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Short Time Behavior in de Gennes’ Reptation Model
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To establish a standard for the distinction of reptation from other modes of polymer diffusion, we
analytically and numerically study the displacement of the central bead of a chain diffusing through
an ordered obstacle array for times< O (N?). Our theory and simulations agree quantitatively
and show that the second moment approachest'tepower law (often viewed as a signature of
reptation) only after a very long transient and only for long chaiNs> 100). Our analytically
solvable model furthermore predicts a very short transient for the fourth moment. This is verified by
computer experiment. [S0031-9007(97)02510-6]

PACS numbers: 83.20.Fk, 05.40.+j, 83.20.Jp

Since the reptation model was formulated 25 years agof a chain, one typically finds some slowing down, giving
by de Gennes [1], it has become a widely used concepise to effective power laws, with no obvious unique and
of polymer motion. In its original form it is concerned simple interpretation [3,4].g,(¢), for instance, typically
with the diffusion of a mobile polymer chain through a behaves as
net of impenetrable and immobile obstacles. It describes
this motion as being confined to a tube created by the
surrounding obstacles. Diffusion takes place by the motiotit is never clear whether such deviations from predictions
of little wiggles of surplus length, the “defects”, along the like (1) are due to the relaxation of the surrounding
tube. Asymptotically this scenario yields simple powermedium or are intrinsic to the reptation scenario in the
laws for various quantities [1]. For instance, the diffusionavailable range of chain lengths. Furthermore, it must
constantD, which governs the motion of the total chain be stressed that contrary to statements often found in
at large time scales, should behavelas: N 2, whereN the literature, also in a frozen disordered environment
is the chain length, i.e., the polymerization index of thethe asymptotic reptation behavior has not been properly
macromolecule. Another important prediction concernbserved. In fact, recent work [5—7] suggests that even
the motion of the central beag,/»(r). For intermediate strictly immobile obstacles can ruin the reptational power
times it is predicted to diffuse a mean square distance laws, due to their disordered spatial distribution. This

gi(f) ct* with025<x=<04 forTy<r=T,.

) = (v (1) — ran(0)2 f_inding is in contrast to the view prevailing in the older
1) <(174/2( ) w207 literature. (See [8], for instance.)

