5),g1std depends ont only via kn2st, Ny2dl.
Now it is found thatkn2st, Ny2dl approaches its interme-
diate asymptoticskn2st, Ny2dl1y2 ­ s2r0d1y2stypd1y4 for
times as small ast * 3. The slow transient thus is due to
the deviations ofkjnjl from s2kn2lypd1y2 for small kn2l as
exhibited in Eq. (5). These deviations reflect the discre
structure of the chain. A simple toy model explains th
effect: The fluctuating quantitynst, jd takes only integer
values and its distribution rapidly looks like adiscretized
Gaussian. The width of this Gaussian, however, increa

FIG. 3. g1stdyg1,`std plotted against log10 t, t ­ 0.01 ? tMC.
Full and broken lines: theory. Points: MC data.
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but slowly: kn2st, jdl1y2 , t1y4. Even for t ø 103 it
shows nonzero weight essentially only forjnj & 5. Thus
the discrete nature of the fluctuating variablenst, jd stays
important for a very large initial time interval. Evalu-
ating kjnst, jdjl with such a discretized Gaussian, we re
cover the slow transient.

These considerations immediately suggest to elimina
the transient behavior by measuringkn2l instead ofkjnjl.
Now for the present model it is easily checked that th
cubic invariantĝ2

1std reduces tokn2l:

ĝ1std ­

ø 3X
m­1

frm

Ny2std 2 r
m

Ny2s0dg4

¿1y2

c,d
(7)

­

ø 3X
m­1

µ 2jnjX
i­1

s
m
i

∂4¿1y2

c,d
­

ø
4n2

µ
t,

N
2

∂¿1y2

d
.

For random-walk-type chains on other lattices or in th
continuum the spatial embeddingr of the basic dynamic
quantitykn2l differs, butkn2l always can be expressed by
an appropriate combination of the fourth and the seco
moment offrNy2std 2 rNy2s0dg. Figure 4 shows a doubly
logarithmic plot of our data for̂g1 as compared tog1 for
chain lengthsN = 40 and 600. Clearly our expectation
is born out. Forĝ1std only some slight initial deviation
from the t1y4 power law can be detected that could lea
to a tiny underestimation of the exponentsø0.235 in
place of0.25). Even for N ­ 40 we find a decentt1y4

regime, which forN ­ 600 extends over almost four

FIG. 4. Doubly logarithmic plot of MC-data (like in Fig. 2)
for g1std and ĝ1 std and forN ­ 40, 600. Full line: t1y4 power
law. Broken line:t1y3 curve for comparison.
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decades. We thus conclude that our fourth moment sho
asymptotic reptational behavior much more clearly tha
the commonly used second moment.

In summary, combining a simple exactly solvable
model with computer experiments, we not only recovere
the asymptotic reptation prediction of at1y4 regime,
but we also quantitatively explained the shape of th
crossover function with its long initial transient. Since
any change of the microstructure of the model like a
enlargement of the tube radius will only increase th
initial effects, we believe our results to be typical also fo
other models. We have demonstrated that an appropri
fourth moment measuringkn2l instead ofkjnjl suppresses
the initial transient and thus lends itself to a much simple
analysis. These results are hoped to provide a standa
for the study of deviations from reptation due to disorde
or due to a relaxation of the tube. In all cases w
strongly recommend including the fourth moment of th
displacement of the central bead into the analysis.
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