o {tuz forTy <1 < T 1) In view of this situation, it is somewhat surprising

t for, <1 <Ts. to note that little effort has been made to clarify the

HereT, = O (N°) is a microscopic time anfl, = O (N?) implications of the original reptation model, considering
is the Rouse time, i.e., the characteristic scale over whicpolymer diffusion in anorderedarray offixed obstacles.
an unconstrained chain of lengthequilibrates. The “rep- Clearly only such work can provide the basis for a
tation time” T3 = O (N?) marks the onset of the asymp- controlled analysis of effects of disorder or relaxation
totic diffusional regime, where the central bead just followsof the surrounding medium. We are aware of only two
the diffusion of the center of mass;i(r) = Dt. Forcom- such studies. In early work [8] Evans and Edwards
parison, the Rouse model for a free noninteracting chaielaimed to find the behavior (1), but the statistics of their
yields g (¢) = ¢'/2 for r < T, and asymptotic diffusion of data are insufficient for a convincing analysis. In fact,
both central bead and center of mass with diffusion coneur extended study of their model as presented below
stantD « N~! for ¢t > T». clearly demonstrates that for their chain lengths tHé
From the beginning, the reptation model has also beepower law is not yet attained. More recently Deutsch and
applied to polymer motion through melts, dense solutionsMadden [9] reconsidered the model and found: N 2>
or gels, even though in such systems the surroundinfpr N < 100, in contrast to the expected 2 power law.
medium more or less can relax. A lot of experimental In order to establish the predictions of the pure repta-
or computer experimental work has aimed at verifying thetion model, which serves as a starting point for the in-
reptation predictions in such systems. (See [2] for a recentestigation of more complicated environments, we here
review.) The outcome of these efforts today is somewhapresent results of an extended study of reptation through
ambiguous. The expected power laws have never beean ordered array of fixed obstacles in three dimensions.
established beyond doubt. Compared to the free motio@oncentrating on the internal motion in a time regime
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prior to free diffusion, we present new extensive simu-but only very slowly. It fully is developed only for
lations, and we introduce an analytically solvable modekurprisingly long chaindN = 100). It seems that for
that modifies the original reptation model of de GennesV. — oo, there is a well-defined limiting curve that
[1] to take the discreteness of the chain into accountmerges with the expected power law only for Monte Carlo
We find quantitative agreement among our theory andime tyic = 3 - 10*. (fmc = 1 stands for one attempted
our data. Simple power laws, however, are found onlymove per bead of the chain.) For our longest ct{ain=
after a surprisingly long initial transient and are reached00) the t'/* power-law regime then extends over about
only by quite long chains. Our theory explains the longtwo decades. FoN =< 100 the influence of the hairpins
transient quantitatively as a consequence of the finite segliffusing in from the ends of the chain becomes important,
ment size. Furthermore, our theory suggests to determiniee., 7, is exceeded before the power law properly is
another quantity, not measured previously, which shouldleveloped. The curves then bend upward according to
show the reptational power laws more clearly, without thegq. (1). Effective exponentis < x = 0.4 could easily be
long transient. This prediction is also verified by com-extracted for shorter chains, in full agreement with earlier
puter experiment. In summary, we provide an analyticallyobservations.
understood and numerically tested standard for reptation To properly understand these results, we worked out the
of discrete chains of finite length, relevant for the inter-quantitative predictions of the original reptation model [1]
pretation of all previous simulation results, and mergingin a fully discretized version. The defects are modeled
asymptotically y — =, r > 1) with the earlier pre- as noninteracting particles, freely diffusing along a lattice
dicted power laws (1) [1]. In future work, this should al- chain. At the chain ends defects can be destroyed or
low for a meaningful analysis of the influence of disordercreated, which is modeled by coupling the ends to large
or of some slow relaxation of the medium on reptation. reservoirs. If a defect passes a bead, that bead is displaced
In our simulations we use the Evans-Edwards modeby two steps along the “tube”, which is defined by the
[8]: The chain is confined to a cubic lattice. A second: = 0 configuration of the chain (see Fig. 1). Let(, j)
identical lattice is taken to represent the obstacles and ise the number of defects passing beadvithin time
placed such that the lattice points coincide with the centeriterval ¢+ from the left (+) or right (—), respectively.
of the cells of the first lattice. Then the only moves Then2n(z, j) with
allowed are those of “hairpins”, which can rotate among
lattice bonds (see Fig. 1). This model incorporates the n(t,j) = ny(t,j) — n-(t,)) (2)
smallest possible tube diameter. It therefore shows the
strongest restriction of chain motion and should exhibitgives the displacement of that bead along the “tube”.
reptation in clearest form. In our numerical experimentlf 7 is short compared to the tube renewal or reptation
we concentrated on the short-time behavior (1), searchinime T3 = O (N?), this effective diffusion for a central
for thes!/4 power law. We note, however, that for shorter bead takes place in the fixed initial tube. Since this
chains (N = 100) we also covered times > T3 and tube is a realization of a random walk on a cubic lattice
recovered the results of [9]. A full account of our resultswith lattice constantz = 1, i.e., with lattice vectorss;
will be published elsewhere. with Cartesian componem§ € {0, =1} and(s; * s;/); =
Figure 2 showsg,(r) for times ¢t < T,. Obviously, §;, the average over all tube configurations yields for
the expected power law, () « '/# indeed is attained, ¢ < T3 (a lower indexc denotes the average over tube

X | x| x| x b)+.=+,=|_‘_ log;o 91 (%) N=20 40 80160 600

) d)%

0.25
FIG. 1. The Evans-Edwards model: (a) Section of a random 0 -
walk on a square lattice, showing one hairpin. The crosses - logm tue
represent the obstacle lattice. The oval identifies a bead of th 3 4 5 6 7

chain. While the hairpin diffuses past it, the bead is transportea

two steps along the tube toward configuration (d). (b) and (cFIG. 2. Doubly logarithmic plot of Monte Carlo data for
give intermediate configurations. For clearer representation wearious chain length®/. The straight lines give slop&/4 or
have opened the base of the hairpins. 1/3, respectively.
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configurations and over thermal defect dynamics) Our model is similar in spirit to the repton model

_ B 2 proposed by Rubinstein [10], but somewhat closer to the

g1(0) = {ry () = tn2 (0 F)ea original de Gennes model. It allows one to analytically
2nl 2 N calculate dynamical properties like the time dependent
= <<ZSZ> > = < 2n<l, 3) > . (3 distribution function(z; n, j) of n(z, j), while taking the
i=1 od a proper defect dynamics at the chain ends into account.
a result that should hold up to a microstructure dependeriteaving details for a forthcoming paper, we only present
additive constant, much less than one. Such corrections,some results for the central begd= N/2. The second
for instance, arise from configurations where the bead anoment of the distribution of(z, N/2) is found as
timesO0 or ¢ sits on the tip of a hairpin, such configurations N—1
being not included faithfully in our defect model. Note <n2<[,ﬁ>> = po[ﬂ + N + 1 + 1 Z(_l)k
that we use the notion of the “tube” in a somewhat 2 N 6 3N N &G
loose way, not distinguishing it properly from the chain cog T o
configuration. In the MC model the tube can be defined as X <1 — —2/<> g Ysim } , (@)
the chain configuration with all hairpins cut off, resulting sir? 35
in a nonreversal random walk. The simple random-walk- ) )
like spatial embedding of the internal chain coordinates Where po is the density of defects. In Eq. (4) we
implied by Eq. (3) is justified by the observation that both"€c0gnize the sum over the Rouse modes of the chain,
defects and bead move along the chain, not along the tubf/Pical for such problems.g,(z) [Eq. (3)] is found as a
T function of (n?) as
2\\1/2 2n?) -1/2
g1(t) = (2n]) = M{%/F + F<—1,2<n2)> — ] dx x3/2ex[<1 -2 ) — 1}}, (5)
T 2 0 2n?)

where I'(x, y) denotes the incomplete Gamma functioln.we believe the agreement found for = 40 to be truly

In Eq. (5) both the termI'(---) and the integral are remarkable.

due to the discrete structure of the chain. Evaluating We now can analyze in detail the origin of the long
these results in the time reginig < + < T,, which  transient, which in Fig. 3 extends up#e= 10°. Accord-
mathematically is defined by the limN — < and1 < ing to Eq. (5),g:(r) depends orr only via {n’(t, N/2)).

t < = fixed, we find the intermediate asymptotics Now it is found that(n?(z, N /2)) approaches its interme-
3 120 diate asymptoticgn2(z, N/2))'/2 = (2po)"/2(¢/7)"/* for
1) = dar " pg /T (6)  times as small as = 3. The slow transient thus is due to

In the time regimels, < ¢ < T3, defined as limity —  the deviations ofnl) from (2(n?)/ )"/ for small(n®) as
®, 1 < 1/N? < = fixed, we recover the'’2 behavior: €Xhibited in Eq. (5). These deviations reflect the discrete
g1’(t) - 4(}00/77)1/20/1\,)'1/2' These are the well known Structure of the chain. A simple toy model explains this
asymptotic reptation predictions (1). effect: The fluctuating quantity(z, j) takes only integer

In comparing our quantitative results to the simulationvalues and its distribution rapidly looks likediscretized
data, we have to specify the density of defeegs Due Gaussian. The width of this Gaussian, however, increases

to the occurrence of larger side loops (double hairpins,
etc.), the mapping of hairpins onto defects is not one-to- .
one, so thap, is an effective model parameter. From the 91_()

equilibrium statistics of a random walk, it is found to be  ¢1,00(t) N =20 40 80 160 600
fixed within very close bound% < po = %. The shape A A /
of our theoretical curves is not sensitive to the precise 1-4| Y A A s

value chosen, which mainly can be absorbed into the time
scale. We here takg, = 1/4. We also need to fix the 1.
additive constant, introduced above. From analyzing

the data for microscopic timegy,c < 30), we choose to
subtractcg = 0.1 from the Monte Carlo data fog,(z).

The only really free parameter is the scale= t/tuc,
relating the time variable of the analytical model to the 0.
Monte Carlo timeryc. By adjusting this single parameter y 1 s
to 7 = 0.01, we find the results of Fig. 3. Note that , 0810
since we divided out the intermediate asymptotics (6), this 1 2 3 4 5 6
plot is much more sensitive to small deviations than theriG. 3. ¢,(1)/g1(t) plotted against log ¢, ¢ = 0.01 - fyc.
usual doubly logarithmic representation. In view of thisFull and broken lines: theory. Points: MC data.
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but slowly: (n2(z, j))/2 ~ t'/4. Even for r = 10° it  decades. We thus conclude that our fourth moment shows
shows nonzero weight essentially only fat = 5. Thus  asymptotic reptational behavior much more clearly than
the discrete nature of the fluctuating variable, j) stays the commonly used second moment.

important for a very large initial time interval. Evalu- In summary, combining a simple exactly solvable
ating {|n(z, j)|) with such a discretized Gaussian, we re-model with computer experiments, we not only recovered
cover the slow transient. the asymptotic reptation prediction of &/* regime,

These considerations immediately suggest to eliminatbut we also quantitatively explained the shape of the
the transient behavior by measuritg’) instead of(|n|).  crossover function with its long initial transient. Since
Now for the present model it is easily checked that theany change of the microstructure of the model like an
cubic invariantgi(z) reduces tqn?): enlargement of the tube radius will only increase the

3 1/2 initial effects, we believe our results to be typical also for
21(r) = <Z [rﬁ/z(t) — rﬁ/z(O)]4> (7)  other models. We have demonstrated that an appropriate
p=1 cd fourth moment measuring:?) instead of(|n|) suppresses

302 \4\1/2 N2 the initial transient and thus lends itself to a much simpler
= <Z <Z s,“) > = <4n2<t, —>> . analysis. These results are hoped to provide a standard
u=1\i=1 c.d 2/la for the study of deviations from reptation due to disorder

For random-walk-type chains on other lattices or in the®’ due to a relaxation of the tube. In all cases we

contin_uum theT spatial embeddimgof the basic dynamic Zgrs%rlle?clz){e%e:rzn;;ntigdclennctlr:?lggat(;]ienggl:;]tg ::](;Eggt of the
quantity{n?) differs, but(n?) always can be expressed by We thank 1. M.J L 4 D. Aalberts f
an appropriate combination of the fourth and the second e thank J. M.J.-van Leeuwen and D. Aalberts for
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moment offry»() — ry/2(0)]. Figure 4 shows a doubly el .
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